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Abstract

We consider a finite quantum system S coupled to two environments of different
nature. One is a heat reservoir R (continuous interaction) and the other one is a
chain C of independent quantum systems E (repeated interaction). The interactions
of S with R and C lead to two simultaneous dynamical processes. We show that for
generic such systems, any initial state approaches an asymptotic state in the limit
of large times. We express the latter in terms of the resonance data of a reduced
propagator of S +R and show that it satisfies a second law of thermodynamics.
We analyze a model where both S and E are two-level systems and obtain the
asymptotic state explicitly (lowest order in the interaction strength). Even though
R and C are not direcly coupled, we show that they exchange energy, and we find
the dependence of this exchange in terms of the thermodynamic parameters.

We formulate the problem in the framework of W ∗-dynamical systems and
base the analysis on a combination of spectral deformation methods and repeated
interaction model techniques. We analyze the full system via rigorous perturbation
theory in the coupling strength, and do not resort to any scaling limit, like e.g.
weak coupling limits, or any other approximations in order to derive some master
equation.

1 Introduction

Over the last years, the rigorous study of equilibrium and non-equilibrium quantum
systems has received much and renewed attention. While this topic of fundamental
interest has a long tradition in physics and mathematics, conventionally explored via
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a séjour scientifique haut niveau.
§Department of Mathematics, Memorial University of Newfoundland, Canada. Supported by

NSERC under Discovery Grant 205247. Email: merkli@mun.ca, http://www.math.mun.ca/emerkli/
¶Supported partially from Insitute for Mathematical Sciences, National University of Singapore,

through the program “Mathematical Horizons for Quantum Physics”, during which parts of this work
have been performed. Partially supported by the Ministère Français des Affaires Étrangères through
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master equations [9, 6], dynamical semi-groups [3, 6] and algebraic scattering theory
[33, 16], many recent works focus on a quantum resonance theory approach. The latter
has been applied successfully to systems close to equilibrium [18, 27, 28, 29] and far
from equilibrium [19, 26]. In both situations, one of the main questions is the (time-)
asymptotic behaviour of a quantum system consisting of a subsystem S interacting
with one or several other subsystems, given by thermal reservoirs R1, . . . ,Rn. It has
been shown that if S +R starts in a state in which the reservoir is in a thermal state
at temperature T > 0 far away from the system S, then S +R converges to the joint
equilibrium state at temperature T , as time t → ∞. This phenomenon is called re-
turn to equilibrium. (See also [23] for the situation where several equilibrium states
at a fixed temperature coexist.) In case S is in contact with several reservoirs having
different temperatures (or different other macroscopic properties), the whole system
converges to a non-equilibrium stationary state (NESS). The success of the resonance
approach is measured not only by the fact that the above-mentioned phenomena can
be described rigorously and quantitatively (convergence rates), but also by that the
asymptotic states can be constructed (via perturbation theory in the interaction) and
their physical and mathematical structure can be examined explicitly (entropy pro-
duction, heat- and matter fluxes). One of the main advantages of this method over
the usual master equation approach (and the related van Hove limit) is that it gives a
perturbation theory of the dynamics which is uniform in time t ≥ 0. While the initial
motivation for the development of the dynamical resonance theory was the investiga-
tion of the time-asymptotics, the method is becoming increasingly refined. It has been
extended to give a precise picture of the dynamics of open quantum systems for all
times t ≥ 0, with applications to the phenomena of decoherence, disentanglement, and
their relation to thermalization [28, 27, 29, 24]. An extension to systems with rather
arbitrary time-dependent Hamiltonians has been presented in [30] (see also [2] for time-
periodic systems). A further direction of development is a quantum theory of linear
response and of fluctuations [21].

In certain physical setups, the reservoir has a structure of a chain of independent
elements, C = E1 + E2 + · · · . An example of such a system is the so-called “one-
atom maser” [25], where S describes the modes of the electromagnetic field in a cavity,
interacting with a beam C of atoms Ej , shot one by one into the cavity and interacting for
a duration τj > 0 with it. A mathematical treatment of the one-atom maser is provided
in [14]. Another instance of the use of such systems is the construction of reservoirs
made of “quantum noises” by means of adequate scaling limits of the characteristics of
the chain C and its coupling with S, which lead to certain types of master equations as
well as Quantum Langevin equations [1, 7, 6, 4, 5]. The central feature of such systems
is that S interacts successively with independent elements Ej constituting a reservoir.
This independence implies a markovian property which simplifies the mathematical
treatment considerably. In essence it enables one to express the dynamics of S at time
t = τ1 + · · · + τN by a propagator of product form M1(τ1) · · ·MN (τN ), where each
Mj(τj) encodes the dynamics of S with a fixed element Ej . In case each element Ej is
physically the same and each interaction is governed by a fixed duration τ (and a fixed
interaction operator), the dynamics is given by M(τ)N and the asymptotics is encoded
in the spectrum of the reduced dynamics operator M(τ) [11]. An analysis for non-
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constant interactions is more involved. It has been carried out in [12, 13] for systems
with random characteristics (e.g. random interaction times). See also [31] for related
issues. In both the deterministic and the random settings, the system approaches a
limit state as t → ∞, called a repeated interaction asymptotic state (RIAS), whose
physical and mathematical properties have been investigated explicitly.

In the present work we make the synthesis of the above two situations. We con-
sider a system S interacting with two environments of distinct nature (we are thus in a
non-equilibrium situation). On the one hand, S is coupled in the repeated interaction
way to a chain C = E + E + · · · , and on the other hand, S is in continuous contact
with a heat reservoir R. Such a system describes for example a “one-atom maser”
in which one also takes into account some losses in the cavity, the latter being not
completely isolated from the exterior world, e.g. from the laboratory [15]. It is as-
sumed that C and R do not interact directly. This assumption is physically reasonable.
Indeed, again for the “one-atom maser” experiment, the idea is that the atoms are
ejected from an oven one by one just before they interact with the cavity and more-
over the atom-field interaction time τ is typically much smaller than the damping time
due to the presence of the heat reservoir. Therefore, the atoms do not have enough
time to feel the effects of the reservoir before and during their interaction with the field.

Our goal is to construct the asymptotic state of the system and to analyze its
physical properties. The paper is organized as follows. We present in Section 1.2
our results on the convergence to, and form of the asymptotic state, in Section 1.3
the thermodynamic properties of it, and in Section 1.4 we present the analysis of an
explicit model. The proofs are given in the next sections. Namely, in Section 2 we
prove the results of Section 1.2, i.e. Theorem 1.3. In Section 3 we show how to reduce
the analysis of the Fermi Golden Rule (one of the main assumptions of Theorem 1.3) to
standard perturbation theory of discrete eigenvalues. In Section 4 we prove the results
on thermodynamic properties of the asymptotic state. Finally, in Section 5 we give
some details about the explicit model presented in Section 1.4.

1.1 Description of the system

The following is a unified description of S, R, C in the language of algebraic quantum
statistical mechanics (we refer the reader to e.g. [32] for a more detailed exposition).
For the reader’s convenience, we start from the C∗-dynamical systems formalism. A C∗

dynamical system is a pair (A, α) where A is a C∗-algebra (describing the observables
of the pysical system under consideration) and t → αt is a strongly continuous group
of ∗-automorphisms of A (describing the evolution of the observables). A state of the
system is described by a positive linear functional ω on A satisfying ω(1l) = 1. Following
[19], a triple (A, α, ω), where ω is an invariant state (i.e. ω◦αt ≡ ω), is called a quantum
dynamical system. Concrete examples of such quantum dynamical systems are given
in Section 1.4.

Each subsystem # = S,R, E is described by a quantum dynamical system (A#, α#, ω#).
The “reference” state ω# determine the macroscopic properties of the systems1, e.g.

1In other words, it determines the folium of normal states. If the Hilbert space is finite-dimensional
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they are KMS states at some inverse temperature β#. We also assume that they are
faithful states, i.e. for any A ∈ A#, ω#(A∗A) = 0⇒ A = 0.

In our paper, we will study the (time) asymptotic behaviour of the system using a
specral approach. For that purpose, it is convenient to have a “Hilbert space descrip-
tion” of the system. Such a description is easy to obtain via the GNS-representation
(H#, π#,Ψ#) of the algebras A# associated to the states ω#. Since the ω# are faithful,
the π# are injections and we can identify A# and π#(A#) (in the rest of the paper we
will therefore simply write A for π(A)). We set M# = π#(A#)′′ ⊂ B(H#). The M#

form the von Neumann algebras of observables. Finally, by construction the represen-
tative vectors Ψ# are cyclic for M# [10], and we assume that they are also seperating
vectors for M#, i.e. AΨ# = 0 ⇒ A = 0 for any A ∈M# (note that since ω# is faith-
ful, this is automatic when A ∈ π#(A#)). Typically, the Ψ# describe the equilibrium
states at any fixed temperature T# > 0.

We assume that dimHS < ∞ (i.e. AS was a matrix algebra Mn(C)) and dimHE
may be finite or infinite. R being a reservoir, its Hilbert space is assumed to be infinite-
dimensional, dimHR =∞. The free dynamics α# of each constituent is implemented
in the GNS-representation by the so-called Liouville operators L#, i.e., the Heisenberg
evolution of an observable A ∈M# at time t is given by eitL#Ae−itL# . In other words
we have π#(αt#(A)) = eitL#π#(A)e−itL# . Since the ω# were invariant states, we can
also chose the Liouville operators L# so that L#Ψ# = 0 (actually such an L# is unique,
see e.g. [10]).

The Hilbert space HC of the chain is the infinite tensor product of factors HE , taken
with respect to the stabilizing sequence ΨC = ⊗j≥1ΨE , i.e. HC is obtained by taking
the completion of the vector space of finite linear combinations of the form ⊗j≥1ψj ,
where ψj ∈ HE , ψj = ΨE except for finitely many indices, in the norm induced by the
inner product

〈⊗jψj ,⊗jφj〉 =
∏
j 〈ψj , φj〉HE .

The algebra of observables MC of the chain is the von Neumann algebra

MC = ⊗m≥1ME

acting on HC , which is obtained by taking the weak closure of finite linear combinations
of operators ⊗j≥1Aj , where Aj ∈ME and Aj = 1lHE except for finitely many indices.

