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Abstract

A quantum system S interacts in a successive way with elements E of a chain of identical independent
quantum subsystems. Each interaction lasts for a duration τ and is governed by a fixed coupling between S
and E . We show that the system, initially in any state close to a reference state, approaches a repeated inter-
action asymptotic state in the limit of large times. This state is τ -periodic in time and does not depend on the
initial state. If the reference state is chosen so that S and E are individually in equilibrium at positive tem-
peratures, then the repeated interaction asymptotic state satisfies an average second law of thermodynamics.
 2006 Published by Elsevier Inc.
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1. Introduction

In this introduction we outline our main results and the relevant ideas of their proofs.
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Suppose a quantum system S interacts with another one, E , during a time interval [0, τ ),
where τ > 0 is fixed. Then, for times [τ,2τ), S interacts in the same fashion with another copy
of E , and so on. The assembly of the systems E (which are not directly coupled among each
other) is called a chain, C = E + E + · · ·. The system S + C, with an interaction as described
above, is called a repeated interaction quantum system. One may think of S as being the system
of interest, like a particle enclosed in a container, and of C as a chain of measuring apparatuses
E that are brought into contact with the particle in a sequential manner.

The theoretical and practical importance of repeated interaction quantum systems is exempli-
fied by systems of radiation–matter coupling, where atoms interact with modes of the quantized
electromagnetic field. In this setting, the system S describes one or several modes of the field in
a cavity and the chain C represents a beam of atoms E that is injected into the cavity. So-called
“One-Atom Masers,” where the beam in tuned in such a way that at each given moment a single
atom is inside a microwave cavity and the interaction time τ is the same for each single atom,
have been experimentally realized in laboratories [9,12].

The system described above has been proposed as a tool for engineering of quantum states
of the radiation field. Two-level atoms are injected into a cavity, one by one, where they interact
for a fixed duration with a mode of the electromagnetic field (e.g. through the Jaynes–Cummings
Hamiltonian), before leaving the cavity. In the limit of infinitely many interactions (i.e., as time
increases to infinity) the field mode can be driven to an arbitrary state (starting from an arbitrary
initial state), provided the atoms in the beam are prepared in a suitable way before the interaction,
see [11,13] and the references therein. The fidelity of the target state preparation reaches 100%
exponentially fast in time.

In this respect, we obtain as a byproduct of our main result—the construction of the asymp-
totic state—the following complementary result. We show explicitly in examples (Section 3) that
the preparation of an arbitrary target state of S is achieved, exponentially fast in time, for any
state of the incoming atoms and for arbitrary initial states of S , by varying the coupling functions
of the interaction (form factors).

Repeated quantum interaction models also appeared recently in the study of modelization of
open quantum systems by means of quantum noises, see [3] and references therein. Any (con-
tinuous) master equation governing the dynamics of states on a system S can be viewed as the
projection of a unitary evolution driving the system S and a field of quantum noises in interac-
tion. It is shown in [3] how to recover such continuous models as some limit of a discretization
given by a repeated quantum interaction model. The limit considered involves the time step τ , the
strength of the interaction λ and a notion of distance between the elements of the chain in an in-
tricate way. We note also that the effective evolution of the small system S in a quantum repeated
interaction model has been investigated in certain regimes of the parameters τ and λ related to the
Van Hove limit in [2]. The result is a continuous Markovian effective evolution, driven by certain
Lindblad generators depending on the interaction and on the asymptotic regimes considered. By
contrast, in the present work we do not invoke any Van Hove limit type argument.

Our goal is to study the large time behaviour of repeated interaction quantum systems, and
in particular, to describe the effect of the repeated interaction on the system S . One of our main
results is the construction of the time-asymptotic state, which we call a repeated interaction
asymptotic state (RIAS).

States of S and E are represented by vectors (or density matrices) in the Hilbert spaces
HS and HE , respectively. We assume that dimHS < ∞, while dimHE � ∞. The observ-
ables of S and E are bounded operators, they form the (von Neumann) algebras MS ⊂ B(HS)
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and ME ⊂ B(HE ). Observables evolve according to the Heisenberg dynamics t �→ τ t
S(AS) and

t �→ τ t
E (AE ), where τ t

S and τ t
E are groups of ∗-automorphisms of MS and ME , respectively.

We assume that there are distinguished “reference” states, represented by the vectors ΩS ∈
HS and ΩE ∈ HE , and for the purposes of the introduction, we shall take ΩS , ΩE to be equilib-
rium states with respect to τ t

S , τ t
E , for inverse temperatures βS , βE , respectively. It is useful to

pass to a description of the dynamics of vectors in HS , HE (Schrödinger dynamics). There are
selfadjoint operators LS , LE , called the standard Liouville operators, uniquely specified by

τ t
#(A) = eitL#Ae−itL# , and L#Ω# = 0, (1.1)

where # stands here for either S or E .
The Hilbert space of the entire system is given by H = HS ⊗HC , where HC , the Hilbert space

of the chain, is the infinite tensor product
⊗

m�1 HE . The non-interacting dynamics is defined
on the algebra MS

⊗
m�1 ME by τ t

S
⊗

m�1 τ t
E .

We consider interactions of the following kind. Fix an interaction time τ > 0. During the
interval [0, τ ), S interacts with the first element E in the chain C, while all other E’s evolve freely.
The interaction is specified by an operator V ∈ MS ⊗ ME . In the next time interval, [τ,2τ),
S interacts with the second element in the chain, through the same interaction operator V , and
all other elements evolve freely, and so on. For t � 0 we set

t = m(t)τ + s(t), (1.2)

where m(t) is the integer measuring how many complete interactions of duration τ have taken
place at the instant t , and where 0 � s(t) < τ . We define the repeated interaction (Schrödinger)
dynamics, for t � 0, ψ ∈ H, by

URI(t)ψ = e−is(t)L̃m(t)+1 e−iτ L̃m(t) . . . e−iτ L̃1ψ, (1.3)

where

L̃m = Lm +
∑
k �=m

LE,k (1.4)

is the generator of the total dynamics during the time interval [(m − 1)τ,mτ). We have intro-
duced Lm, the operator on H that acts trivially on all elements of the chain except for the mth
one, and which, on the remaining part of H (which is just HS ⊗HE ), acts as

L = LS + LE + V. (1.5)

In (1.4), LE,k denotes the operator on H that acts non-trivially only on the kth element of the
chain, on which it equals LE .

A state ω given by a density matrix on H is said to be normal. Our goal is to understand the
time-asymptotics (t → ∞) of expectations

ω
(
URI(t)

∗OURI(t)
)≡ ω

(
αt

RI(O)
)

(1.6)

for normal states ω and for certain classes of “observables” O . As mentioned above, we may
regard S as the system of interest, so we certainly want to treat the case O ∈ MS . Another type
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of physical observable is of interest as well. Imagine we want to measure the variation, say, of the
energy of S at a certain moment in time. This measuring process involves the system S , but also
the element of the chain that is in contact with S at the given moment. We call such an observable
an instantaneous observable. Various generalizations can be considered, see Section 2, but we
limit our discussion in this introduction to the two kinds of observables just described.

Asymptotic state

Let O be an instantaneous observable, determined by AS and AE . This means that at time
t = m(t)τ + s(t), (1.2), O measures AS ⊗ AE on the system S + E , where E is the (m(t) + 1)th
element in the chain C. We show in Theorem 2.3 that, under a natural assumption on the interac-
tion, we have ∣∣ω(αt

RI(O)
)− ω+

(
Pα

s(t)
RI (AS ⊗ AE )P

)∣∣→ 0, (1.7)

as t → ∞, where ω+ is a state on MS which does not depend on ω (cf. (1.13)), and where

P = 1HS

⊗
m�1

PΩE , (1.8)

with PΩE denoting the orthogonal projection onto CΩE . We identify the range of P with HS .
Relation (1.7) shows that the expectation of an instantaneous observable in any normal initial
state approaches a τ -periodic limit function (t �→ s(t) is τ -periodic). The speed of convergence
in (1.7) is exponential, ∼ e−tγ /τ , where γ > 0 is a constant depending on the interaction.

The restriction of the RIAS to the algebra of instantaneous observables characterized by
AS ∈ MS and AE ∈ ME is the τ -periodic state

AS ⊗ AE �→ ω+
(
Pα

s(t)
RI (AS ⊗ AE )P

)
(1.9)

on MS ⊗ ME , see (1.7) (and (2.26) for the definition of the RIAS acting on more general ob-
servables).

The above-mentioned assumption on the interaction is an ergodicity assumption on the dy-
namics reduced to the system S . More precisely, we construct a (non-symmetric) operator K on
H such that

Pαt
RI(AS)PΩS = (

P eiτKP
)m(t)

P eis(t)KASPΩS , (1.10)

with the property

P eiτKPΩS = ΩS . (1.11)

We assume that 1 is a simple eigenvalue of P eiτKP , and that all the other eigenvalues lie strictly
inside the complex unit disk. (We prove in Section 3 that this holds for concrete models.) As a
consequence of this assumption, we have(

P eiτKP
)m(t) → |ΩS〉〈Ω∗ ∣∣, (1.12)
S
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as t → ∞, where Ω∗
S is the unique vector in HS satisfying (P eiτKP )∗Ω∗

S = Ω∗
S and

〈Ω∗
S ,ΩS〉 = 1. To arrive at result (1.7), where

ω+(·) = 〈
Ω∗

S , ·ΩS
〉
, (1.13)

we use (1.12) together with an argument involving a cyclicity property of ΩS .
Our approach is constructive in the sense that the asymptotic characteristics of the system,

such as the state ω+, the speed of convergence γ , and the asymptotic dynamics in (1.7) can be
calculated by rigorous perturbation theory (in V ).

Correlations and reconstruction of initial state

The (time dependent) asymptotic expectations of observables do not depend on the initial state
of the system, cf. (1.7). However, asymptotic correlations do, and together with the asymptotic
expectations they permit to reconstruct the initial state in the following way.

Take a normal state ω, an instantaneous observable O determined by AS ∈ MS , AE ∈ ME ,
and an observable A ∈ M. We show in Theorem 2.5 that∣∣ω(Aαt

RI(O)
)− ω(A)ω+

(
Pα

s(t)
RI (AS ⊗ AE )P

)∣∣→ 0 (1.14)

as t → ∞ (exponentially fast). According to (1.7) and (1.14), knowledge of the asymptotic
correlation function C+(t;A,O), and of the asymptotic expectation E+(t;O), determined re-
spectively by

lim
t→∞

∣∣ω(Aαt
RI(O)

)− C+(t;A,O)
∣∣= 0 and lim

t→∞
∣∣ω(αt

RI(O)
)− E+(t;O)

∣∣= 0,

allows for a reconstruction of the initial state ω according to

ω(A) = C+(t;A,O)

E+(t;O)
. (1.15)

Energy, entropy, average 2nd law of thermodynamics for RIAS

The formal quantity αt
RI(L̃m(t)+1), where L̃m is given by (1.4), has a well-defined variation

in t . It is not hard to see by explicit calculation that this variation is zero in all time intervals
[(m − 1)τ,mτ), and that it undergoes a jump

j (m) = αmτ
RI (Vm+1 − Vm)

as time passes the moment mτ . Here, Vk denotes the operator V acting non-trivially only on HS
and the kth element HE of the chain Hilbert space HC . We interpret the variation of the above
formal quantity as the (time dependent) observable of variation in total energy of the system.

