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Abstract

We study linear response theory and entropic fluctuations of finite dimensional non-
equilibrium Repeated Interaction Systems (RIS). More precisely, in a situation where the
temperatures of the probes can take a finite number of different values, we prove analogs
of the Green-Kubo fluctuation-dissipation formula and Onsager reciprocity relations on
energy flux observables. Then we prove a Large Deviation Principle, or Fluctuation The-
orem, and a Central Limit Theorem on the full counting statistics of entropy fluxes. We
consider two types of non-equilibrium RIS: either the temperatures of the probes are de-
terministic and arrive in a cyclic way, or the temperatures of the probes are described by
a sequence of i.i.d. random variables with uniform distribution over a finite set.

1 Introduction

In this paper we are interested in the linear response theory and entropic fluctuation for
a particular class of open quantum systems called Repeated Interaction Systems (RIS), see
Section 3 for a precise description. Our study fits in the wider framework of non-equilibrium
quantum statistical mechanics. In this context, linear response theory and entropic fluctuation
have attracted lot of attention in the last decades, see e.g. [LS, DS, JOP1, JOP2, JOP3, JOP4,
JPP, dRM, dR, JOPP, BPR] and references therein.

Repeated interaction systems consist of a small system S coupled to an environment made
of a chain of independent probes En with which S will interact in a sequential way, i.e. S
interacts with E1 during the time interval r0, τ1r, then with E2 during the interval rτ1, τ1`τ2r,
etc. While S interacts with a given probe En the other ones evolve freely according to
their intrinsic (uncoupled) dynamics. Formally, if HS and HEn denote the non-interacting
hamiltonians of S and the En’s and Vn denotes the coupling operator between S and En then
the hamiltonian of the full system is the time-dependent, piecewise constant, operator

Hptq :“ HS `HEn ` Vn `
ÿ

p‰n

HEp , t P rτ1 ` ¨ ¨ ¨ ` τn´1, τ1 ` ¨ ¨ ¨ ` τnr. (1.1)
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In the simplest case all the probes are identical (each En is a copy of the same E with
the same initial state ρE , e.g. a thermal state) and interact with S by means of the same
coupling operator V on S ` E and for the same duration τ . The dynamics restricted to the
small system is shown to be determined by a map L, see (2.2), which assigns ρpτq “ Lpρq to
ρ as the result of the interaction of S with one subsystem E for the duration τ . Heuristically,
from the point of view of the small system, all subsystems interacting in sequence with S are
equivalent, so that the result of n P N repeated interactions amounts to iterating n times the
map L on the initial state ρS . This expresses the markovian character of repeated interactions
in discrete time, see e.g. [BJM3] for an introduction to these RIS.

The typical physical situation of repeated interaction models is that of the one atom
maser, see e.g. [FJM, MWM, RBH, WBKM]. Here S is the quantized electromagnetic field
in a cavity through which a beam of atoms, the En’s, is shot in such a way that, at least with
very high probability [HBR], no more than one atom is present in the cavity at any time. Such
systems play a fundamental role in the experimental and theoretical investigations of basic
matter-radiation processes. On the mathematical side various aspects of RIS, or quantum
Markov chains, have been studied in the literature, see e.g. [KM, AP, AJ, BJM1, BJM2,
Pe, PeP, NPe, BBB, Wo, vHG, GK, BFFS, CP, HJPR] and references therein. We mention
also [BP, vHG2, Bru] for the analysis of a specific model related to the one-atom maser and
[HMO] for related results in the framework of correlated quantum spin chains. We refer the
reader to the lecture notes [Wo] and references therein for related results in the context of
quantum information theory.