In summary, the non-interacting system is given by a von Neumann algebra

M = MS ⊗MR ⊗MC ,

acting on the Hilbert space
H = HS ⊗HR ⊗HC ,

and its dynamics is generated by the Liouvillian

L0 = LS + LR +
∑
k≥1

LEk . (1.1)

then the set of normal states is unique, but for infinite systems different classes of normal states are
determined by different macroscopic parameters, such as the temperature.
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Here we understand that LEk acts as the fixed operator LE on the k-th factor of HC ,
and we do not display obvious factors 1l.

The operators governing the couplings between S and E and S and R are given by

VSE ∈MS ⊗ME and VSR ∈MS ⊗MR

respectively, and the total interaction is

V (λ) = λ1VSR + λ2VSE ∈MS ⊗MR ⊗ME , (1.2)

where λ1, λ2 are coupling constants (λ = (λ1, λ2)). The full (Schrödinger) dynamics is

ψ 7→ U(m)ψ, (1.3)

where U(m) is the unitary map

U(m) = e−iτ(L0+Vm)e−iτ(L0+Vm−1) · · · e−iτ(L0+V1), (1.4)

τ > 0 being the time-scale of the repeated interaction and Vk being the operator V (λ),
(1.2), acting nontrivially on HS , HR and the k-th factor HE of HC (we will also write
Lm = L0 + Vm). We discuss here the dynamics (1.3) at discrete time steps mτ only,
a discussion for arbitrary continuous times follows in a straightforward manner by
decomposing t = mτ + s, s ∈ [0, τ), see [11].

Explicit form of finite systems and thermal reservoirs.
(A) Finite systems. We take S (and possibly E) to be finite, i.e. hS = Cn for some

n. The Hamiltonian of S is given by hS , acting on hS . In other words, AS = Mn(C)
and αtS(A) = eithSAe−ithS . The (Gelfand-Naimark-Segal) Hilbert space, the observable
algebra and the Liouville operator are given by

HS = hS ⊗ hS , MS = B(HS)⊗ 1l, LS = hS ⊗ 1l− 1l⊗ hS .

The reference state is chosen to be the trace state, represented by

ΨS =
1√

dimHS

dimHS∑
j=1

ϕj ⊗ ϕj ,

where {ϕj} is an orthonormal basis of hS diagonalizing hS .
(B) Thermal reservoirs. We take R (and possibly E) to be a thermal reservoir

of free Fermi particles at a temperature T > 0, in the thermodynamic limit. Its
description was originally given in the work by Araki and Wyss [8]; see also [18] and
[30], Appendix A, for an exposition close to ours. We give directly the descritpion in
the GNS-representation, we provide a precise derivation of this formalism starting from
the usual description of a reservoir of non-interacting and non-relativistic fermions via
C∗-dynamical systems in Section 1.4.

The Hilbert space is the anti-symmetric Fock space

HR = Γ−(h) :=
⊕
n≥0

P−[L2(h)]⊗
n
j=1
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over the one-particle space
h = L2(R,G), (1.5)

where P− is the orthonormal projection onto the subspace of anti-symmetric functions,
and G is an ‘auxiliary space’ (typically an angular part like L2(S2)). In this represen-
tation, the one-particle Hamiltonian h is the operator of multiplication by the radial
variable (extended to negative values ) s ∈ R of (1.5), i.e. for ϕ ∈ L2(R,G)

(hϕ)(s) = sϕ(s).

The Liouville operator is the second quantization of h,

LR = dΓ(h) :=
⊕
n≥0

n∑
j=1

hj , (1.6)

where hj is understood to act as h on the j-th factor of P−[L2(h)]⊗
n
j=1 and trivially on

the other ones.
The von Neumann algebra MR is the subalgebra of B(HR) generated by the thermal

fermionic field operators (at inverse temperature β), represented on HR by

ϕ(gβ) =
1√
2

[
a∗(gβ) + a(gβ)

]
.

Here, we define for g ∈ L2(R+,G)

gβ(s) =

√
1

e−βs + 1

{
g(s) if s ≥ 0
g(−s) if s < 0.

We choose the reference state to be thermal equilibrium state, represented by the
vacuum vector of HR,

ΨR = Ω.

1.2 Convergence to asymptotic state

One of our main interests is the behaviour of averages ρ(U(m)∗OmU(m)) as m → ∞,
where ρ is any (normal) initial state of the total system, and where Om is a so-called
instantaneous observable [11, 12, 13].

Definition 1.1 An observable Om is called an instantaneous observable if there exist
ASR ∈MS ⊗MR and Bj ∈ME , j = −l, . . . , r, where l, r ≥ 0 are integers such that

Om = ASR ⊗m+r
j=m−l ϑj(Bj−m) ∈M, (1.7)

where ϑj(B) is the observable of M which acts as B on the j-th factor of HC, and
trivially everywhere else (ϑj is the translation to the j-th factor).
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Note that an instantaneous observable is a time-dependent one. It may be viewed as
a train of fixed observables moving with time along the chain C so that at time m it is
“centered” at the m-th factor HE of HC , on which it acts as B0. If O acts trivially on
the elements of the chain, then the corresponding instantaneous observable is constant
and Om = O. However, in order to be able to reveal interesting physical properties of
the system, instantaneous observables are needed. For instance observables measuring
fluxes of physical quantities (like energy, entropy) between S and the chain involve
instantaneous observables acting non-trivially on Em and on Em+1, which corresponds
to nontrivial ASR and B0, B1. We denote the Heisenberg dynamics of observables by
(see (1.4))

αm(Om) = U(m)∗OmU(m). (1.8)

The total reference vector

Ψ0 = ΨS ⊗ΨR ⊗ΨC (1.9)

is cyclic and separating for the von Neumann algebra M. We also introduce, for later
purposes, the projector PSR = 1lSR ⊗ |ΨC〉〈ΨC |, which range we often identify with
HSR = HS ⊗HR. Let J and ∆ be the modular conjugation and the modular operator
associated to the pair (M,Ψ0) [10]. In order to represent the dynamics in a convenient
way (using a so-called C-Liouville operator), we make the following assumption.

H1 The interaction operator V (λ), (1.2), satisfies ∆1/2V (λ)∆−1/2 ∈MS⊗MR⊗ME .

Since we will be using analytic spectral deformation methods on the factor HR of
H, we need to make a regularity assumption on the interaction. Let R 3 θ 7→ T (θ) ∈
B(HR) be the unitary group defined by

T (θ) = Γ(e−θ∂s) on Γ−(L2(R,G)), (1.10)

where for any f ∈ L2(R,G),

(e−θ∂sf)(s) = f(s− θ).

In the following, we will use the notation

T (θ) = 1lS ⊗ T (θ)⊗ 1lE

for simplicity. Note that T (θ) commutes with all observables acting trivially on HR, in
particular with PSR. Also, we have T (θ)ΨR = ΨR for all θ. The spectral deformation
technique relies on making the parameter θ complex.

H2 The coupling operator WSR := VSR − J∆1/2VSR∆−1/2J is translation analytic
in a strip κθ0 = {z : 0 < =z < θ0} and strongly continuous on the real axis.
More precisely, there is a θ0 > 0 such that the map

R 3 θ 7→ T−1(θ)WSRT (θ) = WSR(θ) ∈MS ⊗MR,

admits an analytic continuation into θ ∈ κθ0 which is strongly continuous as
=θ ↓ 0, and which satisfies

sup
0≤=θ<θ0

‖WSR(θ)‖ <∞.
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Definition 1.2 An observable O is called analytic if the map

θ → T (θ)−1OmΨ0 (1.11)

has an analytic extension to θ ∈ κθ0 which is continuous on the real axis.

Note that for an instantaneous obervable Om, since T acts onHR only, this is equivalent
with T (θ)−1ASRΨ0 having such an extension.

Finally, we present a ‘Fermi golden rule condition’ which guarantees that the sub-
systems are well coupled so that the physical phenomena studied are visible at lowest
nontrivial order in the pertrubation λ1, λ2. This is a very common hypothesis which is
most often verified in concrete applications. To state it, we mention that the evolution
is generated by so-called reduced dynamics operators [11] M(λ) acting on the reduced
space HSR (where the degrees of freedom of C have been ‘traced out’). In this paper,
we analyze the spectrally deformed operators

Mθ(λ) = T (θ)−1M(λ)T (θ).

We show in Corollary 2.3 that Mθ(λ) has an analytic extension into the strip κθ0 , in
the sense of H2 above. We show that 1 is an eigenvalue of Mθ(λ) for all θ, λ and
that, for small couplings λ = (λ1, λ2) , the spectrum of Mθ(λ) must lie in the closed
unit disk. The latter fact is true because Mθ(λ) is the analytically translated (one-
step) propagator of a reduced unitary dynamics, although we can only prove it in a
perturbative regime. The former fact can be seen as a normalization (the trace of the
reduced density matrix of S + R equals unity at all times). Since the propagator at
time step m is represented by a power of Mθ(λ), it is not surprising that convergence
to a final state is related to the peripheral eigenvalues of Mθ(λ). The following Fermi
golden rule condition is an ergodicity condition ensuring the existence of a unique limit
state.

FGR There is a θ1 ∈ κθ0 and a λ0 > 0 (depending on θ1 in general) such that for all
λ with 0 < |λ| < λ0, σ(Mθ1(λ)) (spectrum) lies inside the complex unit disk,
and σ(Mθ1(λ)) ∩ S = {1}, the eigenvalue 1 being simple and isolated. (S is the
complex unit circle.)

This condition is verified in practice by perturbation theory (small λ). It is also
possible to prove that if the spectral radius of Mθ1(λ) is determined by discrete eigen-
values only, then the spectrum of Mθ1(λ) is automatically inside the unit disk (see
Proposition A.3). Since the spectrum is a closed set the FGR condition implies that
apart from the eigenvalue 1 the spectrum is contained in a disk of radius e−γ < 1.