We show in Section 2.4.1 that for any normal initial state ω, the variation in energy during
any time interval of length τ takes the asymptotic expectation value ω+(j+), where

j+ = PV P − Pατ
RI(V )P = −i

τ∫
Pαs

RI

([LS + LE ,V ])P ds. (1.16)
0
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(Here and in the rest of the paper we understand commutators to be defined in the form sense,
but none of our arguments involve delicate domain questions with regards to commutators.) We
define the (average) asymptotic energy production dE+ to be the change in energy during any
interval of duration τ , divided by τ , in the limit of large times. This quantity is given by

dE+ = 1

τ
ω+(j+) (1.17)

and is independent of the initial state ω. We show in Section 2.4.2 that ω+(j+) � 0.
Denote by ω0 the state on M determined by the vector ΩS

⊗
m�1 ΩE ∈H, and let Ent(ω|ω0)

denote the relative entropy of the normal state ω with respect to ω0. We think it is natural to
define the entropy as a non-negative quantity, and our definition of it differs by a sign from the
one given in [4].1 We define the (average) asymptotic entropy production dS+ to be the change
of (relative) entropy in any interval of duration τ , divided by τ , in the limit of large times. We
prove in Section 2.4.2 that

dS+ = βE
τ

ω+(j+), (1.18)

where βE is the inverse temperature of the elements in the chain. The asymptotic entropy pro-
duction does not depend on the initial state ω. We may combine (1.17) and (1.18) to arrive at an
average 2nd law of thermodynamics for repeated interaction quantum systems,

dE+ = TE dS+, (1.19)

where TE = 1/βE is the temperature of the chain. Relation (1.19) is independent of the initial
state of the system, and it holds for any repeated interaction system (V and τ ).

2. Model and results

2.1. Repeated interaction models

The models we consider consist of a system S which is coupled to a chain C = E + E + · · · of
identical elements E . We describe S and E as W ∗-dynamical systems (MS , τ t

S) and (ME , τ t
E ),

where MS , ME are von Neumann algebras “of observables” acting on the Hilbert spaces HS ,
HE , respectively, and where τ t

S and τ t
E are (σ -weakly continuous) groups of ∗-automorphisms

describing the Heisenberg dynamics. In this paper, we consider the situation dimHS < ∞ and
dimHE � ∞.

We assume that there are distinguished vectors ΩS ∈ HS and ΩE ∈ HE , determining states
on MS and ME which are invariant with respect to τ t

S and τ t
E , respectively, and we assume that

ΩS and ΩE are cyclic and separating for MS and ME , respectively. One may typically think of
these distinguished vectors as being KMS vectors.

The Hilbert space of the chain C is defined to be the infinite tensor product

HC =
⊗
m�1

HE (2.1)

1 For a finite system we have Ent(ω|ω0) = Tr(ρ(logρ − logρ0)), where ρ and ρ0 are density matrices determining the
states ω and ω , respectively, and where ρ > 0.
0 0



ARTICLE IN PRESS
JID:YJFAN AID:4743 /FLA [m1+; v 1.53; Prn:3/03/2006; 10:42] P.7 (1-35)

L. Bruneau et al. / Journal of Functional Analysis ••• (••••) •••–••• 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

with respect to the reference vector

ΩC = ΩE ⊗ ΩE ⊗ · · · . (2.2)

In other words, HC is obtained by taking the completion of the vector space of finite linear com-
binations of the form

⊗
m�1 ψm, where ψm ∈HE , ψm = ΩE except for finitely many indices, in

the norm induced by the inner product〈⊗
m

ψm,
⊗
m

χm

〉
=
∏
m

〈ψm,χm〉HE . (2.3)

We introduce the von Neumann algebra

MC =
⊗
m�1

ME (2.4)

acting on
⊗

m�1 HE , which is obtained by taking the weak closure of finite linear combinations
of operators

⊗
m�1 Am, where Am ∈ ME and Am = 1HE except for finitely many indices.

The operator algebra containing the observables of the total system is the von Neumann alge-
bra

M = MS ⊗ MC (2.5)

which acts on the Hilbert space

H = HS ⊗HC . (2.6)

The repeated interaction dynamics of observables in M is characterized by an interaction time
0 < τ < ∞ and a selfadjoint interaction operator

V ∈ MS ⊗ ME . (2.7)

For times t ∈ [τ(m − 1), τm), where m � 1, S interacts with the mth element of the chain,
while all other elements of the chain evolve freely (each one according to the dynamics τE ). The
interaction of S with every element in the chain is the same (given by V ).

Let LS and LE be the standard Liouville operators (“positive temperature Hamiltonians,” cf.
references of [5,8]), uniquely characterized by the following properties: L# (where # = S,E) are
selfadjoint operators on H# which implement the dynamics τ t

#,

τ t
#(A) = eitL#Ae−itL#, ∀A ∈ M#, (2.8)

and

L#Ω# = 0. (2.9)

We define the selfadjoint operator

L = LS + LE + V, (2.10)
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omitting trivial factors 1S or 1E (by LS in (2.10) we really mean LS ⊗ 1E , etc.). L generates
the automorphism group eitL · e−itL of MS ⊗ ME , the interacting dynamics between S and
an element E of the chain C. The explicit form of the operator V is dictated by the underlying
physics, we give some examples in Section 3.

For m � 1 let us denote by

L̃m = Lm +
∑
k �=m

LE,k (2.11)

the generator of the total dynamics during the interval [(m − 1)τ,mτ). We have introduced Lm,
the operator on H that acts trivially on all elements of the chain except for the mth one. On the
remaining part of the space (which is isomorphic to HS ⊗ HE ), Lm acts as L, (2.10). We have
also set LE,k to be the operator on H that acts non-trivially only on the kth element of the chain,
on which it equals LE . Of course, the infinite sum in (2.11) must be interpreted in the strong
sense on H.

Decompose t ∈ R+ as

t = m(t)τ + s(t), (2.12)

where m(t) is the integer measuring the number of complete interactions of duration τ the system
S has undergone at time t , and where 0 � s(t) < τ . The repeated interaction dynamics of an
operator A on H is defined by

αt
RI(A) = URI(t)

∗ AURI(t), (2.13)

where

URI(t) = e−is(t)L̃m(t)+1e−iτ L̃m(t) . . . e−iτ L̃1 (2.14)

defines the Schrödinger dynamics on H. According to this dynamics S interacts in succession,
for a fixed duration τ and a fixed interaction V , with the first m(t) elements of the chain, and for
the remaining duration s(t) with the (m(t) + 1)th element of the chain. Being the propagator of
a “time-dependent Hamiltonian” (which is piecewise constant), URI(t) does not have the group
property in t .

Our goal is to examine the large time behaviour of expectation values of certain observables
in normal states ω on M (states given by a density matrix on H). The system S feels an effective
dynamics induced by the interaction with the chain C. Under a suitable ergodicity assumption
on this effective dynamics the small system is driven to an asymptotic state, as time increases.
We will express the effective dynamics and the ergodic assumption using the modular data of the
pair (MS ⊗ MC,ΩS ⊗ ΩC).

Let J and � denote the modular conjugation and the modular operator associated to (MS ⊗
ME ,ΩS ⊗ ΩE ) [4]. We assume that

(A) �1/2V �−1/2 ∈ MS ⊗ ME
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and we introduce the operator

K = L − J�1/2V �−1/2J, (2.15)

called a C-Liouville operator [5,8]. It generates a strongly continuous group of bounded opera-
tors, denoted eitK , satisfying ‖eitK‖ � e|t |‖�1/2V �−1/2‖. The main feature of the operator K is that
eitK implements the same dynamics as eitL on MS ⊗ ME (since the difference K − L belongs
to the commutant M′

S ⊗ M′
E ), and that

KΩS ⊗ ΩE = 0. (2.16)

Relation (2.16) follows from assumption (A), definition (2.15) and the properties

�−1/2J = J�1/2 and J�1/2AΩS ⊗ ΩE = A∗ΩS ⊗ ΩE ,

for any A ∈ MS ⊗ ME .
Let

P = 1HS ⊗ |ΩC〉〈ΩC | (2.17)

be the orthogonal projection onto HS ⊗ CΩC ∼= HS , where ΩC is given in (2.2). If B is an
operator acting on H then we identify PBP as an operator acting on HS . We have

Proposition 2.1. There is a constant C < ∞ such that ‖(P eitKP )m‖B(HS ) � C, for all t ∈ R,
m � 0. In particular, spec(P eitKP ) ⊂ {z ∈ C | |z| � 1} and all eigenvalues lying on the unit
circle are semisimple.

We give a proof of Proposition 2.1 in Section 4.3. Relation (2.16) implies that for all t ∈ R,
P eitKPΩS = ΩS . Our assumption (E) on the effectiveness of the coupling is an ergodicity
assumption on the discrete dynamics generated by

M ≡ M(τ) = P eiτKP. (2.18)

(E) The spectrum of M on the complex unit circle consists of the single eigenvalue {1}. This
eigenvalue is simple (with corresponding eigenvector ΩS ).

Assumption (E) guarantees that the adjoint operator M∗ has a unique invariant vector, called Ω∗
S

(normalized as 〈Ω∗
S ,ΩS〉 = 1), and that

lim
m→∞Mm = π := |ΩS〉〈Ω∗

S
∣∣ (2.19)

in the operator sense, where π is the rank one projection which projects onto CΩS along
(CΩ∗

S)⊥. In fact, we have the following easy estimate (valid for any matrix M with spectrum
inside the unit disk and satisfying (E)).
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Proposition 2.2. For any ε > 0 there exists a constant Cε such that∥∥Mm − π
∥∥� Cεe−m(γ−ε)

for all m � 0, where γ := minz∈spec(M)\{1}|log |z|| > 0.

The parameter γ measures the speed of convergence.

Remark. If all eigenvalues of M are semisimple then in Proposition 2.2 we have ‖Mm − π‖ �
Ce−mγ for some constant C and all m � 0.

