Conductances, a.c. spectrum and periodic approximants of 1D systems

(Collaboration with V. Jakšić, Y. Last and C.-A. Pillet)

L. Bruneau

Univ. Cergy-Pontoise

9th meeting of the GDR DYNQUA Toulon - February 22nd, 2017

Plan

- Introduction
- 2 Landauer and Thouless conductances
- Conductances vs Spectrum
- 4 Concluding remarks

Connection between transport in non-equilibrium quantum statistical mechanics and spectral theory (of Jacobi matrices).

Connection between transport in non-equilibrium quantum statistical mechanics and spectral theory (of Jacobi matrices).

Steady state expectation value of the charge current / conductance through a sample connected to electronic reservoirs

Connection between transport in non-equilibrium quantum statistical mechanics and spectral theory (of Jacobi matrices).

Steady state expectation value of the charge current / conductance through a sample connected to electronic reservoirs

Dynamical characterization of spectral types (ac, sc, pp):

- lacksquare take $h=-\Delta+v$ on \mathbb{Z}_+ ,
- \bigcirc restrict to $\{1,\ldots,L\}$,
- **3** analyze the associated conductance as $L \to \infty$.

Connection between transport in non-equilibrium quantum statistical mechanics and spectral theory (of Jacobi matrices).

Steady state expectation value of the charge current / conductance through a sample connected to electronic reservoirs

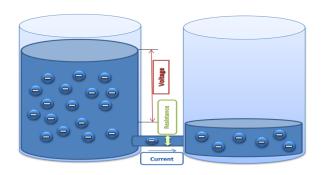
Dynamical characterization of spectral types (ac, sc, pp):

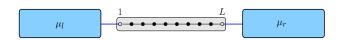
- take $h = -\Delta + v$ on \mathbb{Z}_+ ,
- \bigcirc restrict to $\{1,\ldots,L\}$,
- **1** analyze the associated conductance as $L \to \infty$.

Physics literature: transport theory of 1D systems goes back to 70's (Anderson, Thouless, Landauer,...)

Math literature: mostly absent until the last 10 years and the rigorous derivation of Landauer [Aschbacher-Jakšić-Pautrat-Pillet '07, Nenciu '07] and Thouless [B-Jakšić-Last-Pillet '15] formulas from first principles.

An analogy





Plan

- Introduction
- 2 Landauer and Thouless conductances
- Conductances vs Spectrum
- 4 Concluding remarks

Setup: one electron data

A sample $\mathcal S$ coupled to 2 electronic reservoirs $\mathcal R_{l/r}$ described by free fermi gases at equilibrium (at zero temperature and chemical potential $\mu_{l/r}$) and in the independent electron approximation.

Setup: one electron data

A sample $\mathcal S$ coupled to 2 electronic reservoirs $\mathcal R_{l/r}$ described by free fermi gases at equilibrium (at zero temperature and chemical potential $\mu_{l/r}$) and in the independent electron approximation.

Sample:
$$\mathfrak{h}_L = \ell^2(\{1,\ldots,L\})$$
 and $h_L = -\Delta + v$.

Reservoirs: the one electron data are $(\mathfrak{h}_{l/r}, h_{l/r}, \psi_{l/r})$ where $\psi_{l/r}$ are cyclic vectors for $h_{l/r}$. In the spectral representation,

$$\mathfrak{h}_{I/r}=L^2(\mathbb{R},\mathrm{d}\nu_{I/r}(E)),\quad h_{I/r}=\mathrm{mult\ by}\ E,\quad \psi_{I/r}(E)\equiv 1,$$

where $\nu_{I/r}$ is the spectral measure for $h_{I/r}$ and $\psi_{I/r}$.

Setup: one electron data

A sample $\mathcal S$ coupled to 2 electronic reservoirs $\mathcal R_{l/r}$ described by free fermi gases at equilibrium (at zero temperature and chemical potential $\mu_{l/r}$) and in the independent electron approximation.

Sample:
$$\mathfrak{h}_L = \ell^2(\{1,\ldots,L\})$$
 and $h_L = -\Delta + \nu$.