Theorem 1.3 (Convergence to asymptotic state) Assume that assumptions H1,
H2 and FGR are satisfied. Then there is a λ0 > 0 s.t. if 0 < |λ| < λ0, the following
holds. Let ρ be any normal initial state on M, and let Om be an analytic instantaneous
observable of the form (1.7). Then

lim
m→∞

ρ
(
αm(Om)

)
= ρ+,λ

(
PSR αl+1

(
ASR ⊗0

j=−l Bj
)
PSR

) r∏
j=1

〈ΨE |BjΨE〉, (1.12)
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where ρ+,λ is a state on MS ⊗MR, PSR is the orthogonal projection onto the subspace
HS ⊗HR, and where αl is the dynamics (1.8). Moreover, for analytic A ∈M, we have
the representation

ρ+,λ(PSRAPSR) = 〈ψ∗θ1(λ)|T (θ1)−1PSRAPSRΨS ⊗ΨR〉, (1.13)

where ψ∗θ1(λ) is the unique invariant vector of the adjoint operator [Mθ1(λ)]∗, normal-
ized as 〈ψ∗θ1(λ)|Ψ0〉 = 1.

Remark. The operators Bj with j ≥ 1 measure quantities on elements Em+j which,
at time m, have not yet interacted with the system S. Therefore, they evolve indepen-
dently simply under the evolution of Em+j . For large times m → ∞, the elements of
the chain approach the reference state ΨE (because the initial state is normal), and the
latter is stationary w.r.t. the uncoupled evolution. This explains the factorization in
(1.12).

As a special case of Theorem 1.3 we obtain the reduced evolution of S +R.

Corollary 1.4 Assume the setting of Theorem 1.3. Then

lim
m→∞

ρ
(
αm(ASR)

)
= ρ+,λ

(
ASR

)
.

1.3 Thermodynamic properties of asymptotic state

The total energy of the system is not defined, sinceR and C are reservoirs (and typically
have infinite total energy). However, the energy variation is well defined. In order to
quantify these energy jumps, let us assume for a moment that the various components,
i.e. S, R and the elements E , are described via the usual Hamiltonian framework. We
denote by hS and hS the Hilbert space and Hamiltonian describing the system S, by
hR and hR those for the reservoir and by hE and hE those for an element E , and let
vSR, resp. vSE , be a selfadjoint operator on hS ⊗ hR, resp. hS ⊗ hE , describing the
interaction between S and R, resp. S and E . During each time interval [(m−1)τ,mτ),
the hamiltonian of the total system writes

hm = hS + hR +
∑
k

hE,k + λ1vSR + λ2θm(vSE),

where hE,k acts non trivially on the k-th element of the chain on which it equals hE ,
and θm(v) = v acting on S and the m-th element of the chain. It is then clear that
energy change from time t1 to time t2 writes

∆E(t2, t1) = u(t2)∗hm(t2)+1u(t2)− u(t1)∗hm(t1)+1u(t1), (1.14)

where
u(t) = e−is(t)hm(t)+1e−iτhm(t) · · · e−iτh1 ,

and where we decomposed t1 and t2 as t = m(t)τ + s(t), m(t) ∈ N and s(t) ∈ [0, τ).
Now, for (m− 1)τ ≤ t1 < mτ ≤ t2 < (m+ 1)τ , it is easy to see that (1.14) simplifies to

∆E(t2, t1) = λ2u(mτ)∗(θm+1(vSE)− θm(vSE))u(mτ) =: δE(m), (1.15)
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which we interpret as the energy jump observable as time passes the moment mτ (note
that during each interaction, i.e. in each time interval of the form [mτ, (m+ 1)τ), the
full system is autonomous so that there is no energy variation in it).

Starting from a Hamiltonian description of the system and given reference states
ωS (resp. ωR and ωE) of S (resp. R and E), one then performs the GNS representation
(HS , πS , ψS) of (B(hS), ωS), and similarly for R and E . The interaction operator VSR
and VSE are then given by VSR = πS ⊗ πR (vSR) and VSE = πS ⊗ πE (vSE).

Now, for any observable O one has π (u(mτ)∗Ou(mτ)) = αm(π(O)) so that

∆Etot(m) := π(δE(m)) = λ2α
m(ϑm+1(VSE)− ϑm(VSE)).

In view of the above (formal) discussion, we therefore define the energy jump observable
as time passes moment mτ by

∆Etot(m) = λ2α
m(ϑm+1(VSE)− ϑm(VSE)). (1.16)

The variation ∆Etot(m) is thus an instantaneous observable. In applications this ob-
servable is analytic and hence we obtain, under the conditions of Theorem 1.3 (see also
[11]), that

dEtot
+ := lim

m→∞

1
m
ρ(∆Etot(m)) = ρ+,λ(jtot

+ ),

where jtot
+ = V − ατ (V ) is the total energy flux observable. The quantity dEtot

+ repre-
sents the asymptotic energy change per unit time τ of the entire system.

In the same way we define the variation of energy within the system S, the reservoir
R and the chain C between times m and m+ 1 by

∆ES(m) = αm+1(LS)− αm(LS), (1.17)
∆ER(m) = αm+1(LR)− αm(LR), (1.18)
∆EC(m) = αm+1(LEm+1)− αm(LEm+1). (1.19)

Remark. One would a priori define the various energy variations using the hamiltonians
h# instead of the Liouvilleans L#, i.e. in the same way as for the total energy variation
and with the same notation, ∆E#(m) = π(δE#(m)) where

δE#(m) := u(m+ 1)∗h#u(m+ 1)− u(m)∗h#u(m).

It is easy to see that (at least formally) this leads to the same expression as those of
(1.17)-(1.19).

The energy variations (1.17)-(1.19) can be expressed in terms of commutators
[VSE , L#] and [VSR, L#], where # = S, E ,R (see Section 4). Since [VSE , L#] acts
on S + E only, it is an analytic observable (see sentence after (1.2)). We make the
following Assumption.

H3 The commutators [VSR, L#], where # = S, E ,R, are analytic observables in M.
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We can thus apply Theorem 1.3 to obtain (see Section 4)

dE#
+ := lim

m→∞

1
m
ρ(∆E#(m)) = ρ+,λ(j#

+ ), # = S,R, C, (1.20)

where j# are explicit ‘flux observables’ (c.f. (4.3)-(4.5)). We show in Proposition 4.1
that jtot

+ = jS+ + jR+ + jC+, and that ρ+,λ(jS+) = 0. It follows immediately that

dEtot
+ = dER+ + dEC+. (1.21)

The total energy variation is thus the sum of the variations in the energy of C and R.
The details of how the energy variations are shared between the subsystems depends
on the particulars of the model considered; see below for an explicit example.

Next, we consider the entropy production. Given two normal states ρ and ρ0 on M,
the relative entropy of ρ with respect to ρ0 is denoted by Ent(ρ|ρ0). (This definition
coincides with the one in [11] and differs from certain other works by a sign; here
Ent(ρ|ρ0) ≥ 0).

We examine the change of relative entropy of the state of the system as time evolves,
relative to the reference state ρ0 represented by the reference vector Ψ0, see (1.9). For
a thermodynamic interpretation of the entropy, we take the vectors Ψ#, # = S, E , R
to represent equilibrium states of respective temperatures βS , βE , βR. We analyze the
change of relative entropy

∆S(m) = Ent(ρ ◦ αm|ρ0)− Ent(ρ|ρ0)

proceeding as in [11]. We show in Section 4 (see (4.6)) that

dS+ := lim
m→∞

∆S(m)
m

= (βR − βE)dER+ + βEdEtot
+ .

Combining this result with (1.21), we arrive at

Corollary 1.5 The system satisfies the following asymptotic 2nd law of thermody-
namics,

dS+ = βEdEC+ + βRdER+ .

1.4 An explicit example

We consider S and E to be two-level systems. The observable algebra for S and for E
is AS = AE = M2(C). Let ES , EE > 0 be the “excited” energy level of S and of E ,
respectively. Accordingly, the Hamiltonians are given by

hS =
(

0 0
0 ES

)
and hE =

(
0 0
0 EE

)
.

The dynamics are αtS(A) = eithSAe−ithS and αtE(A) = eithEAe−ithE . We choose the
reference state of E to be the Gibbs state at inverse temperature βE , i.e.

ρβE ,E(A) =
Tr(e−βEhEA)

ZβE ,E
, where ZβE ,E = Tr(e−βEhE ),

11



and we choose (for computational convenience) the reference state for S to be the
tracial state, ρS(A) = 1

2Tr(A). The interaction operator between S and an element E
of the chain is defined by λ2vSE , where λ2 is a coupling constant, and

vSE := aS ⊗ a∗E + a∗S ⊗ aE .

The above creation and annihilation operators are represented by the matrices

a# =
(

0 1
0 0

)
and a∗# =

(
0 0
1 0

)
.

To get a Hilbert space description of the system, one performs the Gelfand-Naimark-
Segal (GNS) construction of (AS , ρS) and (AE , ρβE ,E) as in Section 1.1, see e.g. [10, 11].
In this representation, the Hilbert spaces are given by

HS = HE = C2 ⊗ C2,

the Von Neumann algebras by

MS = ME = M2(C)⊗ 1lC2 ⊂ B(C2 ⊗ C2),

and the vectors representing ρS and ρβE ,E are

ΨS =
1√
2

(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉) , ΨE =
1√

Tr e−βEhE

(
|0〉 ⊗ |0〉+ e−βEEE/2|1〉 ⊗ |1〉

)
.

In other words, ρS(A) = 〈ψS , (A⊗ 1l)ψS〉 and ρβE ,E(A) = 〈ψE , (A⊗ 1l)ψE〉. Above, |0〉
(resp. |1〉) denotes the ground (resp. excited) state of hS and hE . For shortness, in the
following we will denote |ij〉 for |i〉 ⊗ |j〉, i, j = 0, 1. The free Liouvilleans LS and LE
are given by

LS = hS ⊗ 1lC2 − 1lC2 ⊗ hS , LE = hE ⊗ 1lC2 − 1lC2 ⊗ hE

and the interaction operator VSE is

VSE = (aS ⊗ 1lC2)⊗ (a∗E ⊗ 1lC2) + (a∗S ⊗ 1lC2)⊗ (aE ⊗ 1lC2).