As a last preparation towards an understanding of our results we discuss the kinds of observ-
ables we consider. One interesting such class is MS ⊂ M which consists of observables of the
system S only. There are other observables of interest. We may think of the system S as being
fixed in space and of the chain as passing by S so that at the moment t , the (m(t)+1)th element E
is located near S , cf. (2.12). A detector placed in the vicinity of S can measure at this moment in
time observables of S and those of the (m(t) + 1)th element in the chain, i.e., an “instantaneous
observable” of the form AS ⊗ ϑm(t)+1(B0), where AS ∈ MS , B0 ∈ ME , and ϑm :ME → MC is
defined by

ϑm(AE ) = 1E . . .1E ⊗ AE ⊗ 1E . . . , (2.20)

where the AE on the right-hand side of (2.20) acts on the mth factor in the chain. An example
of such an observable is the energy flux (variation) of the system S . More generally we may be
interested in the expectation value of operators of the form

[AS ;Ai;Bj ] ≡ AS

p⊗
i=1

Ai

r⊗
j=−�

ϑm(t)+j+1(Bj ), (2.21)

where AS ∈ MS , A1, . . . ,Ap ∈ ME , B−�, . . . ,B0, . . . ,Br ∈ ME and where t = m(t)τ + s(t)

as in (2.12) and ϑk is given in (2.20). The parameters p � 1, �, r � 0 are not displayed in the
left-hand side in (2.21). (We always assume that p < m(t) − � + 1.) AS and the Ai represent
observables we measure on the small system and on the element with index i of the chain, the
B0 is the “instantaneous” observable, measured in the element m(t) + 1 of the chain (the one
in contact with S at time t), while the Bj with negative and positive index are the quantities
measured in the elements preceding and following the (m(t) + 1)th.

2.2. Asymptotic state

Throughout the paper we assume that conditions (A) and (E) of the previous section are sat-
isfied.

We consider the large time limit of expectations

E(t) = ω
(
αt

RI[AS ;Ai;Bj ]
)

(2.22)
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for observables [AS ;Ai;Bj ] as in (2.21) and for normal states ω on M. Define the state ω+ on
MS by

ω+(AS) = 〈
Ω∗

S ,ASΩS
〉
, (2.23)

where Ω∗
S is defined in (2.19).

Theorem 2.3. Let ω be fixed and take Ai = 1E , i = 1, . . . , p. For any ε > 0 there is a constant Cε

such that for all t � 0 ∣∣E(t) − E+(t)
∣∣� Cε e−t (γ−ε)/τ , (2.24)

where γ > 0 is given in Proposition 2.2, and where E+ is the τ -periodic function

E+(t) = ω+
(
Pα

�τ+s(t)
RI (AS ⊗ B−� ⊗ · · · ⊗ B0)P

) r∏
j=1

〈Bj 〉ΩE . (2.25)

Here 〈Bj 〉ΩE = 〈ΩE ,BjΩE 〉.

We define the RIAS to be the τ -periodic state on MS
⊗r

j=−� ME given by

AS
r⊗

j=−�

Bj �→ ω+
(
Pα

�τ+s(t)
RI (AS ⊗ B−� ⊗ · · · ⊗ B0)P

) r∏
j=1

〈Bj 〉ΩE . (2.26)

Using (2.24) and the uniqueness of the limit, one can see that the state ω+ does not depend on
the choice of the reference state ΩS .

Remarks. (1) If B−�, . . . ,B−�′−1 = 1E for some −�′ − 1 � −1, then one shows that

ω+
(
Pα

�τ+s(t)
RI (AS ⊗ B−� ⊗ · · · ⊗ B0)P

)= ω+
(
Pα

�′τ+s(t)
RI (AS ⊗ B−�′ ⊗ · · · ⊗ B0)P

)
,

and in case Bj = 1E for all j = −�, . . . ,0 formula (2.25) is understood with α
�τ+s(t)
RI replaced

by α
s(t)
RI .

(2) Cε in Theorem 2.3 is uniform in τ for τ > 0 varying in compact sets, and it is uniform in{
AS ∈ MS , {Bj }rj=1 ⊂ ME

∣∣∣ ‖AS‖
r∏

j=1

‖Bj‖ � const

}
.

(3) The convergence is determined by that of Proposition 2.2. If the ergodic assumption (E)
is not satisfied then the limit limn→∞ Mn still exists, in a weaker sense. Namely, if there are
eigenvalues different from 1 on the circle, then the limit exists in the ergodic mean sense,

1

N

N−1∑
Mn = π + O

(
1

N

)
.

n=0
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Further, if 1 is a degenerate eigenvalue of M then the limit exists but the projection π is not
one-dimensional. This reflects in Theorem 2.3 in the following way. If 1 is non-degenerate, but
there are other eigenvalues on the circle, then Theorem 2.3 holds with (2.24) replaced by∣∣∣∣∣1t

m(t)∑
m=0

E
(
mτ + s(t)

)− E+(t)

τ

∣∣∣∣∣� C

t
. (2.27)

If, on the other hand, 1 is degenerate but there is no other eigenvalue on the circle, then one
can still prove that the expectation value E(t) has an asymptotic behaviour E∞(t,ω), which
is τ -periodic, but which will a priori depend on the initial state ω (cf. (4.25) in the proof of
Theorem 2.3). Of course, if both 1 is degenerate and there are other eigenvalues on the circle,
then one gets convergence to E∞(t,ω) but in the ergodic mean.

Our next result incorporates the measurement of observables A1, . . . ,Ap ∈ ME for a chain
consisting of dispersive systems E . We measure dispersivity by the property of return to equi-
librium. E is said to have the latter property iff for any normal state ωE on ME we have the
relation

lim
t→∞ωE

(
τ t
E (AE )

)= 〈ΩE ,AEΩE 〉 (2.28)

for any AE ∈ ME . Examples of such E include reservoirs of ideal quantum gases. It is worthwile
to mention that E has the property of return to equilibrium if and only if eitLE converges in the
weak sense to the orthogonal projection onto CΩE , as t → ∞.

Theorem 2.4. Suppose E has the property of return to equilibrium. Then

lim
t→∞

∣∣E(t) − E+(t)
∣∣= 0, (2.29)

where E+(t) is the τ -periodic function

E+(t) = ω+
(
Pα

�τ+s(t)
RI (AS ⊗ B−� ⊗ · · · ⊗ B0)P

) p∏
i=1

〈Ai〉ΩE

r∏
j=1

〈Bj 〉ΩE . (2.30)

Remark. The speed of convergence in (2.29) is determined by that of return to equilibrium,
(2.28), and by γ , Proposition 2.2. The limit (2.29) is uniform in τ , for τ varying in compact sets,
and it is uniform in balls of observables

‖AS‖
p∏

i=1

‖Ai‖
r∏

j=−�

‖Bj‖ � const.

2.3. Correlations and reconstruction of initial state

As Theorems 2.3 and 2.4 show, the limiting expectation values E+(t) are independent of
the initial state (the state ω+ is, cf. (2.23)). However, limiting correlations are not, and their
knowledge allows to reconstruct the initial state.
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Fix a normal initial state ω of M and let A ∈ M, AS ∈ MS , B0 ∈ ME . We define the correla-
tion between A and the instantaneous observable AS ⊗ ϑm(t)+1(B0) by

C(t;A,AS ,B0) = ω
(
Aαt

RI

(
AS ⊗ ϑm(t)+1(B0)

))
. (2.31)

Theorem 2.5. For any ε > 0 there is a constant Cε such that for all t � 0∣∣C(t;A,AS ,B0) − C+(t;A,AS ,B0)
∣∣� Cεe−t (γ−ε)/τ , (2.32)

where γ is given in Proposition 2.2, and where C+ is the τ -periodic limiting correlation function

C+(t;A,AS ,B0) = ω(A)ω+
(
Pα

s(t)
RI (AS ⊗ B0)P

)
(2.33)

with ω+ defined in (2.19).

Remark. Relation (2.33) allows us to reconstruct the initial state ω, knowing the asymptotic state
ω+ and the asymptotic correlation function C+.

2.4. Energy, entropy and their relation

It may not be meaningful to speak about the total energy of the system, because it may have
to be considered as being infinite, e.g. if the elements E of the chain are infinitely extended
quantum systems with non-vanishing energy density. However, we can define the time variation
of the total energy of the system and link it to its entropy variation, giving us an average 2nd law
of thermodynamics for RIAS.

2.4.1. Energy
Recall that L̃m+1, m � 0, is the generator of the total dynamics in the time interval t = mτ +

s ∈ [mτ, (m + 1)τ ), during which the (m + 1)th element of the chain interacts with S , cf. (2.11).
Given any integer m � 0 and any 0 � s < τ it is easy to formally verify the relation

αmτ+s
RI

(
L̃m+1

)− αmτ
RI

(
L̃m+1

)= 0. (2.34)

This suggests that the formal quantity αt
RI(L̃m+1) is constant for t in any interval [mτ, (m+1)τ ).

Another short calculation yields that this quantity undergoes a jump j (k) as time passes the
moment kτ , k � 1: for (k − 1)τ � t1 < kτ � t2 < (k + 1)τ we have

j (k) := α
t2
RI

(
L̃k+1

)− α
t1
RI

(
L̃k

)= αkτ
RI (Vk+1 − Vk), (2.35)

where we set

Vk = [1MS ⊗ ϑk](V ) (2.36)

(see (2.20)). We interpret j (k) as the change in total energy as time passes the moment kτ .
Theorem 2.3 tells us that for any normal state ω on M and for any ε > 0, there is a constant

Cε such that ∣∣ω(j (k)
)− ω+(j+)

∣∣� Cεe−k(γ−ε), (2.37)



ARTICLE IN PRESS
JID:YJFAN AID:4743 /FLA [m1+; v 1.53; Prn:3/03/2006; 10:42] P.14 (1-35)

14 L. Bruneau et al. / Journal of Functional Analysis ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

where

j+ = PV P − Pατ
RI(V )P = −i

τ∫
0

Pαs
RI

([LS + LE ,V ])P ds. (2.38)

Relation (2.37) and the fact that the energy is piecewise constant shows that ω+(j+) is the change
of energy in any interval of length τ , in the large time limit. We thus call

dE+ = 1

τ
ω+(j+) (2.39)

the asymptotic energy production. The asymptotic energy production does not depend on the
initial state of the system.

Remark. It is not hard to see that the expectation of the energy jump is constant in the state
ω+ ⊗ ωC , where ωC is the vector state on MC determined by ΩC , (2.2):

ω+ ⊗ ωC
(
j (k)

)= ω+(j+), ∀k � 1. (2.40)

We introduce the variation of the total energy, �E(t), between the instants t = m(t)τ + s(t)

and t = 0. It is the sum of the energy jumps,

�E(t) =
m(t)∑
k=1

j (k) for t � τ , (2.41)

and �E(t) = 0 if 0 � t < τ . Estimate (2.37) shows that for any normal state ω on M there is a
constant C such that ∣∣∣∣ω(�E(t))

t
− dE+

∣∣∣∣� C

t
(2.42)

for all t > 0. The energy grows asymptotically linearly in time.

