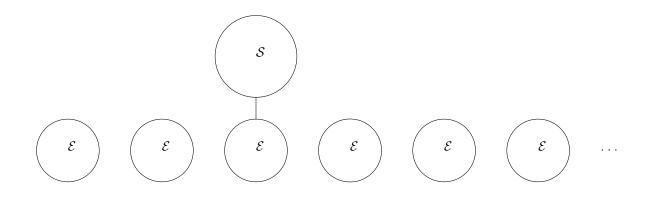
Repeated Interaction Quantum Systems

L. Bruneau - A. Joye - M. Merkli

Paris-January 2007

INTRODUCTION

General idea: a small system S interacts in a successive way with the elements \mathcal{E} of a chain \mathcal{C} (each during a time τ).



Some motivations:

- Quantum optics: models of radiation-matter coupling (e.g. a beam C of two level atoms \mathcal{E} interacting with a single mode \mathcal{S} of a field in a cavity).
- In some regimes of the interaction time τ and the coupling strenght λ : model a field of quantum noises interacting with S (Attal-Pautrat), or a Markovian effective evolution of S (Attal-Joye).

THE R.I. MODEL

1) The system ${\cal S}$ and the element ${\cal E}$

 \mathcal{S} (resp. \mathcal{E}) is a W^* -dynamical system $(\mathfrak{M}_{\#}, \tau_{\#}^t)$ acting on $\mathcal{H}_{\#}$ ($\# = \mathcal{S}, \mathcal{E}$), where dim $\mathcal{H}_{\mathcal{S}} < +\infty$.

 $\Omega_{\#} \in \mathcal{H}_{\#}$ is a cyclic and separating vector for $\mathfrak{M}_{\#}$ representing a $\tau_{\#}^{t}$ -invariant state (e.g. some KMS state).

 $L_{\#}$ is the standard Liouvillean, i.e. the unique s.a. operator on $\mathcal{H}_{\#}$ such that

$$\forall A \in \mathfrak{M}_{\#}, \quad \tau_{\#}^{t}(A) = \mathrm{e}^{\mathrm{i}tL_{\#}}A\mathrm{e}^{-\mathrm{i}tL_{\#}}, \quad \text{and} \quad L_{\#}\Omega_{\#} = 0.$$
Example: 2-level system with hamiltonian $h = \begin{pmatrix} 0 & 0 \\ 0 & E \end{pmatrix}$, and reference state is the equilibrium state at inverse temperature β , i.e. $\omega_{\beta}(A) = Z_{\beta}^{-1}\mathrm{Tr}(\mathrm{e}^{-\beta h}A).$

$$\mathfrak{M} = M_{2}(\mathbb{C}) \otimes \mathbb{1} \text{ acting on } \mathcal{H} = \mathbb{C}^{2} \otimes \mathbb{C}^{2}, L = h \otimes \mathbb{1} - \mathbb{1} \otimes h,$$

$$\Omega = \frac{1}{\sqrt{1 + \mathrm{e}^{-\beta E}}} (\phi_{1} \otimes \phi_{1} + \mathrm{e}^{-\beta E/2} \phi_{2} \otimes \phi_{2}).$$

2) The chain ${\cal C}$

 $\mathcal{H}_{\mathcal{C}}:=\otimes_{m\geq 1}\mathcal{H}_{\mathcal{E}}$ w.r.t. $\Omega_{\mathcal{E}}$, i.e. the completion of

 $Span\{\otimes_{m\geq 1}\psi_m|\psi_m\in\mathcal{H}_{\mathcal{E}},\psi_m=\Omega_{\mathcal{E}} \text{ for } m>M\}$

with $\langle \otimes_m \psi_m | \otimes_m \phi_m \rangle_{\mathcal{C}} := \prod_m \langle \psi_m | \phi_m \rangle_{\mathcal{E}}.$