In order to consider a non-equilibrium situation we shall naturally consider here the more
interesting situation where the probes are not always identical but allowed to vary over a
finite set, especially via the temperatures of their initial states ρEn . The picture one should
have in mind is that the system S is coupled to finitely many reservoirs R1, . . . ,RM (M ě 2)
which are initially in thermal equilibrium at possibly different temperatures. Each probe is
then associated to one of these M reservoirs, all the probes of a given reservoir being identical.
After n interactions the state of S is thus given by

ρn “ Ljn ˝ ¨ ¨ ¨ ˝ Lj1pρq (1.2)

where j1, . . . , jn P t1, . . . ,Mu describes the ordered sequence of the probes.
Our first results deal with the linear response theory for energy fluxes out of the reser-

voirs. Linear response theory describes thermodynamics when the system under consideration
is close to equilibrium. To first order the non-equilibrium energy fluxes depend linearly on
the driving forces and we are interested in the corresponding response (or kinetic) coefficients,
see (4.13). The main results in linear response theory are concerned with the Green-Kubo
fluctuation-dissipation formula, Onsager reciprocity relations and a central limit theorem.
Green-Kubo formula expresses the kinetic coefficients in terms of dynamical flux-flux corre-
lations at equilibrium, Onsager relations expresses a symmetry in these coefficients and the
central limit theorem relates the kinetic coefficients to fluctuations of the energy fluxes at
equilibrium. We address all these questions in the framework of repeated interaction systems.
Our main results are Theorem 4.4 and 5.9.

The second series of results deals with the fluctuation of entropy production and the so-
called fluctuation relations. By fluctuation of entropy production we mean a large deviation
principle for the statistics of entropy production, see Theorem 5.8. To do so we adopt the
two-time measurement protocol introduced independently by Kurchan [Ku] and Tasaki [Ta].
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A very similar large deviation principle as well as a central limit theorem similar to the one
we have mentioned are proven in [vHG] for output statistics of quantum Markov chains. The
only difference is that their statistics concern a single, post interaction, measurement while we
consider a double, pre and post interaction, measurement. However from a mathematical per-
spective this causes only minor changes. Our main new result here concerns two symmetries
satisfied by the large deviation rate function, or in equivalent way by the moment generating
function. The first symmetry is what is usually called the fluctuation relation and can be
understood as a generalization of the linear response results for systems far from equilibrium
[Ga]. The second symmetry is a translation symmetry which is a refinement of energy conser-
vation. To the best of our knowledge this translation symmetry goes back to [AGMT]. These
two symmetries are fundamental results with deep consequences on the second and first law
of thermodynamics respectively. We mention that in [vHG] no such fluctuation relations were
proven.

In the framework of continuous-time quantum dynamical semigroups Lt :“ etL, L “

L1 ` ¨ ¨ ¨ ` LM and where Lj is the Lindblad generator describing the interaction with the
j-th reservoir, those questions have been initiated in [LS] and then more recently studied in
[DdrM, dRM, JPW]. Eq. (1.2) suggests that the situation should be very similar, if not
identical, for RIS except that we have a discrete-time dynamics. As we shall see this is only
partly correct. If the global strategy of the proofs largely follows those in [LS, JPW, vHG],
RIS however have several specificities that have to be taken into account.

The first one can easily be seen from (1.2). As mentioned above there is a specific order
in which S interacts with the various probes. In order to make sure that S interacts as much
with each reservoir the first, maybe naive, idea is to make the order of interactions cyclic:
S interacts first with a probe associated to R1, then to R2 and so on up to RM and then
R1 again etc. In this case, if it is possible to derive a Green-Kubo type formula we will see
that the usual Onsager reciprocity relations will fail, and similarly for the fluctuation relation
of entropy production. The reason is simply that the cyclic order of interactions breaks
time-reversal invariance even if we suppose that each interaction is time-reversal invariant.
Due to the cyclic order of the interactions it is for example not surprising that a change of
temperature in R1 will have a greater influence on the energy flux out of R2 than a change
of temperature in R2 will have on the flux out of R1. What one gets actually resembles the
Onsager-Casimir relations one can find in the presence of a magnetic field. Namely, one has
to compare the kinetic coefficients of the cyclic model with those of the reversed cyclic model
in which the order of interactions is exactly the opposite, see (4.16) and (5.10). The study of
this cyclic model provides a simple example which shows how much time-reversal invariance
is fundamental, in particulier in the derivation of the usual fluctuation relations.