Reservoirs: the one electron data are $(\mathfrak{h}_{l/r}, h_{l/r}, \psi_{l/r})$ where $\psi_{l/r}$ are cyclic vectors for $h_{l/r}$. In the spectral representation,

$$\mathfrak{h}_{I/r}=L^2(\mathbb{R},\mathrm{d}\nu_{I/r}(E)),\quad h_{I/r}=\mathrm{mult\ by}\ E,\quad \psi_{I/r}(E)\equiv 1,$$

where $\nu_{l/r}$ is the spectral measure for $h_{l/r}$ and $\psi_{l/r}$.

Coupled one electron system: $\mathfrak{h} = \mathfrak{h}_I \oplus \mathfrak{h}_L \oplus \mathfrak{h}_r$ and $h_{\kappa,L} = h_{0,L} + \kappa h_T$ where

$$h_{0,L} = h_I \oplus h_L \oplus h_r$$
, $h_T = |\psi_I\rangle\langle\delta_1| + |\delta_1\rangle\langle\psi_I| + |\psi_r\rangle\langle\delta_L| + |\delta_L\rangle\langle\psi_r|$.



Setup: many electrons

The full system is the corresponding Free Fermi gas with reservoirs initially at equilibrium:

- Hilbert space: the fermionic Fock space $\Gamma_{-}(\mathfrak{h})=\oplus_{n=0}^{\infty}\wedge^{n}\mathfrak{h}$.
- ullet Hamiltonian: the second quantized operator $H=\mathrm{d}\Gamma(h_{\kappa,L})$, i.e.

$$H f_1 \wedge \cdots \wedge f_n = \sum_{j=1}^n f_1 \wedge \cdots \wedge h_{\kappa,L} f_j \wedge \cdots \wedge f_n.$$

• Initial state: quasi-free state ω_0 generated by the density operator $T = T_I \oplus T_L \oplus T_r$ where $T_{I/r} = \mathbb{1}_{(-\infty,\mu_{I/r}](h_{I/r})}$.

Setup: many electrons

The full system is the corresponding Free Fermi gas with reservoirs initially at equilibrium:

- Hilbert space: the fermionic Fock space $\Gamma_{-}(\mathfrak{h})=\oplus_{n=0}^{\infty}\wedge^{n}\mathfrak{h}$.
- Hamiltonian: the second quantized operator $H = \mathrm{d}\Gamma(h_{\kappa,L})$, i.e.

$$H f_1 \wedge \cdots \wedge f_n = \sum_{j=1}^n f_1 \wedge \cdots \wedge h_{\kappa,L} f_j \wedge \cdots \wedge f_n.$$

- Initial state: quasi-free state ω_0 generated by the density operator $T = T_I \oplus T_L \oplus T_r$ where $T_{I/r} = \mathbb{1}_{(-\infty,\mu_{I/r}](h_{I/r})}$.
- Charge current observable:

$$\mathcal{J} := -i[H, N_r] = \kappa(a^*(i\psi_r)a(\delta_L) + a^*(\delta_L)a(i\psi_r))$$

where $N_r = d\Gamma(\mathbb{1}_r)$ is the number of fermions in reservoir \mathcal{R}_r ($\mathbb{1}_r$ is the projection onto $h_r \simeq 0 \oplus 0 \oplus h_r$).

Landauer-Büttiker formula

The steady state expectation value of the charge current observable is given by the Landauer-Büttiker formula [Landauer '70], proven by [AJPP '07, N'07] provided $\operatorname{sp}_{\operatorname{sc}}(h_{\kappa,L}) = \emptyset$.

$$\omega_+(\mathcal{J}) := \lim_{T o +\infty} rac{1}{T} \int_0^T \omega_0 \left(\mathrm{e}^{itH} \mathcal{J} \mathrm{e}^{-itH}
ight) \mathrm{d}t \ = \ rac{1}{2\pi} \int_{\mu_I}^{\mu_r} \mathcal{T}_L(E) \mathrm{d}E,$$

where $\mathcal{T}_L(E)$ is the transmission probability at energy E for the pair $(h_{\kappa,L}, h_{0,L})$.