 $\mathfrak{M}_{\mathcal{C}}:=\otimes_{m\geq 1}\mathfrak{M}_{\mathcal{E}}$, i.e. the weak closure of

$$Span\{\otimes_{m\geq 1}A_m|A_m\in\mathfrak{M}_{\mathcal{E}},A_m=\mathbb{1}_{\mathcal{E}}\text{ for }m>M\}.$$

3) The interaction \mathcal{S} - \mathcal{E}

It is specified by a selfadjoint operator $V \in \mathfrak{M}_{\mathcal{S}} \otimes \mathfrak{M}_{\mathcal{E}}$. The interacting dynamics between \mathcal{S} and \mathcal{E} is the automorphism group $e^{itL} \cdot e^{-itL}$ of $\mathfrak{M}_{\mathcal{S}} \otimes \mathfrak{M}_{\mathcal{E}}$ where

$$L := L_{\mathcal{S}} \otimes \mathbb{1} + \mathbb{1} \otimes L_{\mathcal{E}} + V = L_0 + V.$$

4) The RI dynamics

For $m \geq 1$, let $\tilde{L}_m := L_m + \sum_{k \neq m} L_{\mathcal{E},k}$, as an operator on $\mathcal{H} := \mathcal{H}_{\mathcal{S}} \otimes \mathcal{H}_{\mathcal{C}}$. It implements the dynamics when \mathcal{S} interacts with the m^{th} element.

For
$$t \in \mathbb{R}^+$$
, $t := m(t)\tau + s(t)$ with $s(t) \in [0, \tau[$, and $A \in \mathfrak{M} := \mathfrak{M}_{\mathcal{S}} \otimes \mathfrak{M}_{\mathcal{C}},$
 $\alpha_{\mathrm{RI}}^t(A) := \mathrm{e}^{\mathrm{i}\tau \tilde{L}_1} \cdots \mathrm{e}^{\mathrm{i}\tau \tilde{L}_{m(t)}} \mathrm{e}^{\mathrm{i}s(t)\tilde{L}_{m(t)+1}} A \mathrm{e}^{-\mathrm{i}s(t)\tilde{L}_{m(t)+1}} \mathrm{e}^{-\mathrm{i}\tau \tilde{L}_{m(t)}} \cdots \mathrm{e}^{-\mathrm{i}\tau \tilde{L}_1}$

5) Instantaneous observables

If
$$A \in \mathfrak{M}_{\mathcal{E}}$$
 and $m \ge 1$, $\mathfrak{M}_{\mathcal{C}} \ni \theta_m(A) := \underbrace{\mathbb{1} \otimes \cdots \otimes \mathbb{1}}_{m-1} \otimes A \otimes \mathbb{1} \otimes \cdots$

An instantaneous observable is of the form $A_{\mathcal{S}} \otimes \theta_{m(t)+1}(A_{\mathcal{E}})$.

When $A_{\mathcal{E}} = 1$, it is simply an observable on the small system \mathcal{S} .

GOAL: Given an initial state (normal) ω , understand the large time behaviour of

$$E(t,\omega) := \omega \left(\alpha_{\mathrm{RI}}^t (A_{\mathcal{S}} \otimes \theta_{m(t)+1}(A_{\mathcal{E}})) \right)$$

THE REDUCED DYNAMICS

Idea: during an interaction ${\cal S}$ feels an effective dynamics.

 $P := \mathbb{1}_{\mathcal{S}} \otimes |\Omega_{\mathcal{C}}\rangle \langle \Omega_{\mathcal{C}}|.$ We identify $\mathcal{H}_{\mathcal{S}}$ and $P\mathcal{H}.$

Definition: $M : A\Omega_{\mathcal{S}} \mapsto P\alpha_{\mathrm{RI}}^{\tau}(A \otimes 1)\Omega_{\mathcal{S}} \otimes \Omega_{\mathcal{C}}$ is the reduced dynamics operator.