To remedy this lack of global time-reversal invariance we shall therefore also consider the
situation where the probes associated to the various reservoirs interact with S in a random
order. To make it simple we shall consider here the case where the probes are chosen inde-
pendently at each time and with a uniform distribution (so that on average S interacts as
much with each reservoir). Our results can be easily generalized to the case of an arbitrary
i.i.d. distribution. The case where the distribution of the probes is given by a more general
Markov process will be considered in [BJP].

The second specificity is related to the fact that the RIS hamiltonian (1.1) is time-
dependent. As a consequence, even in the ideal case where all the probes are identical,
this may lead to a non-vanishing of entropy production which is usually considered as the
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signature of a non-equilibrium situation. In this paper we are interested in the response of
the system to the presence of thermal forces. This forces us to impose some extra assump-
tion called Assumption (NE), see Section 3.4, which guarantees that the case where all the
temperatures of the various reservoirs are equal is indeed an equilibrium situation. A general
linear response theory for RIS should also take into account a departure from this assumption.
It is however not clear at the moment how to quantify this or, said differently, what is the
natural quantity one can associate to a generic RIS and the vanishing of which would corre-
spond to the fulfilment of Assumption (NE). We therefore postpone this question to future
work. Regarding this point we finally mention that the question of linear response theory
for time-dependent quantum hamiltonians have been considered in [DS], in a weak-coupling
regime, but there only the perturbation was time-dependent contrary to what happens in
RIS.

Finally, to avoid technical issues we shall stick here to the case where all the subsystem’s
Hilbert spaces, for S and the En’s, are finite dimensional. Most results can easily be extended
to infinite dimension provided the various assumptions are adapted in an ad hoc way, in partic-
ular the ergodic Assumption (ER7) of Section 3.3.2 has to require the existence of a spectral
gap. It is however difficult to find physically relevant models to which these assumptions
apply. The model for the one-atom maser studied in [BP, Bru] does not have a spectral gap
for example. Nevertheless it is still possible to prove the Green-Kubo formula and Onsager
relations for this model, see [Bo]. We also mention [BDBP] which considers a RIS type model
for the motion of a tight-binding electron and where an analog of the fluctuation relation is
proven for the position increments of the electron.

The paper is organized as follows. In Section 2 we briefly recall some basic concepts of
open systems. In Section 3 we describe the non-equilibrium RIS model and state the various
assumptions which we will use. We will in particular describe in more detail the above
mentioned Assumption (NE) and discuss its origin and some of its consequences. Section
4 is devoted to the linear response theory and in particular the derivation of Green-Kubo
formula and of Onsager reciprocity relations. These are stated in Theorem 4.4. In Section
5 we consider the fluctuation of entropy production and prove a fluctuation relation for RIS.
We also complement linear response theory with a Central Limit Theorem. Our main results
in this section are Theorems 5.4, 5.5, 5.8 and 5.9. Finally the proofs are given in Section 6.
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through the grant NONSTOPS (ANR-17-CE40-0006) and by the Initiative d’excellence Paris-
Seine. The research of JFB is partially funded by the Cross Disciplinary Program “Quantum
Engineering Grenoble”. LB warmly thanks UMI-CRM of Montreal for financial support and
McGill University for its hospitality during an earlier stage of this work. We thank the
anonymous referees for their constructive remarks and suggestions.