Landauer-Büttiker formula

The steady state expectation value of the charge current observable is given by the Landauer-Büttiker formula [Landauer '70], proven by [AJPP '07, N'07] provided $\operatorname{sp}_{\operatorname{sc}}(h_{\kappa,L}) = \emptyset$.

$$\omega_+(\mathcal{J}) := \lim_{T o +\infty} rac{1}{T} \int_0^T \omega_0 \left(\mathrm{e}^{itH} \mathcal{J} \mathrm{e}^{-itH}
ight) \mathrm{d}t \ = \ rac{1}{2\pi} \int_{\mu_I}^{\mu_r} \mathcal{T}_L(E) \mathrm{d}E,$$

where $\mathcal{T}_L(E)$ is the transmission probability at energy E for the pair $(h_{\kappa,L},h_{0,L})$. Stationary scattering theory gives

$$\mathcal{T}_{L}(E) = 4\pi^{2}\kappa^{4} |\langle \delta_{1}, (h_{\kappa,L} - E - i0)^{-1}\delta_{L} \rangle|^{2} \frac{\mathrm{d}\nu_{I,\mathrm{ac}}}{\mathrm{d}E}(E) \frac{\mathrm{d}\nu_{r,\mathrm{ac}}}{\mathrm{d}E}(E).$$

Remark 1: Only energies in ac spectra of reservoirs contribute.

Remark 2: $\mu_{l/r}$ have a "double role": induce the current and fix the energy window.

The Landauer conductance associated to the energy window $I = (\mu_I, \mu_r)$

is
$$G_{LB}(L,I) = \frac{\omega_+(\mathcal{J})}{\mu_r - \mu_I}$$
.

Thouless formula

A particular choice of reservoirs: so that $h_{\kappa,L} = h_{\mathrm{per},L}$ is the periodic extension of the sample, i.e. the *L*-periodic Schrödinger on $\ell^2(\mathbb{Z})$ whose restriction to $\{1,\ldots,L\}$ is h_L .

Thouless formula

A particular choice of reservoirs: so that $h_{\kappa,L} = h_{\mathrm{per},L}$ is the periodic extension of the sample, i.e. the *L*-periodic Schrödinger on $\ell^2(\mathbb{Z})$ whose restriction to $\{1,\ldots,L\}$ is h_L .

It amounts to take for the left, resp. right, reservoir the restriction of $h_{\mathrm{per},L}$ to $\ell^2((-\infty,0])$, resp. $\ell^2([L+1,\infty))$, with Dirichlet B.C. and $\psi_{I/r}=\delta_{0/L+1}$. The corresponding conductance $G_{Th}(L,I)$ is called Thouless conductance.

Thouless formula

A particular choice of reservoirs: so that $h_{\kappa,L} = h_{\mathrm{per},L}$ is the periodic extension of the sample, i.e. the *L*-periodic Schrödinger on $\ell^2(\mathbb{Z})$ whose restriction to $\{1,\ldots,L\}$ is h_L .

It amounts to take for the left, resp. right, reservoir the restriction of $h_{\mathrm{per},L}$ to $\ell^2((-\infty,0])$, resp. $\ell^2([L+1,\infty))$, with Dirichlet B.C. and $\psi_{I/r}=\delta_{0/L+1}$. The corresponding conductance $G_{Th}(L,I)$ is called Thouless conductance.

Transport is then reflectionless: $\mathcal{T}_L(E) = 1$ if $E \in \operatorname{sp}(h_{\operatorname{per},L})$ and 0 otherwise. The Landauer-Büttiker formula thus gives

$$G_{Th}(L,I) = \frac{1}{2\pi} \frac{|\operatorname{sp}(h_{\operatorname{per},L}) \cap I|}{|I|}.$$

Remark: This is not the original definition as given by Edwards and Thouless ('72) but it amounts to it.