Remark: $M\Omega_{\mathcal{S}} = \Omega_{\mathcal{S}}$.

To analyse M, the main tool is the C-Liouvillean.

C-LIOUVILLEAN (Jaksic and Pillet: spectral approach to NESS)

 J, Δ : modular data associated to $(\mathfrak{M}_{\mathcal{S}} \otimes \mathfrak{M}_{\mathcal{E}}, \Omega_{\mathcal{S}} \otimes \Omega_{\mathcal{E}})$, i.e.

$$J\Delta^{1/2}A(\Omega_{\mathcal{S}}\otimes\Omega_{\mathcal{E}})=A^*(\Omega_{\mathcal{S}}\otimes\Omega_{\mathcal{E}}),\quad\forall A\in\mathfrak{M}_{\mathcal{S}}\otimes\mathfrak{M}_{\mathcal{E}}.$$

They satisfy $J\Delta^{1/2} = \Delta^{-1/2}J$ and $J(\mathfrak{M}_{\mathcal{S}} \otimes \mathfrak{M}_{\mathcal{E}})J = (\mathfrak{M}_{\mathcal{S}} \otimes \mathfrak{M}_{\mathcal{E}})'$.

(H1)
$$\Delta^{1/2}V\Delta^{-1/2} \in \mathfrak{M}_{\mathcal{S}} \otimes \mathfrak{M}_{\mathcal{E}}.$$

Definition: The C-Liouvillean is the (non selfadjoint) operator

$$K := L - J\Delta^{1/2}V\Delta^{-1/2}J = L_0 + V - J\Delta^{1/2}V\Delta^{-1/2}J.$$

It satisfies: 1) $e^{itK}Ae^{-itK} = e^{itL}Ae^{-itL}, \quad \forall A \in \mathfrak{M}_{\mathcal{S}} \otimes \mathfrak{M}_{\mathcal{E}}.$

2)
$$K(\Omega_{\mathcal{S}} \otimes \Omega_{\mathcal{E}}) = 0.$$

We immediately get $M = P e^{i\tau K} P$.

PROP:
$$\exists C > 0 \text{ s.t. } \| M^n \|_{\mathcal{B}(\mathcal{H}_{\mathcal{S}})} \leq C, \forall n \in \mathbb{N}.$$

CORO: sp $(M) \subset \{z \in \mathbb{C}, |z| \le 1\}$ and sp $(M) \cap S^1$ consists in semisimple eigenvalues.

Remark: When V = 0, $M \equiv e^{i\tau L_S}$.

(H2) sp($(M)\cap S^1=\{1\}$	and it is non degenerate.
----------	---------------------	---------------------------

If $\Omega^*_{\mathcal{S}}$ is the unique eigenvector of M^* s.t. $\langle \Omega^*_{\mathcal{S}} | \Omega_{\mathcal{S}} \rangle = 1$ then

$$\lim_{n \to \infty} M^n = |\Omega_{\mathcal{S}}\rangle \langle \Omega_{\mathcal{S}}^*|.$$

THE ASYMPTOTIC STATE

Definition: $\omega_+(\cdot) := \langle \Omega^*_{\mathcal{S}} | \cdot \Omega_{\mathcal{S}} \rangle.$

THEOREM 1 Suppose (H1) and (H2) hold. Then, there exists $\gamma > 0$ such that for any normal state ω , $A_{\mathcal{S}} \in \mathfrak{M}_{\mathcal{S}}$ and $A_{\mathcal{E}} \in \mathfrak{M}_{\mathcal{E}}$, $\exists C > 0$ s.t.

$$|E(t,\omega) - E_+(t)| \le C e^{-\gamma t}, \quad \forall t \ge 0$$

where $E_+(t)$ is the au-periodic function

$$E_{+}(t) := \omega_{+}(P \mathrm{e}^{\mathrm{i}s(t)L}(A_{\mathcal{S}} \otimes A_{\mathcal{E}}) \mathrm{e}^{-\mathrm{i}s(t)L}P).$$

In particular, $|E(n\tau,\omega) - \omega_+(A_{\mathcal{S}})\langle \Omega_{\mathcal{E}}|A_{\mathcal{E}}\Omega_{\mathcal{E}}\rangle| \leq Ce^{-\gamma\tau n}.$

Some remarks:

1) dim $\mathcal{H}_{\mathcal{S}} < +\infty \Rightarrow$ on \mathcal{S} any initial state is normal.