2.4.2. Entropy, average 2nd law of thermodynamics
Let ω and ω0 be two normal states on M. The relative entropy of ω with respect to ω0 is

denoted by Ent(ω|ω0), where our definition of relative entropy differs from that one given in [4]
by a sign, so that in our case, Ent(ω|ω0) � 0.

For a thermodynamic interpretation of the entropy and its relation to the energy variation, we
assume in this section that ΩS is a (βS , τ t

S)-KMS state on MS , and that ΩE is a (βE , τ t
E )-KMS

state on ME , where βS , βE are inverse temperatures. Let ω0 be the state on M determined by
the vector ΩS ⊗ ΩC (cf. before (2.1), and (2.2)).

We are interested in the change of relative entropy of the repeated interaction system as time
evolves.

Proposition 2.6. Let ω be any normal state on M. Then Ent(ω ◦ αt
RI|ω0) is a continuous, piece-

wise differentiable function of t � 0. Moreover, we have

Ent
(
ω ◦ αt

RI|ω0
)− Ent(ω|ω0) = ω

(
βE�E(t) − αt

RI

(
X(t)

)+ X(0)
)
, (2.43)
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where �E(t) is the variation of the total energy between the moments t = 0 and t = m(t)τ +s(t),
see (2.41), and where

X(t) = βEVm(t)+1 + (βE − βS)LS (2.44)

with Vk given by (2.36).

The proof of (2.43) is based on the entropy production formula [6]. We give it in Section 4.4.
It is not hard to verify that for t ∈ (mτ, (m + 1)τ ) we have

d

dt
Ent

(
ω ◦ αt

RI|ω0
)= −ω

(
αt

RI

(
i[βSLS + βELE,m(t)+1,Vm(t)+1]

))
, (2.45)

and that left and right derivatives of Ent
(
ω ◦ αt

RI|ω0
)

exist as t → mτ , but they do not coincide.
If Ent(ω|ω0) < ∞ then all terms in (2.43) are bounded uniformly in t , except possibly Ent(ω◦

αt
RI|ω0) and ω(βE�E(t)). Hence (2.39) and (2.42) show that for any normal state ω on M there

is a constant C such that ∣∣∣∣Ent(ω ◦ αt
RI|ω0)

t
− βE

τ
ω+(j+)

∣∣∣∣� C

t
(2.46)

for all t > 0. The entropy grows linearly in time, for large times.
The relative entropy is non-negative, so (2.46) shows that

ω+(j+) � 0. (2.47)

We show in Section 3 that ω+(j+) is strictly positive for concrete systems. It follows from (2.46)
also that

sup
t�0

∣∣Ent
(
ω ◦ αt

RI|ω0
)∣∣< ∞ ⇐⇒ ω+(j+) = 0. (2.48)

Since ω+(j+) is independent of ω it follows that for a given interaction (V, τ ) the relative entropy
either diverges for all initial states ω, as t → ∞, or it stays bounded for all initial states ω. In
particular, if ω+(j+) > 0 then there does not exist any normal state ω on M which is invariant
under αt

RI (i.e., such that ω ◦ αt
RI = ω, for all t � 0).

Proposition 2.7. We have

lim
t→∞

[
Ent

(
ω ◦ αt+τ

RI |ω0
)− Ent

(
ω ◦ αt

RI|ω0
)]= βEω+(j+). (2.49)

The change of entropy during an interval of duration τ , for t → ∞, is thus given by
βE ω+(j+) � 0. We call

dS+ = βE
τ

ω+(j+) (2.50)

the (average) asymptotic entropy production. The quantity dS+ represents the increase in entropy
per unit time, in the limit of large times. It does not depend on the initial state of the system.
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Remark. One sees easily that the expectation of dS+ is constant in the state ω+ ⊗ ωC (see also
(2.40)).

Relations (2.50) and (2.39) lead us to the average 2nd law of thermodynamics,

dE+ = TE dS+, TE = 1/βE . (2.51)

This law does not depend on the initial state of the system.

3. Examples

3.1. Spin–fermion system with quadratic interaction

As our main example, we consider the case where the small system S is a 2-level system and
the elements of the chain consist of free Fermi reservoirs at positive temperature β−1. Let us first
describe precisely the model (see also [5] and references therein).

The von Neumann algebra of observables for the small system is

MS = M2(C) ⊗ 1 = {
A ⊗ 1

∣∣A ∈ M2(C)
}

(3.1)

acting on the Hilbert space

HS = C
2 ⊗ C

2. (3.2)

Let σx, σy, σz be the usual Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 i
−i 0

)
, σz =

(
1 0
0 −1

)
.

The dynamics of the small system is then given by

τ t
S(A ⊗ 1) = eitσzAe−itσz ⊗ 1. (3.3)

For convenience we chose the reference state ωS to be the tracial state, i.e. ωS(A⊗1) = 1
2 Tr(A).

Note that it is a (τ t
S ,0)-KMS state. Its representative vector is

ΩS = 1√
2
ψ1 ⊗ ψ1 + 1√

2
ψ2 ⊗ ψ2, (3.4)

where (ψ1,ψ2) is the canonical basis of C
2. For shortness, we will denote by ψij := ψi ⊗ψj the

corresponding basis of HS . The standard Liouvillean then writes

LS = σz ⊗ 1 − 1 ⊗ σz, (3.5)

and its spectrum is spec(LS) = {−2,0,2} where 0 has multiplicity 2, and −2, 2 are non-
degenerate. Finally, the modular conjugation and modular operator associated to (MS ,ΩS) are

JS(φ ⊗ ψ) = ψ̄ ⊗ φ̄, �S = 1 ⊗ 1, (3.6)

and where ·̄ denotes the usual complex conjugation on C
2.
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We then describe an element of the chain, i.e. a free Fermi gas at inverse temperature β . Let
h be the Hilbert space of one single fermion and h its energy operator. The operators a(f ) and
a∗(f ) denote the corresponding annihilation and creation operators acting on the fermionic Fock
space Γ−(h) and they satisfy the canonical anti-commutation relations (CAR). As a consequence
of the CAR, the operators a(f ) and a∗(f ) are bounded and satisfy ‖a#(f )‖ = ‖f ‖ where a#

stands either for a or for a∗. The algebra of observables of a free Fermi gas is the C∗-algebra of
operators A generated by {a#(f )|f ∈ h}. The dynamics is then given by

τ t
f

(
a#(f )

)= a#(eithf
)
. (3.7)

It is well known (see e.g. [4,10]) that for any β > 0, there is a unique (τf, β)-KMS state ωβ on A

which is determined by the two point function ωβ(a∗(f )a(f )) = 〈f, (1 + eβh)−1f 〉. Finally, let
Ωf be the Fock vacuum and N the number operator.

We now fix a complex conjugation (anti-unitary involution) f → f̄ on h which commutes
with the energy operator h. It naturally extends to a complex conjugation on the Fock space
Γ−(h) and we denote it by the same symbol, i.e. Φ → Φ̄.

The GNS representation of the algebra A associated to the KMS-state ωβ is the triple
(HF,πβ,ΩF) [1] where

HF = Γ−(h) ⊗ Γ−(h), ΩF = Ωf ⊗ Ωf, (3.8)

and

πβ

(
a(f )

)= a

(
eβh/2

√
1 + eβh

f

)
⊗ 1 + (−1)N ⊗ a∗

(
1√

1 + eβh
f̄

)
=: aβ(f ),

πβ

(
a∗(f )

)= a∗
(

eβh/2

√
1 + eβh

f

)
⊗ 1 + (−1)N ⊗ a

(
1√

1 + eβh
f̄

)
=: a∗

β(f ). (3.9)

The von Neumann algebra of observables for an element of the chain will then be the envelop-
ing von Neumann algebra

ME = πβ(A)′′, (3.10)

acting on the Hilbert space

HE = HF. (3.11)

The dynamics on πβ(A) is given by

τ t
E
(
πβ(A)

)= πβ

(
τ t

f (A)
)

(3.12)

and extends to ME in a unique way. The representative vector of the equilibrium state is

ΩE = ΩF, (3.13)

and the standard Liouvillean then writes

LE = dΓ (h) ⊗ 1 − 1 ⊗ dΓ (h). (3.14)
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Finally the modular conjugation and the modular operator associated to (ME ,ΩE ) are

JE (Φ ⊗ Ψ ) = (−1)N(N−1)/2Ψ̄ ⊗ (−1)N(N−1)/2Φ̄, �E = e−βLE . (3.15)

We finally specify the interaction between the small system and the elements of the chain, i.e.
the operator V . Let g ∈ h be a form factor, we set

V := σx ⊗ 1C2 ⊗ a∗
β(g)aβ(g) ∈ MS ⊗ ME . (3.16)

This is the simplest non-trivial interaction for which the number of particles is conserved.
We moreover assume that

(SF1) eβh/2g ∈ h.

This ensures that assumption (A) is satisfied. Indeed, using (3.6), (3.15), (3.16), we get

�1/2V �−1/2 = σx ⊗ 1C2 ⊗
[(

a∗
(

1√
1 + eβh

g

)
⊗ 1 + (−1)N ⊗ a

(
e−βh/2

√
1 + eβh

ḡ

))
×
(

a

(
eβh

√
1 + eβh

g

)
⊗ 1 + (−1)N ⊗ a∗

(
eβh/2

√
1 + eβh

ḡ

))]
. (3.17)

The Liouville operator which generates the interacting dynamics is then the selfadjoint operator

Lλ := LS + LE + λV, (3.18)

while the C-Liouville operator is

Kλ := LS + LE + λ
(
V − J�1/2V �−1/2J

)= K0 + λW, (3.19)

and where λ ∈ R is a coupling constant.
For simplicity reasons we will moreover assume that

(SF2) h = L2(R+,g) where g is some auxiliary Hilbert space and the operator h is the multipli-
cation operator by r ∈ R

+.

Finally, let gβ(r) := (1 + e−βr )−1/2g(r). Note also that the system E has the property of return
to equilibrium.

Our first result is the following theorem.

Theorem 3.1. Suppose assumptions (SF1), (SF2) are satisfied. Then for any τ /∈ π
2 + πN, there

exists Λ0 > 0 such that for all 0 < |λ| < Λ0, the operator Mλ := P eiτKλP satisfies the ergodic
assumption (E). In particular the spin–fermion system with quadratic interaction satisfies Theo-
rem 2.3, with

γ = τ 2(α1 + α2)
λ2 + O

(
λ3),
2
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Theorem 2.4, and, moreover, the asymptotic state ω+,λ is given by

ω+,λ(AS) = 1

α1 + α2

〈
α1ψ11 + α2ψ22,AS(ψ11 + ψ22)

〉
+ λ

∥∥e−βh/2gβ

∥∥2
h

α1 − α2

2(α1 + α2)

〈
ψ12 + ψ21,AS(ψ11 + ψ22)

〉+ O
(
λ2), (3.20)

where for j = 1,2,

αj :=
∫ ∫

dr1 dr2 e−βrj
∥∥gβ(r1)

∥∥2
g

∥∥gβ(r2)
∥∥2

g
sinc2

(
τ(2 − r1 + r2)

2

)
> 0, (3.21)

sinc(x) := sinx
x

, and all the integrals run over R
+.