For the reservoir, we consider a bath of non-interacting and non-relativistic fermions.
The one particle space is hR = L2(R3, d3k) and the one-particle energy operator hR is
the multiplication operator by |k|2. The Hilbert space for the reservoir is thus Γ−(hR)
and the Hamiltonian is the second quantization dΓ(hR) of hR (see (1.6)). The algebra of
observables is the C∗-algebra of operators A generated by {a#(f) | f ∈ hR} where a/a∗

denote the usual annihilation/creation operators on Γ−(hR). The dynamics is given by
τ tf (a#(f)) = a#(eithf), where h is the Hamiltonian of a single particle, acting on h. It
is well known (see e.g. [10]) that for any βR > 0 there is a unique (τf , β)−KMS state
ρβR on A, determined by the two point function ρβR(a∗(f)a(f)) = 〈f, (1+eβRhR)−1f〉,
and which we choose to be the reference state of the reservoir. Finally, the interac-
tion between the small system S and the reservoir is chosen of electric dipole type,

12



i.e. of the form vSR = (aS + a∗S) ⊗ ϕR(f) where f ∈ hR is a form factor and
ϕ(f) = 1√

2
(a(f) + a∗(f)).

We know explain how to get a description of the reservoir similar to the one given
in Section 1.1. As for S and E , the first point is to perform the GNS representation
of (A, ρβR), so called Araki-Wyss representation [8]. Namely, if Ω denotes the Fock
vacuum and N the number operator of Γ−(hR), the Hilbert space is given by

H̃R = Γ−(L2(R3,d3k))⊗ Γ−(L2(R3, d3k)),

the Von-Neumann algebra of observables is

M̃R = πβ (A)′′

where

πβ(a(f)) = a

(
eβh/2√
1+eβh

f

)
⊗ 1l + (−1)N ⊗ a∗

(
1√

1+eβh
f̄

)
=: aβ(f),

πβ(a∗(f)) = a∗
(

eβh/2√
1+eβh

f

)
⊗ 1l + (−1)N ⊗ a

(
1√

1+eβh
f̄

)
=: a∗β(f),

the reference vector is
Ψ̃R = Ω⊗ Ω,

and the Liouvillean is
L̃R = dΓ(hR)⊗ 1l− 1l⊗ dΓ(hR).

We then consider the isomorphism between L2(R3, d3k) and L2(R+ × S2,
√
r

2 drdσ) '
L2(R+,

√
r

2 dr; G), where G = L2(S2, dσ), so that the operator hR (the multiplication
by |k|2) becomes multiplication by r ∈ R+ (i.e. we have r = |k|2). The Hilbert space
H̃R is thus isomorphic to

Γ−

(
L2(R+,

√
r

2
dr; G)

)
⊗ Γ−

(
L2(R+,

√
r

2
dr; G)

)
. (1.22)

Next, we make use of the maps

a#(f)⊗ 1l 7→ a#(f ⊕ 0), (−1)N ⊗ a#(f) 7→ a#(0⊕ f)

to define an isometric isomorphism between (1.22) and

Γ−

(
L2(R+,

√
r

2
dr; G)⊕ L2(R+,

√
r

2
dr; G)

)
.

A last isometric isomorphism between the above Hilbert space and

HR := Γ−
(
L2(R, ds; G)

)
is induced by the following isomorphism between the one-particle spaces L2(R+,

√
r

2 dr; G)⊕
L2(R+,

√
r

2 dr; G) and L2(R, ds; G) =: h

f ⊕ g 7→ h, where h(s) =
|s|1/4√

2

{
f(s) if s ≥ 0,
g(−s) ifs < 0.

13



Using the above isomorphisms, one gets a description of the form given in Section
1.1 for the reservoir R. In this representation, the interaction operator vSR becomes

VSR = (σx ⊗ 1lC2)⊗ ϕ(fβR) ∈MS ⊗MR,

where σx = aS + a∗S is the Pauli matrix and fβR ∈ h = L2(R, ds;L2(S2,dσ)) is related
to the initial form factor f ∈ L2(R3,d3k) as follows

(fβR(s)) (σ) =
1√
2

|s|1/4√
1 + e−βRs

{
f(
√
s σ) if s ≥ 0,

f̄(
√
−s σ) if s < 0.

(1.23)

As mentioned at the beginning of the introduction, the situation where S is inter-
acting with R or C alone has been treated in previous works [18, 30] and [11]. If S is
coupled to R alone, then a normal initial state approaches the joint equilibrium state,
i.e. the equilibrium state of the coupled system S +R at temperature β−1

R , with speed
e−mτγth (we consider discrete moments in time, t = mτ to compare with the repeated
interaction situation). If S is coupled to C alone, initial normal states approach a re-
peated interaction asymptotic state, which turns out to be the equilibrium state of S
at inverse temperature β′E where

β′E = βE
EE
ES

, (1.24)

and with speed e−mτγri . The convergence rates are given by

γth = λ2
1γ

(2)
th +O(λ4

1), with γ
(2)
th =

π

2

√
ES‖f(

√
ES)‖2G (1.25)

γri = λ2
2γ

(2)
ri +O(λ4

2), with γ
(2)
ri = τsinc2

(
τ(EE − ES)

2

)
, (1.26)

where sinc(x) = sin(x)/x and ‖f(
√
ES)‖2G :=

∫
S2

|f(
√
ES σ)|2dσ.

In order to satisfy the translation analyticity requirement H2, we need to make
some assumption on the form factor f . Let I(δ) ≡ {z ∈ C, |=(z)| < δ}. We denote by
H2(δ) the Hardy class of analytic functions h : I(δ)→ G which satisfy

‖h‖H2(δ) := sup
|θ|<δ

∫
R
‖h(s+ iθ)‖2Gds <∞.

H4 Let f0 be defined by (1.23), with βR = 0. There is a δ > 0 s.t. e−βRs/2f0(s) ∈
H2(δ).

Proposition 1.6 (Asymptotic state of S) Assume f satisfies H4, ‖f(
√
ES)‖G 6=

0 and τ(EE − ES) /∈ 2πZ∗. Then the asymptotic state ρ+,λ is given by

ρ+,λ =
(
γρβR,S + (1− γ)ρβ′E ,S

)
⊗ ρβR,R +O(λ),

where ρβ,# is the Gibbs state of #, # = S,R, at inverse temperature β and where γ is
given by

γ =
λ2

1γ
(2)
th

λ2
1γ

(2)
th + λ2

2γ
(2)
ri

.
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Remark. The fact that the asymptotic state ρ+,λ is a convex combination of the two
asymptotic states ρβR,S and ρβ′E ,S holds only because the system S is a two-level system
and is not true in general.

Using (4.2)-(4.5), Corollary 1.5 and Proposition 1.6, an explicit calculation of the
energy fluxes and the entropy production for this concrete model reveals the following
result.

Proposition 1.7 Assume that ‖f(
√
ES)‖G 6= 0 and τ(EE − ES) /∈ 2πZ∗. Then

dEC+ = κEE

(
e−βRES − e−β

′
EES
)

+O(λ3),

dER+ = κES

(
e−β

′
EES − e−βRES

)
+O(λ3),

dEtot
+ = κ(EE − ES)

(
e−βRES − e−β

′
EES
)

+O(λ3),

dS+ = κ(β′EES − βRES)
(

e−βRES − e−β
′
EES
)

+O(λ3),

where

κ = Z−1
βR,SZ

−1
β′E ,S

λ2
1γ

(2)
th λ2

2γ
(2)
ri

λ2
1γ

(2)
th + λ2

2γ
(2)
ri

.

Remarks. 1. The constant κ is positive and of order λ2. Moreover it is zero if at least
one of the two coupling constants vanishes (we are then in an equilibrium situation and
there is no energy flux neither entropy production).

2. The energy flux dEC+ is positive (energy flows into chain) if and only if the
reservoir temperature TR = β−1

R is greater than the renormalized temperature T ′E =
β′−1
E of the chain, i.e. if and only if the reservoir is “hotter”. A similar statement holds

for the energy flux dER+ of the reservoir. Note that it is not the temperature of the
chain which plays a role but its renormalized value (1.24).

3. When both the reservoir and the chain are coupled to the system S (λ1λ2 6= 0)
the entropy production vanishes (at the main order) if and only if the two temperatures
TR and T ′E are equal, i.e. if and only if we are in an equilibrium situation. Once again,
it is not the initial temperature of the chain which plays a role but the renormalized
one.

4. The total energy variation can be either positive or negative depending on the
parameters of the model. This is different from the situation considered in [11], where
that variation was always non-negative.

2 Proof of Theorem 1.3

2.1 Generator of dynamics Km

We recall the definition of the so-called ‘C-Liouvillean’ introduced for the study of open
systems out of equilibrium in [19], and further developped in [11, 12, 13, 27, 28, 30] (see
also references in the latter papers). Let (J#,∆#) denote the modular data associated
with (M#,Ψ#), with # given by S,R or E . Then

(J,∆) = (JS ⊗ JR ⊗ JE ,∆S ⊗∆R ⊗∆E)
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are the modular data associated with (MS ⊗MR ⊗ME ,ΨS ⊗ ΨR ⊗ ΨE). We will
write Jm and ∆m to mean that these operators are considered on the m-th copy of the
infinite tensor product HC .

We define the C-Liouville operator

Km = Lm − Jm∆1/2
m Vm(λ)∆−1/2

m Jm ≡ L0 +Wm(λ),

m ≥ 1, where Wm(λ) ∈MS ⊗MR ⊗ME is given by

Wm(λ) = λ1(VSR − (JS∆1/2
S ⊗ JR∆1/2

R )VSR(JS∆1/2
S ⊗ JR∆1/2

R ))

+λ2(VSE,m − (JS∆1/2
S ⊗ Jm∆1/2

m )VSE,m(JS∆1/2
S ⊗ Jm∆1/2

m ))
≡ λ1WSR + λ2WSE,m. (2.1)

Of course, WSE,m is the operator acting as WSE on the subspace HS ⊗HEm of H, and
trivially on its orthogonal complement.

The operators Km have two crucial properties [19, 11, 27]. The first one is that
they implement the same dynamics as the Lm:

eitLmAe−itLm = eitKmAe−itKm , ∀t ≥ 0,∀A ∈MS ⊗MR ⊗MC .

The second crucial property is that the reference state Ψ0, (1.9), is left invariant under
the evolution eitKm ,

KmΨ0 = 0, ∀m. (2.2)

2.2 Reduced Dynamics Operator

We follow the strategy of [11] to reduce the problem to the study of the high powers of
an effective dynamics operator. The main difference w.r.t. [11] is that in the present
setup, the effective dynamics operator acts now on the infinite dimensional Hilbert
space HS ⊗HR.