2) ω_+ does not depend on the reference state Ω_S .

3) What happens if (H2) is not satisfied?

$$a) \text{ if } \operatorname{sp}(M) \cap S^{1} \neq \{1\}, \text{ then one has} \\ \left| \frac{1}{t} \sum_{m=0}^{m(t)} E(m\tau + s(t), \omega) - \frac{E_{+}(t)}{\tau} \right| \leq Ct^{-1}$$

b) if 1 is degenerate, then there is a τ -periodic function $E_{\infty}(t,\omega)$ such that $E(t,\omega) \sim E_{\infty}(t,\omega)$.

EXAMPLE: SPIN-SPIN

Description of ${\mathcal S}$ and ${\mathcal E}$

 ${\cal S}$ and ${\cal E}$ are $2-{\rm level}$ systems with hamiltonian $h_{\#}=\left({}\right.$

$$\left(\begin{array}{cc} 0 & 0 \\ 0 & E_{\#} \end{array}\right).$$

The reference state of S is the tracial state (for convenience) and the one of \mathcal{E} is the equilibrium state at inverse temperature β .

The interaction

Let $\textbf{a},\textbf{b},\textbf{c},\textbf{d}\in\mathbb{C}.$ We define

$$V := \begin{pmatrix} \mathbf{a} & \mathbf{b} \\ \mathbf{c} & \mathbf{d} \end{pmatrix} \otimes \mathbb{1}_{\mathbb{C}^2} \otimes \underbrace{\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}}_{\text{``creation'' op.}} \otimes \mathbb{1}_{\mathbb{C}^2}.$$

The interacting Liouvillean is then $L_{\lambda} := L_{\mathcal{S}} \otimes 1 + 1 \otimes L_{\mathcal{E}} + \lambda V.$

We denote by M_{λ} the corresponding reduced dynamics.

Remark: $M_0 = e^{i\tau L_S} \Rightarrow sp(M_0) = \{1, e^{2i\tau E_S}, e^{-2i\tau E_S}\}$ and 1 is twice degenerate.

(Assu 1)	$\mathbf{b} eq 0$ and $ au(E_{\mathcal{E}} - E_{\mathcal{S}}) \notin 2\pi \mathbb{Z}$
(Assu 2)	$\mathbf{c} \neq 0$ and $\tau(E_{\mathcal{E}} + E_{\mathcal{S}}) \notin 2\pi \mathbb{Z}$

THEOREM Suppose $\tau E_{\mathcal{S}} \notin \pi \mathbb{Z}$ and (Assu 1) or (Assu 2) holds. Then for any $0 < |\lambda| < \Lambda_0, M_{\lambda}$ satisfies (H2). The asymptotic state is

$$\omega_{+,\lambda}(A) = \frac{1}{\alpha_1 + \alpha_2} \langle \alpha_1 \psi_1 \otimes \psi_1 + \alpha_2 \psi_2 \otimes \psi_2, A(\psi_1 \otimes \psi_1 + \psi_2 \otimes \psi_2) \rangle + O(\lambda^2),$$

where

$$\alpha_1 := |\mathbf{b}|^2 \operatorname{sinc}^2 \left(\frac{\tau(E_{\mathcal{E}} - E_{\mathcal{S}})}{2} \right) + e^{-\beta E_{\mathcal{E}}} |\mathbf{c}|^2 \operatorname{sinc}^2 \left(\frac{\tau(E_{\mathcal{E}} + E_{\mathcal{S}})}{2} \right),$$
$$\alpha_2 := e^{-\beta E_{\mathcal{E}}} |\mathbf{b}|^2 \operatorname{sinc}^2 \left(\frac{\tau(E_{\mathcal{E}} - E_{\mathcal{S}})}{2} \right) + |\mathbf{c}|^2 \operatorname{sinc}^2 \left(\frac{\tau(E_{\mathcal{E}} + E_{\mathcal{S}})}{2} \right).$$