Plan

- Introduction
- 2 Landauer and Thouless conductances
- Conductances vs Spectrum
- 4 Concluding remarks

Formulation of the problem

Object of interest:
$$h = -\Delta + v$$
 on $\ell^2(\mathbb{Z}_+)$.

Goal: dynamical characterization of spectral types of *h*. Focus on ac spectrum: should be the set of energies at which the system exhibits transport, i.e.

Mathematical characterization of conducting regime \uparrow ?

Physical characterization of conducting regime

Formulation of the problem

Object of interest:
$$h = -\Delta + v$$
 on $\ell^2(\mathbb{Z}_+)$.

Goal: dynamical characterization of spectral types of *h*. Focus on ac spectrum: should be the set of energies at which the system exhibits transport, i.e.

Mathematical characterization of conducting regime ?

Physical characterization of conducting regime

Definition of transport:

- Restrict h to $\{1, \ldots, L\}$
- 2 Large L behavior of $G_{\#}(L, I)$, # = LB or Th. Does it vanish or not?

Main result

Theorem (B.-Jakšić-Last-Pillet '16)

For any potential v and any open interval I, # = LB or Th,

$$\operatorname{sp}_{\operatorname{ac}}(-\Delta+v)\cap I=\emptyset\iff \limsup_{L\to\infty}G_\#(L,I)=0\iff \liminf_{L\to\infty}G_\#(L,I)=0$$

This gives a sharp characterization of ac spectrum:

- no ac spectrum in $I \Rightarrow$ corresponding conductances vansih.
- ac spectrum in $I \Rightarrow$ conductances bounded away from zero.

Mathematical characterization of conducting regime $$\Uparrow$$

Physical characterization of conducting regime

Remark: For the Landauer conductance one needs to assume that the reservoirs are s.t. $\operatorname{sp}_{\operatorname{ac}}(-\Delta + \nu) \subset \operatorname{sp}_{\operatorname{ac}}(h_{l/r})$, transparency condition.

Periodic approximants

Denote $h^+_{\mathrm{per},L}$ the L-periodic Schrödinger on $\ell^2(\mathbb{Z}_+)$ whose restriction to $\{1,\ldots,L\}$ coincides with $h=-\Delta+\nu$. Then $h^+_{\mathrm{per},L} \stackrel{\mathit{str. res.}}{\longrightarrow} h$ (periodic approximants). By general principles the spectrum can not suddenly expand: if $\lambda \in \mathrm{sp}(h)$ there exists $\lambda_L \in \mathrm{sp}(h^+_{\mathrm{per},L})$ s.t. $\lambda_L \to \lambda$.

Periodic approximants

Denote $h^+_{\mathrm{per},L}$ the L-periodic Schrödinger on $\ell^2(\mathbb{Z}_+)$ whose restriction to $\{1,\ldots,L\}$ coincides with $h=-\Delta+\nu$. Then $h^+_{\mathrm{per},L} \stackrel{\mathit{str. res.}}{\longrightarrow} h$ (periodic approximants). By general principles the spectrum can not suddenly expand: if $\lambda \in \mathrm{sp}(h)$ there exists $\lambda_L \in \mathrm{sp}(h^+_{\mathrm{per},L})$ s.t. $\lambda_L \to \lambda$.

 $G_{Th}(L,I) = \frac{1}{2\pi |I|} |\operatorname{sp}(h_{\operatorname{per},L}) \cap I|$ and $|\operatorname{sp}(h_{\operatorname{per},L}) \cap I| = |\operatorname{sp}(h_{\operatorname{per},L}^+) \cap I|$ (the spectra differ by a finite number of simple eigenvalues). The previous theorem means

$$\operatorname{sp}_{\operatorname{ac}}(h) \cap I = \emptyset \Leftrightarrow \limsup_{L \to \infty} |\operatorname{sp}(h_{\operatorname{per},L}^+) \cap I| = 0 \Leftrightarrow \liminf_{L \to \infty} |\operatorname{sp}(h_{\operatorname{per},L}^+) \cap I| = 0$$

Periodic approximants

Denote $h^+_{\mathrm{per},L}$ the L-periodic Schrödinger on $\ell^2(\mathbb{Z}_+)$ whose restriction to $\{1,\ldots,L\}$ coincides with $h=-\Delta+\nu$. Then $h^+_{\mathrm{per},L} \stackrel{\mathit{str. res.}}{\longrightarrow} h$ (periodic approximants). By general principles the spectrum can not suddenly expand: if $\lambda \in \mathrm{sp}(h)$ there exists $\lambda_L \in \mathrm{sp}(h^+_{\mathrm{per},L})$ s.t. $\lambda_L \to \lambda$.