We first split off the free dynamics of elements not interacting with S by writing
the product of exponentials in U(m), (1.4), as

U(m) = U−me
−iτLme−iτLm−1 · · · e−iτL1U+

m,

where
Lj = LS + LR + LE + V (λ)

acts nontrivially on the subspace HS ⊗HR ⊗HEj and

U−m = exp

(
−i

m∑
k=1

(m− k)τLEk

)
,

U+
m = exp

(
−i

m+1∑
k=2

(k − 1)τLEk − imτ
∑

k>m+1

LEk

)
.
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Let Om be an instantaneous observable (see (1.7)). A straightforward computation
shows that (see also [13], equation (2.19))

αm(Om) = (U+
m)∗eiτL1 · · · eiτLmN (Om)e−iτLm · · · e−iτL1U+

m, (2.3)

with
N (Om) = ASR ⊗−1

j=−l ϑm+j(eiτ |j|LEBje−iτ |j|LE )⊗rj=0 ϑm+j(Bj). (2.4)

As normal states are convex combinations of vector states, it sufficient to consider
the latter. Let Ψρ be the GNS vector representing the initial state ρ, i.e., ρ(·) =
〈Ψρ| · Ψρ〉. Since every Φ ∈ H is approximated in the norm of H by finite linear
combinations of vectors of the form ΦS ⊗ ΦR ⊗m≥1 Φm, where ΦS ∈ HS , ΦR ∈ HR,
and Φm = ΨE if m > N , for some N < ∞, it suffices to prove (1.12) for vector states
determined by vectors Ψρ of the form

Ψρ = ΦS ⊗ ΦR ⊗Nm=1 Φm ⊗m>N ΨE , (2.5)

for some arbitrary N < ∞. Finally, since the vectors ΨS , ΨR, ΨE are cyclic for the
commutants M′S , M′R, M′E , any vector of the form (2.5) is approximated by a

Ψ = B′ Ψ0, (2.6)

for some
B′ = B′S ⊗B′R ⊗Nm=1 B

′
m ⊗m>N 1lE ∈M′, (2.7)

with B′S ∈ M′S , B′R ∈ M′R, B′m ∈ M′E . It is therefore sufficient to show (1.12), for
vector states with vectors Ψρ of the form (2.6), (2.7).

Let Om be an instantaneous observable and let us consider the expression

〈Ψρ|αm(Om)Ψρ〉 = 〈B′Ψ0|αm(Om)B′Ψ0〉 = 〈Ψ0|(B′)∗B′αm(Om)Ψ0〉.

We use expression (2.3) and the properties of the generators Kn to obtain

〈Ψ0|(B′)∗B′αm(Om)Ψ0〉 = 〈Ψ0|(B′)∗B′(U+
m)∗eiτK1 · · · eiτKmN (Om)Ψ0〉.

Note that U+
mΨ0 = Ψ0. Let

PN = 1lS ⊗ 1lR ⊗ 1lE1 ⊗ · · · 1lEN ⊗ PΨEN+1
⊗ PΨEN+2

⊗ · · · ,

where PΨEk
= |ΨEk〉〈ΨEk |. Since (B′)∗B′ acts non-trivially only on the factors of the

chain Hilbert space having index ≤ N , we have

〈Ψ0|(B′)∗B′αm(Om)Ψ0〉 = (2.8)
〈Ψ0|(B′)∗B′(Ũ+

N )∗eiτK1 · · · eiτKNPNeiτKN+1 · · · eiτKmN (Om)Ψ0〉,

where (for m > N ; we have the limit m→∞ in mind)

Ũ+
N = PNU

+
m = PN exp

(
−i

N∑
k=2

(k − 1)τLEk

)
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Recall
PSR = 1lS ⊗ 1lR ⊗ |ΨC〉〈ΨC |.

We have for m > N + l

PNeiτKN+1 · · · eiτKmN (Om)Ψ0 = PSReiτKN+1 · · · eiτKmN (Om)Ψ0

= PSRM
m−l−N−1eiτKm−l · · · eiτKmN (Om)Ψ0, (2.9)

where we have introduced the following reduced dynamics operator (RDO), see (2.21)
in [13]

PSReiτKPSR = M ⊗ |ΨC〉〈ΨC | 'M acting on HS ⊗HR. (2.10)

In the last step of (2.9), we use the property

PSReiτKseiτKs+1 · · · eiτKtPSR = PSReiτKsPSReiτKs+1PSR · · ·PSReiτKtPSR,

which holds for any 1 ≤ s < t. This property follows from the independence of the Ej
for different j, see [11], Proposition 4.1.

Combining (2.8) with (2.9) we obtain

〈Ψ0|(B′)∗B′αm(Om)Ψ0〉 = (2.11)
〈Ψ0|(B′)∗B′(Ũ+

N )∗eiτK1 · · · eiτKNPSRM
m−l−N−1eiτKm−l · · · eiτKmN (Om)Ψ0〉.

In order to emphasize the dependence on the coupling constants λ = (λ1, λ2), we
write K(λ) and M(λ). The following are general properties of the RDO.

Proposition 2.1 Let λ ∈ R2 be arbitrary. We have
i) M(λ) ∈ B(HSR)
ii) M(λ)ΨSR = ΨSR, where ΨSR := ΨS ⊗ΨR
iii) For any ϕ in the dense set D = {ASRΨSR, ASR ∈MSR}, there exists a constant

C(ϕ) <∞ s.t.
sup
n∈N
‖M(λ)nϕ‖ ≤ C(ϕ). (2.12)

Proof: i) follows from the fact that K is a bounded perturbation of a self-adjoint
operator and ii) is a consequence of (2.2). To prove iii), first note that D is dense since
ΨSR is cyclic for MSR. Then note that the following identity holds for all BSR ∈MSR

〈BSRΨ0|αn(ASR)Ψ0〉 = 〈BSRΨSR|M(λ)nASRΨSR〉.

Statement iii) of the proposition follows from the density of D and unitarity of the
Heisenberg evolution, with C(ASRΨSR) = ‖ASR‖.

Remark. Contrarily to the cases dealt with in [11], [12] and [13], where the underlying
Hilbert space is finite dimensional, we cannot conclude from (2.12) that M(λ) is power
bounded. Hence we do not know a priori that σ(M(λ)) ⊂ {z : |z| ≤ 1}.
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2.3 Translation analyticity

To separate the eigenvalues from the continuous spectrum, we use analytic spectral
deformation theory acting on the (radial) variable s of the reservoir R.

Recall the definition (1.10) of the translation. It is not difficult to see that

Kθ := T (θ)−1KT (θ) = L0 + θN + λ1WSR(θ) + λ2WSE , (2.13)

where N is the number operator, and that the right side of (2.13) admits an analytic
continuation into θ ∈ κθ0 , strongly on the dense domain D(L0) ∩ D(N), defining a
family of closed operators (see [18]).

Theorem 2.2 (Analyticity of propagator) Assume that H1 and H2 hold. Then

1. T (θ)−1eiτKT (θ) has an analytic continuation from θ ∈ R into the upper strip
κθ0, and this continuation is strongly continuous as =θ ↓ 0.

2. For each θ ∈ κθ0 ∪ R, the analytic continuation of T (θ)−1eiτKT (θ) is given by
eiτKθ , which is understood as an operator-norm convergent Dyson series (with ‘free
part’ eiτ(L0+θN)).

3. For each θ ∈ κθ0, λj 7→ T (θ)−1eiτKT (θ), j = 1, 2, are analytic entire functions.

Remarks. 1. The proof of this result yields the following bound for all θ ∈ κθ0 ∪ R,

‖T (θ)−1eiτKT (θ)‖ ≤ eτ sup0≤=θ<θ0 ‖Wθ‖.

2. If θ1, θ2 ∈ κθ0 with θ1 + θ2 ∈ κθ0 , then

T (θ1 + θ2)−1eiτKT (θ1 + θ2) = T (θ2)−1T (θ1)−1eiτKT (θ1)T (θ2).

In particular, T (θ)−1eiτKT (θ) is unitarily equivalent to T (i=θ)−1eiτKT (i=θ), via the
unitary T (<θ)−1.

Proof of Theorem 2.2. For θ ∈ R, the Dyson series expansion of T (θ)−1eiτKT (θ)
is given by

T (θ)−1eiτKT (θ) (2.14)

=
∞∑
n=0

in
∫ τ

0
dt1 · · ·

∫ tn−1

0
dtn eitnθNWθ(tn)ei(tn−1−tn)θNWθ(tn−1)ei(tn−2−tn−1)θN · · ·

· · · ei(t1−t2)θNWθ(t1)ei(τ−t1)θNeiτL0 ,

where we define
Wθ(t) = eitL0Wθe−itL0

In the derivation of (2.14), we use that for all t ∈ R,

T (θ)−1eitL0T (θ) = eit(L0+θN) = eitL0eitθN = eitθNeitL0 .

All the operators ei(tk−1−tk)θN , as well as eitnθN and ei(τ−t1)θN appearing in the integrand
of (2.14) have analytic extensions from real θ to θ ∈ κθ0 which are continuous at R, and
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each of those extensions is bounded, having, in fact, norm one (uniformly in θ ∈ κθ0∪R
and in the tj). Consequently, due to assumption H2, for fixed values of t1, . . . , tn, the
integrand in (2.14) has an analytic extension into κθ0 which is again continuous on R.
Let’s call this extension ht1,...,tn(θ). For θ ∈ κθ0 , we have

‖∂θht1,...,tn(θ)‖ ≤ C(‖∂θWθ‖+ [=θ]−1), (2.15)

uniformly in t1, . . . , tn, for some constant C (which depends on n). It thus follows,
using the Lebesgue Dominated Convergence Theorem, that the integral on the r.h.s.
of (2.14) is analytic in θ ∈ κθ0 . To show (2.15), we note that the derivative ∂θh is a
sum of terms where ∂θ is either applied to one of the Wθ or to an exponential. In the
latter case, we have

‖∂θeitθN‖ = ‖tNe−t=θN‖ = [=θ]−1‖t=θNe−t=θN‖ ≤ [=θ]−1 sup
x≥0

xe−x,

where ∂θeitθN is understood in the strong sense.
The norm of the integral on the r.h.s. of (2.14) is bounded above by

[τ sup0≤=θ<θ0 ‖Wθ‖]n

n!
,

uniformly in θ ∈ κθ. It follows that the series (2.14) converges uniformly (Weierstrass
M -test) and therefore the r.h.s. of (2.14) is an analytic function in θ ∈ κθ0 .