ENERGY AND ENTROPY

Energy variation

Formally, the energy at time t is $\alpha_{RI}^t(\tilde{L}_{m(t)+1})$ (usually not well defined).

However, energy variation makes sense:

- $\alpha_{\mathrm{RI}}^{m\tau+s}(\tilde{L}_{m+1}) \alpha_{\mathrm{RI}}^{m\tau}(\tilde{L}_{m+1}) = 0, \quad \forall s \in [0, \tau[,$
- there is an energy jump as time passes m au

$$j(m) := \alpha_{\mathrm{RI}}^{m\tau+s}(\tilde{L}_{m+1}) - \alpha_{\mathrm{RI}}^{(m-1)\tau+s'}(\tilde{L}_m) = \alpha_{\mathrm{RI}}^{m\tau}(V_{m+1} - V_m),$$

where $V_m := (\mathbb{1}_{\mathcal{S}} \otimes \theta_m)(V).$

THEOREM 1 implies $|\omega(j(m)) - \omega_+(j_+)| \le C e^{-\gamma m}$, where

$$j_+ := P(V - \mathrm{e}^{\mathrm{i}\tau L} V \mathrm{e}^{-\mathrm{i}\tau L}) P.$$

Definition: $dE_+ := \frac{1}{\tau}\omega_+(j_+)$ is the asymptotic energy variation.

The total energy variation is then

$$\Delta E(t) := \sum_{m=1}^{m(t)} j(m).$$

PROP: If ω is a normal state,

$$\left|\frac{\omega(\Delta E(t))}{t} - \mathrm{d}E_+\right| \le \frac{C}{t}.$$

Entropy production

We assume $\Omega_{\#}$ is $(\tau_{\#}^t, \beta_{\#})$ -KMS. The reference state ω_0 is associated to $\Omega_S \otimes \Omega_E \otimes \cdots$

 $\operatorname{Ent}(\omega|\omega_0)$ is the relative entropy of ω wrt ω_0 (generalisation of $\operatorname{Tr}(\rho(\log \rho - \log \rho_0))$). It is always positive.

PROP Suppose ω is a normal state with $Ent(\omega|\omega_0) < +\infty$. Then,

(i)
$$\lim_{t \to +\infty} \left[\operatorname{Ent}(\omega \circ \alpha_{\mathrm{RI}}^{t+\tau} | \omega_0) - \operatorname{Ent}(\omega \circ \alpha_{\mathrm{RI}}^t | \omega_0) \right] = \beta_{\mathcal{E}} \omega_+(j_+),$$

(ii)
$$\left| \frac{\operatorname{Ent}(\omega \circ \alpha_{\mathrm{RI}}^t | \omega_0)}{t} - \frac{\beta_{\mathcal{E}} \omega_+(j_+)}{\tau} \right| \le \frac{C}{t}.$$

Corollary The asymptotic energy variation dE_+ is positive. **Definition:** $dS_+ := \frac{\beta_{\mathcal{E}} \omega_+(j_+)}{\tau}$ is the asymptotic entropy production. **THEOREM 2** (*Asymptotic* 2^{nd} *law*): $dE_+ = T_{\mathcal{E}} dS_+$ where $T_{\mathcal{E}} := \beta_{\mathcal{E}}^{-1}$. In the example, if both (Assu 1) and (Assu 2) hold, then the asymptotic entropy

production is strictly positive.