 $G_{Th}(L,I) = \frac{1}{2\pi |I|} |\operatorname{sp}(h_{\operatorname{per},L}) \cap I|$ and $|\operatorname{sp}(h_{\operatorname{per},L}) \cap I| = |\operatorname{sp}(h_{\operatorname{per},L}^+) \cap I|$ (the spectra differ by a finite number of simple eigenvalues). The previous theorem means

$$\operatorname{sp}_{\operatorname{ac}}(h) \cap I = \emptyset \Leftrightarrow \limsup_{L \to \infty} |\operatorname{sp}(h_{\operatorname{per},L}^+) \cap I| = 0 \Leftrightarrow \liminf_{L \to \infty} |\operatorname{sp}(h_{\operatorname{per},L}^+) \cap I| = 0$$

We actually have the estimate

$$\limsup_{L\to\infty} |\mathrm{sp}(h_{\mathrm{per},L}^+) \cap I| \le C |\mathrm{sp}_{\mathrm{ac}}(h) \cap I|^{1/5}, \quad C \simeq 16, 5.$$

In some sense the spectrum can not suddenly contract neither.

Main tool: transfer matrices

$$T(L,E) = \begin{bmatrix} v(L) - E & -1 \\ 1 & 0 \end{bmatrix} \times \dots \times \begin{bmatrix} v(1) - E & -1 \\ 1 & 0 \end{bmatrix}.$$

$$u \text{ satisfies } (-\Delta + v)u = Eu \text{ iff } \begin{bmatrix} u(L+1) \\ u(L) \end{bmatrix} = T(L,E) \begin{bmatrix} u(1) \\ u(0) \end{bmatrix}.$$

Main tool: transfer matrices

$$T(L,E) = \begin{bmatrix} v(L)-E & -1 \\ 1 & 0 \end{bmatrix} \times \cdots \times \begin{bmatrix} v(1)-E & -1 \\ 1 & 0 \end{bmatrix}.$$

$$u$$
 satisfies $(-\Delta + v)u = Eu$ iff $\begin{bmatrix} u(L+1) \\ u(L) \end{bmatrix} = T(L,E) \begin{bmatrix} u(1) \\ u(0) \end{bmatrix}$.

Theorem (B.-Jakšić-Last-Pillet '16)

For any sequence $L_k \to \infty$, t.f.a.e.

- 1. $\operatorname{sp}_{\operatorname{ac}}(-\Delta + v) \cap I = \emptyset$.
- 2. $\lim G_{LB}(L_k, I) = 0.$
- 3. $\lim G_{Th}(L_k, I) = 0.$
- 4. $\lim \int_I ||T(L_k, E)||^{-2} dE = 0.$

We prove separately the equivalence between each of 1., 2., 3. and 4.

Transfer matrices: a natural tool

1. A.c. spectrum versus transfer matrices.

Spectral properties are related to generalized eigenfunctions [Carmona'83, Gilbert-Pearson '87, Last-Simon '99, Krutikov-Remling '01, Simon '07] and hence to transfer matrices.

Transfer matrices: a natural tool

1. A.c. spectrum versus transfer matrices.

Spectral properties are related to generalized eigenfunctions [Carmona'83, Gilbert-Pearson '87, Last-Simon '99, Krutikov-Remling '01, Simon '07] and hence to transfer matrices.

2. $G_{LB}(L, I)$ versus transfer matrices.