Remark. In the limit of small coupling the state ω+,λ on MS ∼= M2(C) is given by the density
matrix

ρ+ = p1Pψ1 + p2Pψ2 , (3.22)

where pj = αj

α1+α2
and Pψ is the orthogonal projection onto Cψ . By varying the coupling func-

tions g(r) we can realize any values of p1,2 within the interval [0,1]. Similar remarks apply to
the other systems discussed below, see Eqs. (3.24), (3.38), but also the remark after Theorem 3.4.

The unperturbed operator M0 has eigenvalues 1 (with multiplicity 2), e2iτ and e−2iτ

(see (3.5)). The assumption on the interaction time τ ensures that these eigenvalues do not
coincide and makes the computation in perturbation theory as simple as possible. However, it
can probably be omitted.

One can also see that the asymptotic expectation E+(t) (see (2.25)) has a non-trivial period-
icity (i.e. it is not constant) at the order λ.

We now turn to the question of entropy production for this simple model. We will prove that
it is strictly positive, at least for small coupling constant. More precisely, we have

Theorem 3.2. Suppose assumptions (SF1), (SF2) are satisfied. Then for any τ /∈ π
2 + πN, there

exists Λ1 > 0 such that, for all 0 < |λ| < Λ1, the system has strictly positive asymptotic entropy
production.

3.2. Spin–fermion system with linear interaction

As a second example, we consider the same spin–fermion system at inverse temperature β .
The only change concerns the interaction term. Let g ∈ h be a form factor, we set

V := σx ⊗ 1C2 ⊗ (
aβ(g) + a∗

β(g)
)
. (3.23)

Once again, we assume that assumption (SF1) holds which ensures that �1/2V �−1/2 ∈ M.

Indeed,
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�1/2V �−1/2 = σx ⊗ 1C2 ⊗
[
a∗
(

1√
1 + eβh

g

)
⊗ 1 + a

(
eβh

√
1 + eβh

g

)
⊗ 1

+ (−1)N ⊗ a∗
(

eβh/2

√
1 + eβh

ḡ

)
+ (−1)N ⊗ a

(
e−βh/2

√
1 + eβh

ḡ

)]
.

We then have the same kind of result as for the case of quadratic interaction. Namely

Theorem 3.3. Suppose assumptions (SF1), (SF2) are satisfied. Then for any τ /∈ π
2 + πN, there

exists Λ0 > 0 such that for all 0 < |λ| < Λ0, the operator Mλ := P eiτKλP satisfies the ergodic
assumption (E). In particular the spin–fermion system with linear interaction satisfies Theo-

rem 2.3, with γ = τ 2(α1+α2)
2 λ2 + O(λ3), Theorem 2.4 and the asymptotic state ω+,λ is given

by

ω+,λ(AS) = 1

α1 + α2

〈
α1ψ11 + α2ψ22,AS(ψ11 + ψ22)

〉+ O
(
λ2), (3.24)

where

α1 :=
∫

dr
∥∥gβ(r)

∥∥2
g

(
e−βr sinc2

(
τ(r − 2)

2

)
+ sinc2

(
τ(r + 2)

2

))
,

α2 :=
∫

dr
∥∥gβ(r)

∥∥2
g

(
e−βr sinc2

(
τ(r + 2)

2

)
+ sinc2

(
τ(r − 2)

2

))
.

and all the integrals run over R
+. Moreover, the system has strictly positive asymptotic entropy

production.

3.3. Spin–spin model

As our next example we consider a model in which the small system as well as the elements of
the chain consist of a 2-level system. Such kind of systems (or more generally a d-level system
interacting with a chain of n-level systems, a situation we could equally well treat here) have
been considered previously in [2].

The von Neumann algebra of observables for the small system and for the elements of the
chain is

MS = ME = M2(C) ⊗ 1 = {
A ⊗ 1 | A ∈ M2(C)

}
(3.25)

acting on the Hilbert space

HS = HE = C
2 ⊗ C

2. (3.26)

Let ES and EE be non negative real numbers. They will play the role of the energy of the
“excited” state of the small system and of the elements of the chain, respectively. The dynamics
of the small system is then given by

τ t (A ⊗ 1) = eithSAe−ithS ⊗ 1, (3.27)
S
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and the one of an element of the chain by

τ t
E (A ⊗ 1) = eithEAe−ithE ⊗ 1, (3.28)

where hS = ( 0 0
0 ES

)
and hE = ( 0 0

0 EE

)
.

Once again, for convenience, we chose the reference state ωS to be the tracial state, i.e.
ωS(A ⊗ 1) = 1

2 Tr(A) (the results of course do not depend on this choice). Its representative
vector is (Section 3.1)

ΩS = 1√
2
ψ11 + 1√

2
ψ22. (3.29)

The standard Liouvillean writes

LS = hS ⊗ 1 − 1 ⊗ hS , (3.30)

and the modular conjugation and modular operator associated to (MS ,ΩS) are

JS(φ ⊗ ψ) = ψ̄ ⊗ φ̄, �S = 1 ⊗ 1. (3.31)

In order to avoid confusions between the small system and an element of the chain we will
denote by φij = φi ⊗ φj instead of ψij the basis of HE . The reference state ωE will be the
(τE , β)-KMS state. Its representative vector writes

ΩE = 1√
1 + e−βEE

(
φ11 + e−βEE/2φ22

)
. (3.32)

The standard Liouville operator is

LE = hE ⊗ 1 − 1 ⊗ hE , (3.33)

and the modular conjugation and modular operator associated to (ME ,ΩE ) are

JE (φ ⊗ ψ) = ψ̄ ⊗ φ̄, �E = e−βLE . (3.34)

Note that here the system E does not have the property of return to equilibrium.
We now describe the interaction. Let us denote by a and a∗ the annihilation and creation

operators associated to the vectors φ1 (ground state) and φ2 (excited state), i.e. aφ1 = 0, aφ2 =
φ1, a

∗φ1 = φ2, a
∗φ2 = 0. Finally let

I =
(

a b
c d

)
∈ M2(C).

The interaction is then given by

V = I ⊗ 1 ⊗ a∗ ⊗ 1 + I ∗ ⊗ 1 ⊗ a ⊗ 1. (3.35)
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The Liouville operator which generates the interacting dynamics is then the selfadjoint operator

Lλ := LS + LE + λV, (3.36)

while the C-Liouville operator is

Kλ := LS + LE + λ
(
V − J�1/2V �−1/2J

)= K0 + λW, (3.37)

where λ is a coupling constant.
We finally consider the following assumptions.

(SS1) b �= 0 and τ(EE − ES) /∈ 2πZ.

(SS2) c �= 0 and τ(EE + ES) /∈ 2πZ.

If either (SS1) or (SS2) is satisfied, then the ergodic assumption (E) holds.

Theorem 3.4. Suppose that τEE /∈ πZ and that either assumption (SS1) or (SS2) is satisfied.
Then, there exists Λ0 > 0 such that for all 0 < |λ| < Λ0, the operator Mλ := P eiτKλP satisfies
the ergodic assumption (E). In particular the spin–spin system satisfy Theorem 2.3, with γ =
γ0λ

2 + O(λ3), and the asymptotic state ω+,λ is given by

ω+,λ(AS) = 1

α1 + α2

〈
α1ψ11 + α2ψ22,AS(ψ11 + ψ22)

〉+ O
(
λ2), (3.38)

where

α1 := |b|2 sinc2
(

τ(EE − ES)

2

)
+ e−βEE |c|2 sinc2

(
τ(EE + ES)

2

)
� 0,

α2 := e−βEE |b|2 sinc2
(

τ(EE − ES)

2

)
+ |c|2 sinc2

(
τ(EE + ES)

2

)
� 0,

γ0 := min

(
τ 2(α1 + α2)

1 + e−βEE
,

τ 2(α1 + α2)

2(1 + e−βEE )
+ τ 2

2
sinc2

(
τEE

2

)(|a|2 + |d|2 − ād − ad̄
))

.

If, moreover, both assumptions (SS1) and (SS2) are satisfied, then the system has strictly positive
asymptotic entropy production.

Remark. By varying b and c one can produce a state ρ+ as in (3.22) with the property e−βEE <

p1/p2 < e+βEE . By lowering sufficiently the temperature T = 1/β of the elements S of the
chain one can prepare any target state of S with arbitrary precision.

Once again, we assume that τEE /∈ πZ in order to make the eigenvalues of M0 not coincide
and this can probably be weakened. On the other hand, assumptions (SS1) and (SS2) are much
deeper. Their meaning is that there is an effective coupling between the ground state and the
excited state of the small system (b or c non-zero) as well as a non-resonant phenomenon between
the energies of the small system and the elements of the chain (τ(EE − ES) or τ(EE + ES) not
in 2πZ). Asking that either (SS1) or (SS2) is satisfied is actually equivalent to the condition
α1 + α2 �= 0.
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4. Proofs

4.1. Proofs of Theorems 2.3, 2.4

We give the full proof of Theorem 2.4, the proof of Theorem 2.3 is a special case of the former.
It is enough to show (2.29), (2.30) for vector states ω(·) = 〈ψ, ·ψ〉, ψ ∈ H, ‖ψ‖ = 1. Further,

since every ψ ∈ H is approximated in the norm of H by finite linear combinations of vectors of
the form ψS

⊗
m�1 ψm, where ψS ∈ HS , ψm = ΩE if m > N , for some N < ∞, it suffices to

prove (2.29), (2.30) for vector states determined by vectors of the form

ψS
N⊗

m=1

ψm

⊗
m>N

ΩE ∈ H, (4.1)

where ‖ψS‖ = ‖ψm‖ = 1, 1 � m � N , for arbitrary N < ∞. Finally, since the vectors ΩS , ΩE
are cyclic for the commutants M′

S , M′
E , any vector of the form (4.1) is approximated by a

ψ = B ′ ΩS ⊗ ΩC, (4.2)

for some

B ′ = B ′
S

N⊗
m=1

B ′
m

⊗
m>N

1E ∈ M′ (4.3)

with B ′
S ∈ M′

S , B ′
m ∈ M′

E . It is therefore sufficient to show (2.29), (2.30) for vectors of the form
(4.2), (4.3).