Using the Lebesgue Dominated Convergence Theorem and the Weierstrass M -test
as above, one readily shows that the series in (2.14) is strongly continuous as =θ ↓ 0.
Since equality (2.14) holds for real θ, this means that indeed the Dyson series is an
analytic extension of T (θ)−1eiτKT (θ) into θ ∈ κθ0 . Note that the series is indeed the
Dyson series of eiτKθ .

Finally, analyticity in λ1 and λ2 is clear from (2.14) and (2.1). �

The following result follows immediately from Theorem 2.2 and definition (2.10).

Corollary 2.3 Recall the definition (2.10) of M(λ). If assumption H2 is satisfied,
then T (θ)−1M(λ)T (θ) has an analytic continuation into θ ∈ κθ0, denoted Mθ(λ), and
this continuation is continuous at R. We have Mθ(λ)ΨSR = ΨSR.

2.4 Convergence to asymptotic state

In order to make a link with the dynamics of observables, we insert 1l = T (θ)T (θ)−1

(with θ ∈ R) into equation (2.11) to obtain

〈Ψ0|(B′)∗B′αm(Om)Ψ0〉 = (2.16)
〈Ψ0|(B′)∗B′(Ũ+

N )∗eiτK1 · · · eiτKNPSRT (θ)Mm−l−N−1
θ T (θ)−1eiτKm−l · · · eiτKmN (Om)Ψ0〉.

If Om is analytic (see Definition 1.2) then so is N (Om) (see (2.4)), and therefore, by
Theorem 2.2, eiτKm−l · · · eiτKmN (Om) is analytic as well (and continuous on the real
axis). The r.h.s. of (2.16) is thus an analytic function in θ ∈ κθ0 (c.f. Theorem 2.2 and
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Corollary 2.3). Moreover, this function is continuous on R, and, by unitarity of T (θ)
for real θ, it is constant for real θ. Hence (2.16) is valid for all θ ∈ κθ0 ∪ R.

One expects that the operator Mθ(λ)m−l−N−1 converges to the projection onto the
manifold of its fixed-points, as m → ∞. Under certain (physically reasonable) condi-
tions, this projection has rank one and is given by |ΨSR〉〈ψ∗θ(λ)|, where ψ∗θ(λ) is the
unique invariant vector of the adjoint operator [Mθ(λ)]∗, normalized as 〈ΨSR|ψ∗θ(λ)〉 =
1.

Lemma 2.4 Assume that Condition FGR holds (see before (1.12)). Then for 0 <
|λ| < λ0,

lim
n→∞

Mθ1(λ)n = P1,Mθ1
(λ) = |ΨSR〉〈ψ∗θ1(λ)|,

where P1,M denotes the spectral projector of the operator M corresponding to the eigen-
value 1. The convergence is in operator norm, and occurs exponentially quickly.

Proof. We write M ≡Mθ1(λ) and ψ∗ ≡ ψ∗θ1(λ) in this proof. Using FGR, we have

M = P1,M +MQ, where MQ = QMQ, Q = 1l− P1,M ,

with
P1,M = |ΨSR〉〈ψ∗|, 〈ψ∗|ΨSR〉 = 1.

Moreover, there exists γ = γθ1(λ) > 0 s.t.

σ(MQ) ⊂ {z ∈ C : |z| < e−γ}. (2.17)

Therefore, the spectral radius of MQ satisfies

spr (MQ) = lim
n→∞

‖Mn
Q‖1/n < e−γ < 1.

This, together with the identity

Mn = P1,M +Mn
Q

yields for n large enough,

‖Mn − P1,M‖ ≤ e−nγ → 0 as n→∞.

(For some slightly smaller γ than in (2.17) above.)

It is now apparent from (2.16) and Lemma 2.4 how to complete the proof of Theorem
1.3: the increasing power of Mθ drives the system to an asymptotic state. Some care
has to be exercised in the implementation of the complex deformation in the remaining
part of the proof. Here are the details.

Recall that the initial state is a vector state with Ψρ of the form (2.6)-(2.7). Let
σ ≥ 0 and define the spectral cutoff operator χσ := χ(|dΓ(∂s)| ≤ σ), acting (non-
trivially only) on HR. (Here, χ(|x| ≤ σ) equals one if |x| ≤ σ and zero otherwise.) The
role of χσ is to smoothen the deformation operators: indeed, χσT (θ)−1 is analytic entire
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in θ, see also (1.10). As σ → ∞, χσ approaches the identity in the strong operator
topology. Consequently, we have (see (2.11))

ρ(αm(Om))
= 〈Ψ0|(B′)∗B′(Ũ+

N )∗χσeiτL1 · · · eiτLmN (Om)e−iτLm · · · e−iτL1Ψ0〉+R2(Om)
= 〈Ψ0|(B′)∗B′(Ũ+

N )∗χσeiτK1 · · · eiτKNMm−l−N−1eiτKm−l · · · eiτKmN (Om)Ψ0〉
+R1(Om), (2.18)

where R1 is a bounded linear functional on M satisfying lim
σ→∞

R1 = 0, uniformly in m.

We now introduce the spectral deformation in the main term on the r.h.s. of (2.18).
We have for all θ ∈ R

〈Ψ0|(B′)∗B′(Ũ+
N )∗χσeiτK1 · · · eiτKNMm−l−N−1eiτKm−l · · · eiτKmN (Om)Ψ0〉

= 〈Ψ0|(B′)∗B′(Ũ+
N )∗χσT (θ)eiτK1,θ · · · eiτKN,θMm−l−N−1

θ ×
×T (θ)−1eiτKm−l · · · eiτKmN (Om)Ψ0〉, (2.19)

where Kj,θ = T (θ)−1KjT (θ). Since Om is an analytic observable, and according to
Theorem 2.2, the right side of (2.19) has an analytic continuation into θ ∈ κθ0 and
this continuation is continuous at R. Moreover, on R, this continuation is a constant
function (equal to the left side of (2.19)). It follows that the analytic continuation is
constant on the whole region of analyticity plus the real axis, and (2.19) holds for all
θ ∈ κθ0 ∪ R. Due to the Condition FGR and Lemma 2.4, we have

〈Ψ0|(B′)∗B′(Ũ+
N )∗χσeiτK1 · · · eiτKNMm−l−N−1eiτKm−l · · · eiτKmN (Om)Ψ0〉

= 〈Ψ0|(B′)∗B′(Ũ+
N )∗χσT (θ1)eiτK1,θ1 · · · eiτKN,θ1 Ψ0〉 ×

×〈ψ∗θ1 |T (θ1)−1eiτKm−l · · · eiτKmN (Om)Ψ0〉+ e−mγR2(Om)

= 〈ψ∗θ1 |T (θ1)−1eiτKm−l · · · eiτKmN (Om)Ψ0〉+ e−mγR2(Om), (2.20)

where γ > 0 (see proof of Lemma 2.4) and where

‖R2(Om)‖ ≤ ‖Ũ+
N (B′)∗B′Ψ0‖ × ‖χσT (θ1)‖ ×

N∏
j=1

‖eiτKj,θ1‖

×‖T (θ1)−1eiτKm−l · · · eiτKmN (Om)Ψ0‖ eNγ

≤ C(θ0, N)‖T (θ1)−1eiτKm−l · · · eiτKmN (Om)Ψ0‖eθ1σ.

The latter quantity is bounded uniformly in m. To arrive at the second line in (2.20)
we made use of the fact that Ψ0 is invariant under the action of all of χσ, T (θ) and
eiτKj,θ and that ‖B′Ψ0‖2 = 1 (B′Ψ0 is the initial vector state). We combine estimates
(2.18) and (2.20) to arrive at∣∣ρ(αm(Om))− 〈ψ∗θ1 |T (θ1)−1eiτKm−l · · · eiτKmN (Om)Ψ0〉

∣∣ ≤ ‖R1(Om)‖+‖R2(Om)‖e−mγ .

Hence,

lim sup
m→∞

∣∣ρ(αm(Om))− 〈ψ∗θ1 |T (θ1)−1eiτKm−l · · · eiτKmN (Om)Ψ0〉
∣∣ ≤ lim sup

m→∞
|R1(Om)|.

(2.21)
Finally, by taking σ → ∞ and since lim

σ→∞
R1 = 0 uniformly in m, this completes the

proof of Theorem 1.3. �
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3 Analysis of M(λ)

An important issue in the analysis of concrete models is the verification of the Fermi
Golden Rule assumption FGR (see before Theorem 1.3). We have introduced the
description of the two types of systems, ‘small’ and ‘reservoir’ in Section 1.1. For a
more detailed analysis, we need to complement that description.

We denote the eigenvalues and associated eigenvectors of HS by

E1, · · · , Ed, and ϕ1, · · · , ϕd.

Before analyzing the spectrum of Mθ(λ) in general, we mention some easier special
cases.
• In the unperturbed case (λ = 0), we have

M(0) = eiτLS ⊗ eiτLR , with

σ(M(0)) =
{

eiτ(Ej−Ek)
}

(j,k)∈{1,2,··· ,d}2
∪
{

eil, l ∈ R
}
,

where the eigenvalues eiτ(Ej−Ek) are embedded and have corresponding eigenvectors
ϕj ⊗ ϕk ⊗ΨR. The eigenvalue 1 is at least d-fold degenerate.
• In case the coupling λ1 between the small system and the reservoir is zero, we

have
M(0, λ2) = M̃(λ2)⊗ eiτLR on HS ⊗HR,

where
M̃(λ2) ' PSeiτ(LS+LE+λ2VSE)PS and PS = 1lS ⊗ |ΨE〉〈ΨE |.