Recall: $G_{LB}(L,I)=\frac{1}{2\pi|I|}\int_I \mathcal{T}_L(E)\,\mathrm{d}E$ where $\mathcal{T}_L(E)$ is the transmission probability and can be expressed in terms of $(h_{\kappa,L}-E-i0)^{-1}$ via stationary scattering theory. We relate it to $(h_L-E-i0)^{-1}$ (and hence $\mathcal{T}(L,E)$) via the resolvent formula [BJP '13]. One can actually show that

$$\mathcal{T}_L(E) \propto ||T(L,E)||^{-2}$$
.

Transfer matrices: a natural tool

1. A.c. spectrum versus transfer matrices.

Spectral properties are related to generalized eigenfunctions [Carmona'83, Gilbert-Pearson '87, Last-Simon '99, Krutikov-Remling '01, Simon '07] and hence to transfer matrices.

2. $G_{LB}(L, I)$ versus transfer matrices.

Recall: $G_{LB}(L,I)=\frac{1}{2\pi|I|}\int_I \mathcal{T}_L(E)\,\mathrm{d}E$ where $\mathcal{T}_L(E)$ is the transmission probability and can be expressed in terms of $(h_{\kappa,L}-E-i0)^{-1}$ via stationary scattering theory. We relate it to $(h_L-E-i0)^{-1}$ (and hence $\mathcal{T}(L,E)$) via the resolvent formula [BJP '13]. One can actually show that

$$\mathcal{T}_L(E) \propto ||T(L,E)||^{-2}.$$

3. $G_{Th}(L, I) \simeq |\operatorname{sp}(h_{\operatorname{per}, L}) \cap I|$ versus transfer matrices.

 $T(L,E) \in SL_2(\mathbb{R})$ and $E \in \operatorname{sp}(h_{\operatorname{per},L})$ iff $|\operatorname{Tr} T(L,E)| \leq 2$ (Floquet theory). We use it to get various estimates on ||T(L,E)||, upper or lower bound, depending on whether E is in or out $\operatorname{sp}(h_{\operatorname{per},L})$.

The linear response regime

If
$$\mu_I = E$$
, $\mu_r = E + \varepsilon$, then $G_{lin}(L, E) := \lim_{\varepsilon \to 0} G_{LB}(L, I) = \frac{1}{2\pi} \mathcal{T}_L(E)$, i.e. $\omega_{\perp}(\mathcal{J}) \simeq \varepsilon \times G_{lin}(L, E) + o(1)$.

Let
$$\underline{\mathcal{I}} = \{E \mid \liminf G_{lin}(L, E) > 0\}, \bar{\mathcal{I}} = \{E \mid \limsup G_{lin}(L, E) > 0\}.$$

Conjecture:
$$\underline{\mathcal{I}} = \mathrm{sp}_{\mathrm{ac,ess}}(-\Delta + v) = \bar{\mathcal{I}}.$$

The linear response regime

If
$$\mu_I = E$$
, $\mu_r = E + \varepsilon$, then $G_{lin}(L, E) := \lim_{\varepsilon \to 0} G_{LB}(L, I) = \frac{1}{2\pi} \mathcal{T}_L(E)$, i.e. $\omega_{\perp}(\mathcal{J}) \simeq \varepsilon \times G_{lin}(L, E) + o(1)$.

Let
$$\underline{\mathcal{I}} = \{E \mid \liminf G_{lin}(L, E) > 0\}, \, \bar{\mathcal{I}} = \{E \mid \limsup G_{lin}(L, E) > 0\}.$$

Conjecture:
$$\underline{\mathcal{I}} = \mathrm{sp}_{\mathrm{ac,ess}}(-\Delta + v) = \bar{\mathcal{I}}.$$

The results of [BJP '13] combined with [GP '87, LS '99] show that

$$\underline{\mathcal{I}} \subset \operatorname{sp}_{\operatorname{ac,ess}}(-\Delta + v) \subset \overline{\mathcal{I}}.$$

The equality $\underline{\mathcal{I}} = \mathrm{sp}_{\mathrm{ac,ess}}(-\Delta + \nu)$ is equivalent to the Schrödinger conjecture, disproven in [Avila '15] in the framework of ergodic potentials.