Let AS ∈ MS , A1, . . . ,Ap ∈ ME and B−�, . . . ,B0, . . . ,Br ∈ ME be fixed observables
(�, r � 0). We examine the expectation value

E(t) :=
〈
ψ,αt

RI

(
AS

p⊗
i=1

Ai

r⊗
j=−�

ϑm(t)+j+1(Bj )

)
ψ

〉
, (4.4)

where ψ is given in by (4.2), m(t) is determined by (2.12), and where the Ai act on the first p

factors of HC . It is clear that the trivial factors 1E are omitted in (4.4). The choice of indices in
(4.4) is such that at time t the observable B0 is measured in the element E of the chain which
is interacting with S (i.e. the (m(t) + 1)th element of the chain). The following decomposition
serves to isolate the dynamics of the elements E which do not interact at a given time, see also
(2.11).

e−isL̃m+1 e−iτ L̃m . . . e−iτ L̃1 = U−
m e−isLm+1 e−iτLm . . . e−iτL1U+

m , (4.5)

where

U−
m = exp

[
−i

m∑[
(m − j)τ + s

]
LE,j

]
, (4.6)
j=1
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U+
m = exp

[
−i

m+1∑
j=2

(j − 1)τLE,j − i(mτ + s)
∑

j�m+2

LE,j

]
. (4.7)

We obtain from (2.13), (2.14) and (4.5)

E(t) =
〈
ψ,
(
U+

m

)∗eiτL1 . . . eiτLmeisLm+1

× AS

p⊗
i=1

τ
(m−i)τ+s

E (Ai)

−1⊗
j=−�

ϑm+j+1
(
τ

(−j−1)τ+s

E (Bj )
) r⊗

j=0

ϑm+j+1(Bj )

× e−isLm+1 e−iτLm . . . e−iτL1U+
m ψ

〉
, (4.8)

where we write m,s for m(t), s(t). The operator (U+
m )∗ . . .U+

m in the right-hand side of (4.8)
belongs to M. Hence we can commute the B ′ in (4.2) with this operator to obtain

E(t) =
〈
Ω,(B ′)∗B ′(U+

m

)∗eiτL1 . . . eiτLmeisLm+1

× AS

p⊗
i=1

τ
(m−i)τ+s

E (Ai)

−1⊗
j=−�

ϑm+j+1
(
τ

(−j−1)τ+s

E (Bj )
)⊗ ϑm+1(B0)

× e−isLm+1 e−iτLm . . . e−iτL1Ω

〉
r∏

j=1

〈Bj 〉ΩE , (4.9)

where we have set

Ω = ΩS ⊗ ΩC, (4.10)

and we write 〈O〉χ = 〈χ,Oχ〉 for an operator O and a vector χ . The operator U+
m disappears

because it leaves Ω invariant, cf. (2.9). We are able to factorize the averages 〈Bj 〉ΩE , for j � 1,
because B ′ and all propagators in (4.8) act trivially on factors of HC with index � m + 2 (note
also that N < m since we have in mind the limit m → ∞).

Since (B ′)∗B ′ acts trivially on factors in HC with index � N + 1 we may replace (U+
m )∗ =

(U+
m(t))

∗ in (4.9) by

ŨN = exp

[
i

N∑
j=1

(j − 1)τLE,j

]
, (4.11)

which is a unitary not depending on t . Without changing the value of (4.9) we can replace in that
equation successively L1 by K1, then L2 by K2, up to replacing Lp by Kp . Then
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E(t) =
〈
Ω,(B ′)∗B ′ŨNeiτK1 . . . eiτKp eiτLp+1 . . . eiτLmeisLm+1

× AS
−1⊗

j=−�

ϑm+j+1
(
τ

(−j−1)τ+s

E (Bj )
)⊗ ϑm+1(B0)

× e−isLm+1e−iτLm . . . e−iτLp+1

(
p⊗

i=1

ei[(m−i)τ+s]LEAi

)
Ω

〉
r∏

j=1

〈Bj 〉ΩE , (4.12)

where we have used that Ω is in the kernel of the Kj , and where we have commuted the product
of the freely evolved Aj ’s to the right through the propagators which act on different factors.

Because the system E has the property of return to equilibrium the propagator

ei[(m(t)−i)τ+s(t)]LE

converges to the projection PΩE = |ΩE 〉〈ΩE |, as t → ∞, in the weak sense on HE . Define the
orthogonal projection Q⊥

p = 1 − Qp on H, where Qp =⊗p

j=1 ϑj (PΩE ). We want to show that

lim
t→∞

〈
Ω,(B ′)∗B ′ŨNeiτK1 . . . eiτKp eiτLp+1 . . . eiτLmeisLm+1

× AS
−1⊗

j=−�

ϑm+j+1
(
τ

(−j−1)τ+s

E (Bj )
)⊗ ϑm+1(B0)

× e−isLm+1e−iτLm . . . e−iτLp+1Q⊥
p

(
p⊗

i=1

ei[(m−i)τ+s]LEAi

)
Ω

〉
= 0. (4.13)

To do so we split the Hilbert space as H = H1 ⊗H2, where H1 = HS
⊗

m�p+1 HE , and H2 =⊗p

i=1 HE , and set

ψm
1 = eiτLp+1 . . . eiτLmeisLm+1

(
AS

−1⊗
j=−�

ϑm+j+1
(
τ

(−j−1)τ+s

E (Bj )
)⊗ ϑm+1(B0)

)

× e−isLm+1 e−iτLm . . . e−iτLp+1

[
ΩS

⊗
m�p+1

ΩE

]
∈H1,

ψm
2 = Q⊥

p

(
p⊗

i=1

ei[(m−i)τ+s]LEAi

)
p⊗

i=1

ΩE ∈H2.

Q⊥
p is a sum of terms, each one containing the operator P ⊥

ΩE
= 1E −PΩE acting on at least one of

the p factors in H2. Consequently we have ψ
m(t)
2 → 0, weakly in H2, as t → ∞. Since ψ

m(t)
1 is

uniformly bounded in t it follows that ψ
m(t)
1 ⊗ ψ

m(t)
2 converges weakly to zero in H, as t → ∞.

This proves relation (4.13).
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Thus, in the limit t → ∞, the only contribution to (4.12) comes from the part where all the
free propagators ei[(m−i)τ+s]LE are replaced by PΩE . This shows that

lim
t→∞

∣∣∣∣∣E(t) −
〈
Ω,(B ′)∗B ′ŨN eiτK1 . . . eiτKp eiτLp+1 . . . eiτLmeisLm+1

× AS
−1⊗

j=−�

ϑm+j+1
(
τ

(−j−1)τ+s

E (Bj )
)⊗ ϑm+1(B0)

× e−isLm+1e−iτLm . . . e−iτLp+1Ω

〉
p∏

i=1

〈Ai〉ΩE

r∏
j=1

〈Bj 〉ΩE

∣∣∣∣∣= 0. (4.14)

We may now, as we did above, turn the operators Lj in (4.14) into Kj ’s, also for the remaining
indices j = p + 1, . . . ,m + 1, to arrive at

lim
t→∞

∣∣∣∣∣E(t) −
〈
Ω,(B ′)∗B ′ŨNeiτK1 . . . eiτKN PN eiτKN+1 . . . eiτKmeisKm+1

× AS
−1⊗

j=−�

ϑm+j+1
(
τ

(−j−1)τ+s

E (Bj )
)⊗ ϑm+1(B0)Ω

〉
p∏

i=1

〈Ai〉ΩE

r∏
j=1

〈Bj 〉ΩE

∣∣∣∣∣= 0, (4.15)

where we introduce the projection PN =⊗
m�N+1 ϑm(PΩE ) (that projection comes from the left

factor of the inner product and slips through (B ′)∗B ′ŨN and through the first N propagators).
We have

ϑm+1(PΩE )eisKm+1
(
AS ⊗ ϑm+1(B0)

)
Ω = D0(s)Ω, (4.16)

where D0(s) is a linear operator acting non-trivially only on HS . D0(s) depends on AS , B0,
the interaction V and s = s(t), but it is independent of m = m(t). In the same way we define
D1(s) ∈ B(HS) by

ϑm(PΩE )eiτKmϑm

(
τ s
E (B−1)

)
D0(s)Ω = D1(s)D0(s)Ω, (4.17)

and then D2(s), . . . ,D�(s) ∈ B(HS). Hence the inner product in (4.15) can be written as〈
Ω,(B ′)∗B ′ŨNeiτK1 . . . eiτKN PN eiτKN+1 . . . eiτKm−�D(s)Ω

〉
, (4.18)

where D(s) = D�(s) . . .D0(s) ∈ B(HS). Since Ω = PΩ , where P is the projection onto ΩC ,
cf. (1.8), we have

PN eiτKN+1 . . . eiτKm−�D(s)Ω = P eiτKN+1 . . . eiτKm−�PD(s)Ω. (4.19)

The reduced product of the propagators on the right-hand side is the product of the reduced
propagators, as we show in the following proposition.
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Proposition 4.1. For any q � 1, let t1, . . . , tq ∈ R, and let m1, . . . ,mq � 1 be distinct integers.
Then we have

P eit1Km1 . . . eitqKmq P = P eit1Km1 P . . .P eitqKmq P . (4.20)

Proof. If Q is a projection we set Q⊥ = 1 − Q. We have P ⊥eitqKmq P ∈ Ranϑmq (P
⊥
E ) since

on all factors of HC with label m �= mq the projection ϑm(PE ) coming from P commutes with
eitqKmq . It follows that

P eit1Km1 . . . P ⊥eitqKmq P = P eit1Km1 . . . ϑmq

(
P ⊥
E
)
P ⊥eitqKmq P = 0,

because ϑmp(P ⊥
E ) can be commuted to the left to hit P . Thus we have

P eit1Km1 . . . eitqKmq P = P eit1Km1 . . . eitq−1Kmq−1 P eitqKmq P

and we can repeat the argument. This proves the proposition. �
According to (4.20) the right-hand side of (4.19) equals Mm−�−ND(s)Ω , where M = PMP

is the operator introduced in (2.18). We then obtain the following result from (4.19), (4.18) and
(4.15):

lim
t→∞

∣∣∣∣∣E(t) − 〈
Ω,(B ′)∗B ′ŨN eiτK1 . . . eiτKN PMm(t)−�−NPD

(
s(t)

)
Ω
〉

×
p∏

i=1

〈Ai〉ΩE

r∏
j=1

〈Bj 〉ΩE

∣∣∣∣∣= 0. (4.21)

In order to further simplify the scalar product in (4.21) we use the ergodicity assumption (E). We
have Mm(t)−�−N → π = |ΩS 〉〈Ω∗

S |, as t → ∞, in the topology of B(HS) (cf. (2.19)), and since
D(s(t)) is uniformly bounded in t we obtain

lim
t→∞

∣∣∣∣∣E(t) − 〈
Ω,(B ′)∗B ′Ω

〉〈
Ω∗

S ,PD
(
s(t)

)
PΩS

〉 p∏
i=1

〈Ai〉ΩE

r∏
j=1

〈Bj 〉ΩE

∣∣∣∣∣= 0. (4.22)

Remember that ψ is approximated by B ′Ω , i.e., given an arbitrary ε > 0 we choose B ′ such that
‖ψ − B ′Ω‖ � ε. Thus

〈
Ω,(B ′)∗B ′Ω

〉= ‖B ′Ω‖2 = (‖ψ‖ + O(ε)
)2 = 1 + O(ε), (4.23)

which we can use in (4.22) to arrive at

lim
t→∞

∣∣∣∣∣E(t) − 〈
Ω∗

S ,PD
(
s(t)

)
PΩS

〉 p∏
〈Ai〉ΩE

r∏
〈Bj 〉ΩE

∣∣∣∣∣= 0. (4.24)

i=1 j=1
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Note that if 1 is a degenerate eigenvalue of M . Then (4.22) becomes

lim
t→∞

∣∣∣∣∣E(t) − 〈
Ω,(B ′)∗B ′πPD

(
s(t)

)
PΩS

〉 p∏
i=1

〈Ai〉ΩE

r∏
j=1

〈Bj 〉ΩE

∣∣∣∣∣= 0. (4.25)

Thus, E(t) has a τ -periodic asymptotic behaviour (s(t) is periodic) but which depends a priori
on B ′ and thus on the initial state ω: the simplification due to (4.23) does not hold anymore.