The results of [11] apply to M̃(λ2), which is nothing but the RDO corresponding to the
repeated interaction quantum system formed by S and C only. In particular, we get
that M(0, λ2) is power bounded, as M̃(λ2) is and eiτLR is unitary. Moreover, assuming
the interaction VSE “effectively” couples S and C, hypothesis (E) in [11], we know that
the spectrum of M̃(λ2) satisfies

σ(M̃(λ2)) = {µj(λ2)} j=1,2,··· ,d2 ,

with µ1(λ2) = 1 a simple eigenvalue with eigenvector ΨS and µj(λ2) ∈ {z | |z| < 1}.
Hence,

σ(M(0, λ2)) = σ(M̃(λ2)) ∪ {|µj(λ2)|eil, l ∈ R}j=1,··· ,d2 ,

where the eigenvalues are embedded in the absolutely continuous spectrum again.
• In case the chain is decoupled, i.e. if λ2 = 0, we get

M(λ1, 0) = eiτ(LS+LR+λ1WSR) on HS ⊗HR,

whose spectral analysis already requires the tools we will use for general λ.

We now turn to a perturbative analysis of Mθ(λ) (small λ). Take θ ∈ κθ0 and let
λ1 = λ2 = 0. Then

Mθ(0) = eiτ(LS+LR+θN) = eiτLS ⊗ eiτLReiτθN
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and
σ(Mθ(0)) = {eiτ(Ej−Ek)}j,k∈{1,··· ,d} ∪ {eile−τj=θ, l ∈ R}j∈N∗ .

The effect of the analytic translation is to push the continuous spectrum of Mθ(0) onto
circles with radii e−τj=θ, j = 1, 2, . . ., centered at the origin. Hence the discrete spec-
trum of Mθ(0), lying on the unit circle, is separated from the continuous spectrum by
a distance 1 − e−τ=θ. Analytic perturbation theory in the parameters λ1, λ2 guaran-
tees that the discrete and continuous spectra stay separated for small coupling. The
following result quantifies this.

Proposition 3.1 Let C0(λ) := supθ∈κθ0∪R ‖Wθ‖. Take θ ∈ κθ0 and suppose that

τC0(λ)eτC0(λ) < 1
4(1− e−τ=θ). (3.1)

Then the spectrum of Mθ(λ) splits into two disjoint parts,

σ(Mθ(λ)) = σ
(0)
θ (λ) ∪ σ(1)

θ (λ) with σ
(0)
θ (λ) ∩ σ(1)

θ (λ) = ∅.

These parts are localized as follows

σ
(0)
θ (λ) ⊂

{
z : 1− 1

4(1− e−τ=θ) < |z| ≤ 1
}

(3.2)

σ
(1)
θ (λ) ⊂

{
z : 0 ≤ |z| < e−τ=θ +

1
4

(1− e−τ=θ)
}
. (3.3)

Moreover, the spectrum σ
(0)
θ (λ) is purely discrete, consisting of d2 eigenvalues (counted

including algebraic multiplicities).

Proof. According to the Dyson series expansion (2.14), we have

Mθ(λ) = eiτ(L0+θN) + S2, (3.4)

where

‖S2‖ ≤
∞∑
n=1

[τC0(λ)]n

n!
≤ τC0(λ)eτC0(λ).

Since eiτ(L0+θN) is a normal operator, the spectrum of the perturbed operator Mθ(λ),
(3.4), lies inside a set whose distance to σ(eiτ(L0+θN)) does not exceed ‖S2‖. The
spectrum of eiτ(L0+θN) consists of isolated eigenvalues lying on the unit circle and
of continuous spectrum lying on concentric circles centered at the origin, with radii
e−τn=θ, n = 1, 2, . . .

It follows that if (3.1) is satisfied, then the continuous spectrum of Mθ(λ) is located
as in (3.3). Furthermore, the spectral radius of Mθ(λ) is determined by discrete eigen-
values only, and so by Lemma A.2 below, these eigenvalues cannot lie outside the unit
circle, from which (3.2) follows. �

Remark. We always have 1 ∈ σ(0)
θ (λ), with eigenvector ΨSR.

As a consequence of Proposition 3.1, a verification of FGR for concrete models, like
the one of Section 1.4, is done via (perturbative) analysis only of the discrete eigenvalues
of Mθ(λ).
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4 Energy fluxes, entropy production

We use the notation and definitions of Section 1.3 and assume throughout that As-
sumption H3 is satisfied. We have

αm+1(LR)− αm(LR) = αm(ατm+1(LR)− LR),

with
ατm(·) = eiτ eLm · e−iτ eLm , L̃m = L0 + ϑm(V ).

Thus

ατm+1(LR)− LR = i
∫ τ

0
αtm+1([L̃m+1, LR]) dt = i

∫ τ

0
αtm+1([λ1VSR, LR]) dt,

and we arrive at the expression for the variation of energy in the reservoir

∆ER(m) = αm
(

i
∫ τ

0
αtm+1([λ1VSR, LR]) dt

)
.

From definition (1.7) and assumption H3 (see before (1.20)), together with the analyt-
icity of the dynamics (Theorem 2.2), it is clear that αtm+1([λ1VSR, LR]) is an analytic
instantaneous observable. By approximating the integral

∫ τ
0 dt by a Riemann sum

(converging uniformly in m) we see that the integral in question is the limit of a sum
of instantaneous observables all having uniformly bounded indices l, r (see (1.7)). Fur-
thermore, αm is bounded uniformly in m and therefore we can apply Theorem 1.3 to
conclude that

lim
m→∞

ρ
(
∆ER(m)

)
= ρ+,λ

(
i
∫ τ

0
αt(λ1[VSR, LR])dt

)
. (4.1)

Next, we examine the variation of energy in the chain C. During the time interval
[mτ, (m + 1)τ), the energy of the element Ek, k 6= m + 1, of the chain is invariant.
Hence, the variation of energy in the whole chain between the times m and m + 1
coincides with that of the element Em+1 only. Thus,

∆EC(m) = αm+1(LEm+1)− LEm+1 ≡ αm+1(LEm+1)− αm(LEm+1).

Proceeding as above, we arrive at

∆EC(m) = αm
(

i
∫ τ

0
αtm+1([λ2ϑm+1(VSE), LEm+1 ]) dt

)
,

where i
∫ τ

0 α
t
m+1([ϑm+1(VSE), LEm+1 ]) dt is an instantaneous observable (Assumption

H3).
Finally, for the variation of energy in the small system S we get

∆ES(m) = αm
(

i
∫ τ

0
αtm+1([λ2ϑm+1(VSE) + λ1VSR, LS ]) dt

)
.
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It follows now from Theorem 1.3 (by the same reasoning leading to (4.1), see also
[11]) that

dEtot
+ = ρ+,λ(jtot) = ρ+,λ(V − ατ (V )),

where

jtot = V − ατ (V ) = −i
∫ τ

0
αt([LS + LR + LE , λ2VSE + λ1VSR]) dt. (4.2)

On the other hand, by the same reasoning, dE#
+ , for # = S, E ,R (see (1.20)), is

given by ρ+,λ(j#), where

jS = i
∫ τ

0
αt([λ2VSE + λ1VSR, LS ]) dt, (4.3)

jE = i
∫ τ

0
αt([λ2VSE , LE ]) dt, (4.4)

jR = i
∫ τ

0
αt([λ1VSR, LR]) dt. (4.5)

The following result relates the various flux observables j#.

Proposition 4.1 We have jtot = jS + jE + jR. Furthermore, dES+ := ρ+,λ(jS) = 0.

Proof. The relation jtot = jS + jE + jR follows directly from (4.2) and (4.3)-(4.5). To
see that dES+ = 0 we note that since LS is bounded we have

1
N

(αN (LS)− LS) =
1
N

N∑
m=1

αm(LS)− αm−1(LS)→ 0, as N →∞.

�

The main ingredient in the analysis of the entropy production is the following
entropy production formula, established in [20],

∆S(m)

= ρ
(
U(m)∗

[
βE
∑
k

LE,k + βSLS + βRLR

]
U(m)− βE

∑
k

LE,k − βSLS − βRLR
)
.

Following the proof of Proposition 2.6 of [11], we get

∆S(m) = (βR − βE)
m−1∑
k=1

ρ(∆ER(k)) + (βS − βE)
m−1∑
k=1

ρ(∆ES(k)) + βE

m∑
k=1

ρ(∆Etot(k))

+βE [ρ(λ1VSR)− ρ(αm(λ1VSR)) + ρ(λ2ϑ1(VSE))− ρ(αm(λ2ϑm+1(VSE)))] .

Hence using Proposition 4.1, and since ρ(αm(VSR)) and ρ(αm(ϑm+1(VSE))) are bounded
in m, we get

dS+ := lim
m→∞

∆S(m)
m

= (βR − βE)dER+ + βEdEtot
+ . (4.6)
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5 More detail on the concrete example

We consider the model described in Section 1.4. In order to write down explicitly all
the interaction operators appearing in the C-Liouvillean, we need the explicit form of
modular data of S, R and E .

The modular data of S and the elements E of the chain associated to the reference
states ρS and ρβE ,E are given by

JS(φ⊗ ψ) = ψ̄ ⊗ φ̄, ∆S = 1lC2 ⊗ 1lC2 .

JE(φ⊗ ψ) = ψ̄ ⊗ φ̄, ∆E = e−βELE .

The one of R is given as follows (see also Theorem 3.3 of [19])

JRϕ(fβR)JR = iΓ(−1l)ϕ(f#
βR

)

∆R = e−βRLR

JR = (−1)N(N+1)/2C ◦ F .

Here, we have introduced the notation f#
β (s) = ie−βs/2fβ(s) = f̄β(−s), where the bar

indicates the complex conjugate. Furthermore, N = dΓ(1l) is the number operator,
C is the complex conjugation operator and F is the sign flip operator acting on f ∈
⊗nj=1L

2(R,G) as

(Ff)(s1, s2, . . . , sn) = f(−s1,−s2, . . . ,−sn).

An easy computation leads to the following expression for the “interaction” part
W of the C-Liouvillean,

W (λ) = λ1

(
σx ⊗ 1lC2 ⊗ ϕ(fβR(s))

−1lC2 ⊗ σx ⊗ Γ(−1l)
(
a∗(fβR(s))− a(e−βRsfβR(s))

))
+λ2

(
aS ⊗ 1lC2 ⊗ a∗E ⊗ 1lC2 + a∗S ⊗ 1lC2 ⊗ aE ⊗ 1lC2

−eβEEE/21lC2 ⊗ a∗S ⊗ 1lC2 ⊗ aE − e−βEEE/21lC2 ⊗ aS ⊗ 1lC2 ⊗ a∗E
)
.