The equality $\mathrm{sp}_{\mathrm{ac,ess}}(-\Delta + \nu) = \bar{\mathcal{I}}$ holds for ergodic potentials (follows from Kotani theory) and is an open question in general.

Plan

- Introduction
- 2 Landauer and Thouless conductances
- Conductances vs Spectrum
- 4 Concluding remarks

Can be extended to Jacobi matrices

$$(hu)(n) = a_{n+1}u(n+1) + b_nu(n) + a_nu(n-1).$$

• More precise relation between the size of ${\rm sp_{ac}}(-\Delta+\nu)$ and that of the periodic approximants: our proof shows

$$\limsup_{L\to\infty} |\operatorname{sp}(h_{\operatorname{per},L})\cap I| \le C |\operatorname{sp}_{\operatorname{ac}}(-\Delta+\nu)\cap I|^{\alpha}$$

where $C \simeq 16,5$ and $\alpha = 1/5$. On the full line [Gesztesy-Simon '96] or if ν is ergodic [Last '94] one has $C = \alpha = 1$. Prove it on $\ell^2(\mathbb{Z}_+)$ for arbitrary ν ?

- Localized regime. Behavior of the conductances as $L \to \infty$. Relative scaling. Case of ergodic potentials and link with the Lyapunov exponents.
- Beyond the independent electron approximation: add local interactions inside the sample

$$\mathrm{d}\Gamma(h_{\kappa,L}) \leadsto \mathrm{d}\Gamma(h_{\kappa,L}) + \frac{\lambda}{2} \sum_{1 \leq m,n \leq L} w(|m-n|) a^*(\delta_m) a^*(\delta_n) a(\delta_n) a(\delta_m).$$

THANK YOU!

Thouless conductance is originally "defined" (ET '72) as $G_{Th} := \frac{\delta E}{\Delta E}$ where δE is a measure of sensitivity to B.C. and ΔE the level spacing of the system (at the Fermi energy where conduction takes place).

Idea: if a state is localized (not too close to the boundary) it should be insensitive to boundary conditions (B.C.).

Thouless conductance is originally "defined" (ET '72) as $G_{Th} := \frac{\delta E}{\Delta E}$ where δE is a measure of sensitivity to B.C. and ΔE the level spacing of the system (at the Fermi energy where conduction takes place).

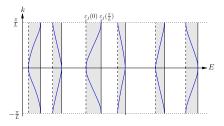
Idea: if a state is localized (not too close to the boundary) it should be insensitive to boundary conditions (B.C.).

Various definitions have been proposed for δE , related to the variation of the energy levels $\varepsilon(k)$ of h_L with Bloch type B.C.

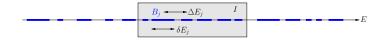
$$u(L+1) = e^{ikL}u(1), \quad u(0) = e^{-ikL}u(L).$$

One is the total variation of $\varepsilon(k)$ from periodic, k=0, to antiperiodic, $k=\frac{\pi}{L}$, B.C.

The spectrum of $h_{\text{per},L}$ consists in L bands, each corresponding to an eigenvalue $\varepsilon(k)$ of h(k) as k varies from 0 to π/L .



The spectrum of $h_{\text{per},L}$ consists in L bands, each corresponding to an eigenvalue $\varepsilon(k)$ of h(k) as k varies from 0 to π/L .



The spectrum of $h_{\text{per},L}$ consists in L bands, each corresponding to an eigenvalue $\varepsilon(k)$ of h(k) as k varies from 0 to π/L .

Given an energy window I, algebraic averages within I

$$\Delta E = \langle \Delta E_j \rangle = \frac{|I|}{\# \{j \mid B_j \subset I\}}, \qquad \delta E = \langle \delta E_j \rangle = \frac{|\mathrm{sp}(h_{\mathrm{per},L}) \cap I|}{\# \{j \mid B_j \subset I\}},$$

lead to $G_{Th}(L,I) \propto \frac{|\operatorname{sp}(h_{\operatorname{per},L}) \cap I|}{|I|}$. (First proposed by Last, PhD '94)