Finally by the definition of D(s), cf. (4.18), (4.17), (4.14) we get

〈
Ω∗

S ,PD
(
s(t)

)
PΩS

〉
= 〈

Ω∗
S ,P eiτK1 . . . eiτK�eisK�+1

[
AS ⊗ τ

(�−1)τ+s

E (B−�) ⊗ · · · ⊗ τ s
E (B−1) ⊗ B0

]
PΩS

〉
. (4.26)

Using the invariance PΩS = e−isK�+1 e−iτK� . . . e−iτK1PΩS and passing from K’s to L’s we
obtain

〈
Ω∗

S ,PD
(
s(t)

)
PΩS

〉
= 〈

Ω∗
S ,P eiτL1 . . . eiτL�eisL�+1

[
AS ⊗ τ

(�−1)τ+s

E (B−�) ⊗ · · · ⊗ τ s
E (B−1) ⊗ B0

]
× e−isL�+1e−iτL� · · · e−iτL1PΩS

〉
= 〈

Ω∗
S ,P eiτL1 . . . eiτL�eisL�+1

(
U−

�

)∗[
AS ⊗ B−� ⊗ · · · ⊗ B0

]
× U−

� e−isL�+1 e−iτL� . . . e−iτL1PΩS
〉

= 〈
Ω∗

S ,Pα
�τ+s(t)
RI (AS ⊗ B−� ⊗ · · · ⊗ B0)PΩS

〉
. (4.27)

We conclude the proof of (2.29), (2.30) and hence the proof of Theorem 2.4 by plugging (4.27)
into (4.24).

4.2. Proof of Theorem 2.5

The proof is a simple modification of the proof of Theorem 2.4. We indicate the main steps.
Proceeding as in Section 4.1 we see that (compare with (4.12))

C(t;A,AS ,B0) = 〈
Ω,(B ′)∗B ′AŨNeiτK1 . . . eiτKmeisKm+1AS ⊗ ϑm+1(B0)Ω

〉
, (4.28)

where we may assume that A acts trivially on factors of HC with index > N . As in Section 4.1
we replace the product of the propagators in (4.28) by eiτK1 . . . eiτKN Mm−N−1. Taking the limit
m = m(t) → ∞ then yields

lim
t→∞

∣∣C(t;A,AS ,B0) − 〈
Ω,(B ′)∗B ′AΩ

〉
ω+

(
Pα

s(t)
RI (AS ⊗ B0)P

)∣∣= 0 (4.29)

with a speed of convergence dictated by Proposition 2.2. To complete the proof of Theorem 2.5
we notice that 〈Ω,(B ′)∗B ′AΩ〉 = 〈A〉B ′Ω = ω(A) + O(ε), for arbitrary ε > 0 (cf. the argument
before (4.23)).
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4.3. Proof of Proposition 2.1

Let Km, Lm be the operators on H that act trivially on all factors except on HS times the
mth HE , where they act as K , L. Given any t ∈ R, A,B ∈ MS (⊂ M) we have

〈
BΩS ⊗ ΩC, eitL1 . . . eitLmAe−itLm . . . e−itL1ΩS ⊗ ΩC

〉
H

= 〈
BΩS ⊗ ΩC, eitK1 . . . eitKmAΩS ⊗ ΩC

〉
H = 〈

BΩS ,
(
P eitKP

)m
AΩS

〉
HS

, (4.30)

where we use that K and L implement the same dynamics on M and (2.16) in the first step, and
Proposition 4.1 in the second step. Since BΩS is dense in HS it follows from (4.30) that∥∥(P eitKP

)m
AΩS

∥∥� ‖A‖. (4.31)

So far we have not used that dimHS < ∞. In the finite-dimensional case, MSΩS is not only
dense in HS , but for any ψ ∈ HS there exists an A ∈ MS such that ψ = AΩS . Thus (4.31) and
the uniform boundedness principle give that

sup
t∈R,m�0

∥∥(P eitKP
)m∥∥< ∞. (4.32)

The facts that the spectrum of P eitKP lies in the unit disk in C, and that all eigenvalues on
the unit circle must be semisimple follow from the uniform boundedness of ‖(P eitKP )m‖ in m.
They can be shown using an easy Jordan canonical form argument.

4.4. Proof of Proposition 2.6

Given any normal state ω of M and any unitary U on H we have the following relation [6]
(our definition of entropy differs from the one in [6] by a sign)

Ent
(
ω(U∗ · U)|ω0

)− Ent(ω|ω0)

= ω

(
U∗

[
βE

∑
k

LE,k + βSLS

]
U − βE

∑
k

LE,k − βSLS

)
. (4.33)

In case U is a dynamics of the system, (4.33) is called the entropy production formula. We take
U = URI(t). The argument of ω in (4.33) can be written as

βE

{
αt

RI

(∑
k

LE,k + LS

)
−
∑

k

LE,k − LS

}
− (βE − βS)

(
αt

RI(LS) − LS
)
,

so it suffices to prove (2.43) for βS = βE = β . We want to show that

αt
RI

(∑
LE,k + LS

)
−
∑

LE,k − LS = �E(t) − αt
RI(Vm(t)+1) + V1. (4.34)
k k



ARTICLE IN PRESS
JID:YJFAN AID:4743 /FLA [m1+; v 1.53; Prn:3/03/2006; 10:42] P.30 (1-35)

30 L. Bruneau et al. / Journal of Functional Analysis ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

It is clear that the sums in the left-hand side of (4.34) extend only from k = 1 to k = m + 1.
We examine the difference of the first two terms on the left-hand side, for k = m + 1. With
t = mτ + s, we obtain for this difference the expression

αt
RI(LE,m+1 + LS + Vm+1) − αt

RI(Vm+1) − LE,m+1

= αmτ
RI (LE,m+1 + LS + Vm+1) − αt

RI(Vm+1) − LE,m+1

= αmτ
RI (LS) + αmτ

RI (Vm+1) − αt
RI(Vm+1)

= αmτ
RI (LS + Vm) + αmτ

RI (Vm+1 − Vm) − αt
RI(Vm+1)

= αmτ
RI (LS + Vm) + j (m) − αt

RI(Vm+1), (4.35)

where we use in the second step αmτ
RI (LE,m+1) = LE,m+1, and in the last step we use definition

(2.35). We now add to (4.35) the expression αt
RI(LE,m) − LE,m = αmτ

RI (LE,m) − LE,m (i.e. the
term with k = m in the sums of the left-hand side of (4.34)) and repeat the manipulations leading
to (4.35) to obtain for this sum the expression

α
(m−1)τ
RI (LS + Vm−1) + j (m − 1) + j (m) − αt

RI(Vm+1).

It is now clear how to continue this process until all terms with k = 1, . . . ,m + 1 in the sums of
the left-hand side of (4.34) are taken care of. We obtain

left-hand side of (4.34) =
m(t)∑
k=1

j (k) + V1 − αt
RI(Vm(t)+1). (4.36)

Definition (2.41) yields the result (2.43).
To see that Ent(ω ◦ αt

RI|ω0) is continuous in t � 0 we show that

Ent
(
ω ◦ αmτ+s

RI |ω0
)− Ent

(
ω ◦ α

(m−1)τ+s′
RI |ω0

)
(4.37)

converges to zero, for all m � 1, as s ↓ 0 and s′ ↑ τ . Expression (2.43) yields

(4.37) = ω
(
βE
[
�E(mτ + s) − �E

(
(m − 1)τ + s′)]

− αmτ+s
RI (βEVm+1 + �βLS) + α

(m−1)τ+s′
RI (βEVm + �βLS)

)
, (4.38)

where �β = βE − βS . The first argument of ω in (4.38) equals βE j (m), see (2.41). Next,

αmτ+s
RI (Vm+1) − α

(m−1)τ+s′
RI (Vm) −→ αmτ

RI (Vm+1 − Vm), (4.39)

as s ↓ 0, s′ ↑ τ . But the right-hand side of (4.39) is just j (m), see (2.35). This will compen-
sate the contribution of the first argument in ω of (4.38) in the limit. Finally, αmτ+s

RI (LS) −
α

(m−1)τ+s′
RI (LS) tends to zero, as s ↓ 0, s′ ↑ τ . Consequently, (4.37) vanishes in the limit.
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4.5. Proof of Proposition 2.7

By (2.43) and (2.41), the change of entropy within an interval of duration τ is given by

Ent
(
ω ◦ αt+τ

RI |ω0
)− Ent

(
ω ◦ αt

RI|ω0
)

(4.40)

= βEω
(
j (m + 1) − αt+τ

RI (Vm+2) + αt
RI(Vm+1)

)
(4.41)

− (βE − βS)ω
(
αt+τ

RI (LS) − αt
RI(LS)

)
, (4.42)

where j (k) is given in (2.35), and m = m(t). Taking into account (2.35), (2.38) and Theorem 2.3
we see that the limit t → ∞ of (4.41) is βE ω+(j+). We claim that (4.42) vanishes as t → ∞.
This can be seen in the following way. An application of Theorem 2.4 shows that

lim
t→∞ω

(
αt+τ

RI (LS) − αt
RI(LS)

)=
τ∫

0

ω+
(
Pαs

RI

(
i[V,LS ])P )ds, (4.43)

where we use that [V,LS ] ∈ MS ⊗ME , which follows from the fact that eitLSV e−itLS ∈ MS ⊗
ME for all t ∈ R. Therefore

Ent
(
ω ◦ αt+τ

RI |ω0
)− Ent

(
ω ◦ αt

RI|ω0
)

−→ βEω+(j+) − (βE − βS)

τ∫
0

ω+
(
Pαs

RI

(
i[V,LS ])P )ds (4.44)

as t → ∞. On the other hand, (2.46) shows that

1

t

[
Ent

(
ω ◦ αt+τ

RI |ω0
)− Ent

(
ω ◦ αt

RI|ω0
)]−→ βE

τ
ω+(j+) (4.45)

in the limit t → ∞. Then the following general fact proves that (4.43) must be equal to zero:

If a locally bounded function f on R has the property f (t + τ) − f (t) → a, as t → ∞, for
some a ∈ R and some τ > 0, then f (t)/t → a/τ , as t → ∞.