Assumption (H4) on the form factor f ensures that assumption (H3) of Section
2.3 is satisfied with θ0 = δ. We can thus apply the general results of Section 3. In
particular, the map θ 7→ T (θ)−1M(λ)T (θ) has an analytic continuation in the strip κθ0
(see Corollary 2.3). We then fix some θ1 ∈ κθ0 such that 1− e−τ=(θ1) > 0. For λ small
enough eq. (3.1) is therefore satisfied, so that we can verify the (FGR) hypotheses
using perturbation theory for a finite set of eigenvalues, those four eigenvalues which
are located in σ(0)

θ (λ) (see (3.2)). When the coupling constants are turned off, we have

σ
(0)
θ (0) = σ(eiτLS ) = {1, eiτES , e−iτES}

where the eigenvalue 1 has multiplicity 2. In order to make the computation in per-
turbation theory as simple as possible, we will assume that these eigenvalue do not
coincide, i.e. τES /∈ πN. However, this assumption is certainly not necessary.
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Using a Dyson expansion for Mθ(λ) as in the proof of Theorem 2.2 and regular
perturbation theory (see e.g. [17, 22]) we compute the four elements of σ(0)

θ (λ). We
know that 1 always belongs to σ(0)

θ (λ). The other ones respectively write

e0(λ) = 1− λ2
1τ
π

2

√
ES‖f(

√
ES)‖2G − λ2

2τ
2sinc2

(
τ(EE − ES)

2

)
+O(λ3),

e+(λ) = eiτES
[
1− λ2

1τ
π

4

√
ES‖f(

√
ES)‖2G − λ2

2

τ2

2
sinc2

(
τ(EE − ES)

2

)
−i

(
λ2

1

τ

4
PV

∫
R

√
|s|‖f(

√
|s|)‖2G

s− ES
ds+ λ2

2τ
2 1− sinc(τ(EE − ES))

τ(EE − ES)

)]
+O(λ3),

e−(λ) = e−iτES
[
1− λ2

1τ
π

4

√
ES‖f(

√
ES)‖2G − λ2

2

τ2

2
sinc2

(
τ(EE − ES)

2

)
+i

(
λ2

1

τ

4
PV

∫
R

√
|s|‖f(

√
|s|)‖2G

s− ES
ds+ λ2

2τ
2 1− sinc(τ(EE − ES))

τ(EE − ES)

)]
+O(λ3),

where sinc(x) = sin(x)
x and PV stands for Cauchy’s principal value. We thus get the

following

Lemma 5.1 Assume that ‖f(
√
ES)‖G 6= 0 and τ(EE − ES) /∈ 2πZ∗, then (FGR) is

satisfied.

In order to compute the asymptotic state ρ+,λ, we compute the (unique) invariant
vector ψ∗θ(λ) of Mθ(λ)∗ (see (1.12)). Once again, standard perturbation theory shows
that ψ∗θ(λ) = ψ∗S(λ)⊗ΨR +Oθ(λ) with

ψ∗S(λ) =
√

2
λ2

1γ
(2)
th Z

−1
βR,S + λ2

2γ
(2)
ri Z

−1
β′E ,S

λ2
1γ

(2)
th + λ2

2γ
(2)
ri

|00〉

+
√

2
λ2

1γ
(2)
th e−βRESZ−1

βR,S + λ2
2γ

(2)
ri e−β

′
EESZ−1

β′E ,S

λ2
1γ

(2)
th + λ2

2γ
(2)
ri

|11〉,

where γ(2)
th and γ(2)

ri are defined in (1.25)-(1.26). Inserting the above expression in (1.13),
this proves Proposition 1.6.

A Some operator theory

Our analysis of the spectrum of Mθ(λ) makes use of a translated version of (2.12),
which replaces the powerboundedness of Mθ(λ) in our setup.

Lemma A.1 Assume ASR and BSR are translation analytic in κθ0. Then

sup
m∈N
|〈BSRΨSR|Mm

θ (λ)ASRΨ0〉| ≤ ‖ASR(θ)‖‖BSR(θ)‖.
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Proof: Consider

〈BSR(θ)ΨSR|αm(ASR(θ))ΨSR〉 = 〈BSRΨSR|T (θ)M(λ)mT−1(θ)ASRψSR〉
= 〈BSRΨSR|Mθ(λ)mASRψSR〉

We can use this property to bound the spectral radius of Mθ(λ) when it is deter-
mined by discrete eigenvalues only. This means that there are finitely many eigenvalues
αj , j = 1, . . . , N , all of equal modulus α, such that sup{|z| : z ∈ σ(Mθ(λ))} = α and
σess(Mθ(λ)) ∩ {|z| = α} = ∅.

Lemma A.2 Assume that for some θ ∈ κθ0, spr (Mθ(λ)) is determined by discrete
eigenvalues only. Then spr (Mθ(λ)) = 1.

This is an application of the following result stated in a more abstract setting.

Proposition A.3 Let M be a bounded operator on a Hilbert space H such that:
i) there exists a dense set of vectors C ⊂ H satisfying

sup
n∈N
|〈ϕ|Mnψ〉| ≤ C(ϕ,ψ), ∀ϕ,ψ ∈ C,

ii) spr (M) is determined by discrete eigenvalues only, i.e.

σ(M) ∩ {z ∈ C | |z| = spr (M)} ⊂ σd(M).

Then,
spr (M) ≤ 1

and the eigenvalues of modulus one, if any, are semisimple.

Proof: Let {αj}j=1,··· ,N , be the discrete eigenvalues such that |αj | = α = spr (M) and
let Pj and Dj be the corresponding eigenprojectors and eigennilpotents. Recall that
[Dj , Pj ] = 0 and PjPk = δjkPj , for all j, k ∈ {1, · · · , N}. Setting Q = 1l−

∑N
j=1 Pj , we

can write, by assumption ii)

M =
N∑
j=1

αjPj +Dj +QMQ, (A.1)

where
‖(QMQ)n‖ ≤ eβn with β < lnα.

Let K ∈ N∗ be such that DK+1
j = 0 for all j ∈ {1, · · · , N} and DK

j0
6= 0, for some

j0 ∈ {1, · · · , N}. If all eigennilpotents are zero, we set K = 0. Using the properties of
the spectral decomposition (A.1), we get for any n ∈ N large enough

Mn =
N∑
j=1

(
αnj Pj +

K∑
k=1

(
n
k

)
αn−kj Dk

j

)
+ (QMQ)n.
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Consider first the case K = 0, where all Dj = 0. Assume that α > 1 and consider
ϕ ∈ H such that Pj0ϕ 6= 0, for some j0 ∈ {1, · · · , N}. We define ϕ0 = Pj0ϕ/‖Pj0ϕ‖
such that Mnϕ0 = αnj0ϕ0. Now, C being dense, for any ε > 0, there exists ϕ̃0 ∈ C with
‖ϕ̃0 − ϕ0‖ ≤ ε so that

Mnϕ̃0 = Mnϕ0 +
N∑
j=1

αnj Pj(ϕ̃0 − ϕ0) + (QMQ)n(ϕ̃0 − ϕ0),

where the norm of the last two terms is bounded by αnε
(∑N

j=1 ‖Pj‖+ e(β−lnα)n
)
.

Hence,
〈ϕ̃0|Mnϕ̃0〉 = αnj0(〈ϕ̃0|ϕ0〉+O(ε)), with O(ε) uniform in n,

and 〈ϕ̃0|ϕ0〉 = 1 + O(ε). Thus the modulus of the RHS goes to infinity exponentially
fast with n (since |αj0 | = α > 1), whereas the LHS should be uniformly bounded in n
by assumption i).

Consider now K > 0 and let ϕ ∈ H be such that DK
j0
ϕ 6= 0. Assume α ≥ 1 and set,

as above, ϕ0 = Pj0ϕ/‖Pj0ϕ‖. We have for n large enough

Mnϕ0 = αnj0

(
ϕ0 +

K∑
k=1

(
n
k

)
α−kj0 D

k
jϕ0

)
,

where, for 1 ≤ k ≤ K and n large,(
n
k

)
<

(
n
K

)
' nK/K! .

Let ψ0 = DK
j0
ϕ0/‖DK

j0
ϕ0‖2, and, for any ε > 0, ϕ̃0, ψ̃0 in C such that ‖ϕ̃0 − ϕ0‖ < ε

and ‖ψ̃0 − ψ0‖ < ε. Then, as n→∞,

〈ψ0|Mnϕ0〉 = αnj0

((
n
K

)
α−Kj0 +

K−1∑
k=1

(
n
k

)
α−kj0 〈ψ0|Dk

jϕ0〉+ 〈ψ0|ϕ0〉

)

= αnj0α
−K
j0

(
n
K

)
(1 +O(1/n)).

Thus
〈ψ̃0|Mnϕ̃0〉 = 〈ψ0|Mnϕ0〉+ 〈ψ̃0 − ψ0|Mnϕ̃0〉+ 〈ψ0|Mn(ϕ̃0 − ϕ0)〉,

where the vector

Mnϕ̃0 =
N∑
j=1

(
αnj Pj +

K∑
k=1

(
n
k

)
αn−kj Dk

j

)
ϕ̃0 + (QMQ)nϕ̃0

satisfies for n large enough and some constant C uniform in n,

‖Mnϕ̃0‖ ≤ Cαn
(
n
K

)
‖ϕ̃0‖ ≤ Cαn

(
n
K

)
(1 + ε),
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and a similar estimate holds for ‖(Mn)∗ψ0‖. We finally get, for some constant C̃,
uniform in n and ε,

|〈ψ̃0|Mnϕ̃0〉| ≥ |〈ψ0|Mnϕ0〉| − Cεαn
(
n
K

)
(‖ϕ̃0‖+ ‖ψ0‖)

= αn−K
(
n
K

)
(1− C̃(1/n+ ε)).

Again, if α ≥ 1, the RHS diverges as n → ∞ whereas the LHS should be bounded by
ii), and the result follows.

Remark: To get Lemma A.2, from this Proposition, note that ΨSR is cyclic
for MS ⊗MR and the set of analytic observables ASR is (strongly) dense in MS ⊗
MR. Moreover, Lemma A.1 shows that the dense set of analytic vectors of the form
{ASRΨSR} satisfies assumption i). Finally, as ΨSR is invariant by Mθ(λ), the spectral
radius is equal to 1.
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