This concludes the proof of Proposition 2.7.

4.6. Proof of Theorem 3.1

Using a Dyson expansion we get

eiτKλ = eiτK0 + iλ

τ∫
0

dt ei(τ−t)K0WeitK0

− λ2

τ∫ t∫
ei(τ−t)K0Wei(t−s)K0WeisK0 ds dt + O

(
λ3). (4.46)
0 0
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Inserting (3.5), (3.14), (3.16), (3.17) in (4.46), one gets after a somewhat lengthy but straightfor-
ward computation

Mλ = eiτLS + iλ sin(τ )
∥∥e−βh/2gβ

∥∥2
h

(
σx ⊗ e−iτσz − eiτσz ⊗ σx

)
+ λ2

τ∫
0

t∫
0

( ∫
R+

∫
R+

∥∥gβ(r1)
∥∥2∥∥gβ(r2)

∥∥2e−βr1ei(t−s)(r2−r1) dr1 dr2 + ∥∥e−βh/2gβ

∥∥4
h

)

× (
ei(τ−t)σzσxeitσz ⊗ e−i(τ−s)σzσxe−isσz − ei(τ−2t+2s)σz ⊗ e−iτσz

)
ds dt

+ λ2

τ∫
0

t∫
0

( ∫
R+

∫
R+

∥∥gβ(r1)
∥∥2∥∥gβ(r2)

∥∥2e−βr2ei(t−s)(r2−r1) dr1 dr2 + ∥∥e−βh/2gβ

∥∥4
h

)

× (
ei(τ−s)σzσxeisσz ⊗ e−i(τ−t)σzσxe−itσz − eiτσz ⊗ e−i(τ−2t+2s)σz

)
ds dt

+ O
(
λ3). (4.47)

Using perturbation theory [7], we then find that Mλ has 4 distinct eigenvalues: 1, e0(λ), e+(λ),
e−(λ) which are given by

e0(λ) = 1 − λ2τ 2(α1 + α2) + O
(
λ3), (4.48)

e+(λ) = e2iτ
[

1 − λ2τ 2

2
(α1 + α2) + iλ2τ

(∥∥e−βh/2gβ

∥∥4
h

−
∫ ∫ (

e−βr1 + e−βr2
)∥∥gβ(r1)

∥∥2
g

∥∥gβ(r2)
∥∥2

g

1 − sinc(τ (r1 − r2 − 2))

r1 − r2 − 2

)]
+ O

(
λ3),
(4.49)

e−(λ) = e−2iτ
[

1 − λ2τ 2

2
(α1 + α2) − iλ2τ

(∥∥e−βh/2gβ

∥∥4
h

−
∫ ∫ (

e−βr1 + e−βr2
)∥∥gβ(r1)

∥∥2
g

∥∥gβ(r2)
∥∥2

g

1 − sinc(τ (r1 − r2 − 2))

r1 − r2 − 2

)]
+ O

(
λ3),
(4.50)

where the αj s are defined in (3.21). Since they are strictly positive numbers, this proves that for
|λ| small enough, the operator Mλ satisfies assumption (E).

It remains to prove that the asymptotic state ω+,λ is indeed given by (3.20). For that purpose,
it suffices to compute the eigenvector Ω∗

S(λ) of M∗
λ for the eigenvalue 1, which is obtained by

perturbation theory:

Ω∗
S(λ) = α1

√
2

α1 + α2
ψ11 + α2

√
2

α1 + α2
ψ22

+ λ
∥∥e−βh/2gβ

∥∥2 α1 − α2√
2(α1 + α2)

(ψ12 + ψ21) + O
(
λ2). (4.51)
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4.7. Proof of Theorem 3.2

Let P0 denote the spectral projection on the kernel of L0, and Ω∗
0 the main term in the ex-

pansion of Ω∗
S(λ), i.e. Ω∗

S(λ) = Ω∗
0 + O(λ) (see e.g. (4.51)). Then, using (2.23), (2.38) and

perturbation theory, one gets

ω+(j+) = λ2

[
i

τ∫
0

〈
Ω∗

0 ⊗ ΩE
∣∣V (e−itL0 − eitL0

)
(1 − P)V ΩS ⊗ ΩE

〉

− i

τ∫
0

〈
Ω∗

0 ⊗ ΩE
∣∣WP0eitL0V ΩS ⊗ ΩE

〉]+ O
(
λ3). (4.52)

Moreover, as a general fact, one has P0Ω
∗
0 ⊗ ΩE = Ω∗

0 ⊗ ΩE . Now, the quadratic interaction
satisfies P0WP0 = 0. Hence the second term on the right-hand side of (4.52) cancels.

Using (2.50), (3.16) and (4.51) we thus have

dS+ = λ2βτ

α1 + α2

∫ ∥∥gβ(r)
∥∥2∥∥gβ(r ′)

∥∥2
(2 − r + r ′) sinc2

(
τ(2 − r + r ′)

2

)
× (

α2e−βr − α1e−βr ′)
dr dr ′ + O

(
λ3).

Inserting the expression for αj in the integral, one finally has

dS+ = λ2βτ

2(α1 + α2)

∫ ∥∥gβ(r1)
∥∥2∥∥gβ(r2)

∥∥2∥∥gβ(r3)
∥∥2∥∥gβ(r4)

∥∥2

× sinc2
(

τ(2 − r1 + r2)

2

)
sinc2

(
τ(2 − r3 + r4)

2

)
× (r2 + r3 − r1 − r4)

(
e−β(r1+r4) − e−β(r2+r3)

)+ O
(
λ3), (4.53)

where the integral runs over the four variables rj ∈ R
+. The result follows then from the fact

that, for any real x and y, (x − y)(e−βy − e−βx) is non-negative.

4.8. Proof of Theorem 3.3

The proof goes exactly in the same way as for Theorems 3.1 and 3.2. We just give the expres-
sions for the eigenvalues (different from 1) of Mλ as well as the one for the entropy production.

e0(λ) = 1 − λ2τ 2(α1 + α2) + O
(
λ4), (4.54)

e+(λ) = e2iτ
[

1 − λ2τ 2

2
(α1 + α2) + iλ2τ 2

∫ ∥∥g(r)
∥∥2

g

×
(

1 − sinc(τ (2 − r)) + 1 − sinc(τ (2 + r))
)]

+ O
(
λ4), (4.55)
2 − r 2 + r



ARTICLE IN PRESS
JID:YJFAN AID:4743 /FLA [m1+; v 1.53; Prn:3/03/2006; 10:42] P.34 (1-35)

34 L. Bruneau et al. / Journal of Functional Analysis ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47
U
N

C
O

R
R

E
C

TE
D

P
R

O
O

F

e+(λ) = e−2iτ
[

1 − λ2τ 2

2
(α1 + α2) − iλ2τ 2

∫ ∥∥g(r)
∥∥2

g

×
(

1 − sinc(τ (2 − r))

2 − r
+ 1 − sinc(τ (2 + r))

2 + r

)]
+ O

(
λ4), (4.56)

dS+ = λ2βτ

α1 + α2

∫ ∥∥gβ(r)
∥∥2

g

∥∥gβ(r ′)
∥∥2

g
sinc2

(
τ(r − 2)

2

)
sinc2

(
τ(r ′ + 2)

2

)
(r + r ′)

× (
1 − e−β(r+r ′))+ λ2βτ

2(α1 + α2)

∫ ∥∥gβ(r)
∥∥2

g

∥∥gβ(r ′)
∥∥2

g
(r ′ − r)

(
e−βr − e−βr ′)

×
[

sinc2
(

τ(r − 2)

2

)
sinc2

(
τ(r ′ − 2)

2

)
+ sinc2

(
τ(r + 2)

2

)
sinc2

(
τ(r ′ + 2)

2

)]
+ O

(
λ3). (4.57)

All the integrals run over R
+, and in the formula for the entropy the integration is computed with

respect to both r and r ′.

4.9. Proof of Theorem 3.4

Once again the proof goes the same way, and we only give the expressions for the eigenvalues
(different from 1) of Mλ and for the entropy production.

e0(λ) = 1 − λ2τ 2

1 + e−βEE
(α1 + α2) + O

(
λ4),

e+(λ) = eiτES

[
1 − λ2τ 2

2(1 + e−βEE )

(
α1 + α2 + (

1 + e−βEE
)

sinc2
(

τEE
2

)
× (|a|2 + |d|2 − ād − ad̄

))
+ i

λ2τ 2

1 + e−βEE

((
1 − e−βEE

)1 − sinc(τEE )

τEE

(|a|2 − |d|2)
+ (

1 − e−βEE
)

sinc2
(

τEE
2

)
ād − ad̄

2i
− (

1 + e−βEE
)1 − sinc(τ (EE − ES))

τ (EE − ES)
|b|2

+ (
1 + e−βEE

)1 − sinc(τ (EE + ES))

τ (EE + ES)
|c|2

)]
+ O

(
λ4),

e−(λ) = e−iτES

[
1 − λ2τ 2

2(1 + e−βEE )

(
α1 + α2 + (

1 + e−βEE
)

sinc2
(

τEE
2

)
× (|a|2 + |d|2 − ād − ad̄

))
+ i

λ2τ 2

−βEE

((
1 − e−βEE

)1 − sinc(τEE )(|d|2 − |a|2)

1 + e τEE
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+ (
1 − e−βEE

)
sinc2

(
τEE

2

)
ad̄ − ād

2i
+ (

1 + e−βEE
)1 − sinc(τ (EE − ES))

τ (EE − ES)
|b|2

− (
1 + e−βEE

)1 − sinc(τ (EE + ES))

τ (EE + ES)
|c|2

)]
+ O

(
λ4),

dS+ = λ2βτEE (1 − e−βEE )

(α1 + α2)(1 + e−βEE )

×
[
|b|2(|a|2 + e−βEE |d|2) sinc2

(
τ(EE − ES)

2

)
sinc2

(
τEE

2

)
+ |c|2(e−βEE |a|2 + |d|2) sinc2

(
τ(EE + ES)

2

)
sinc2

(
τEE

2

)
+ 2|b|2|c|2(1 + e−βEE

)
sinc2

(
τ(EE + ES)

2

)
sinc2

(
τ(EE + ES)

2

)]
+ O

(
λ3).
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