2 Preliminaries

2.1 Observables, states and their evolution

All the Hilbert spaces considered in the paper are finite dimensional. We denote by 1l the
identity operator (we shall sometimes indicate 1lH to specify the underlying Hilbert space H if
any confusion is possible). Observables on H are described by self-adjoint elements in BpHq.
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States are given by density matrices, i.e. positive elements with unit trace, and we shall use
the same symbol for a density matrix ρ and for the associated positive unital linear functional
A ÞÑ TrpρAq, i.e. ρpAq will stand for TrpρAq the expectation value of the observable A in the
state ρ. A state ρ is said to be faithful if it is positive definite.

A bounded linear map Φ acting on BpHq is called positive (or positivity preserving) if
ΦpAq is non-negative for any non-negative A P BpHq. Φ is said to be completely positive if,
for any d ą 0, Φb1lBpCdq is a positive map. It is called unital if Φp1lq “ 1l and trace-preserving
if TrpΦpρqq “ Trpρq for any ρ. Note that Φ is trace-preserving iff its dual map Φ˚ is unital,
and where Φ˚ is such that TrpΦpρqAq “ TrpρΦ˚pAqq for any ρ and A.

In the markovian description of open quantum systems the evolution of a state is described
by a completely positive and trace-preserving (CPTP) map (Schrödinger picture) while the
one of an observable is described by a completely positive and unital map (Heisenberg picture),
see Section 2.2. If L is a CPTP map then pLnqnPN is called a quantum dynamical semigroup.
Obviously the large time (nÑ8) limit of quantum dynamical semigroups is closely related to
the spectral properties of the map L. It is known that positive maps satisfy Perron-Frobenius
type results, see e.g. [EHK, Wo]. In particular their spectral radius is always an eigenvalue and
there is a non-negative corresponding eigenvector. If moreover L is CPTP then its spectral
radius is 1 so that L admits an invariant state. We recall that any completely positive map
can be written in the form

Lp¨q “
m
ÿ

i“1

Vi ¨ V
˚
i , (2.1)

where the Vi’s are in BpHq and m P N. Such a form is called a Kraus representation of L [Kr],
it is however not unique. The following notion of primitive CPTP map will play an important
role in the paper.

Definition 2.1. Let L be a completely positive map on BpHq given by (2.1). Then L is
primitive if there exists n P N such that Span tVi1 ¨ ¨ ¨Vin | i1, . . . , in P Iu “ BpHq.

Remark 2.1. There are actually several equivalent definitions of primitive positive maps. The
one given here is the simplest for our purpose. We refer the reader to e.g. [Wo] for a more
detailed discussion on the subject.

The importance of the notion of primitive map for our purpose is due to the following
Proposition, see e.g. [Wo],

Proposition 2.1. Let L be a completely positive map and denote by r its spectral radius. L
is primitive iff its spectral radius is a simple dominant eigenvalue, i.e. all other eigenvalues
λ satisfy |λ| ă r, with positive definite left and right eigenvectors.

When L is CPTP its spectral radius is 1 and its dual map L˚ is unital, so that 1l is a
left eigenvector. Hence the above proposition can simply be rephrased as “a CPTP map L
is primitive if and only if 1 is a simple dominant eigenvalue and L admits a (unique) faithful
invariant state”. Using spectral decomposition the notion of primitive CPTP map is thus
immediately related to strong ergodic properties of the corresponding quantum dynamical
semigroup.

Proposition 2.2. Let pLnqnPN be a quantum dynamical semigroup. L is primitive if and only
if for any state ρ one has lim

nÑ`8
Lnpρq “ ρ`, where ρ` is the unique faithful invariant state

of L. In other words ρ` is mixing for the semigroup generated by L.
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A slightly stronger notion is sometimes useful. A map L is called positivity improving if
for any non-negative and non-zero A its image LpAq is positive definite. It is easy to see that
if a CP map is positivity improving then it is primitive.

Finally, if H1, H2 are two Hilbert spaces and ρ is a density matrix on H1bH2, we denote
by ρ1 :“ TrH2pρq the partial trace of ρ with respect to H2. It is the unique density matrix on
H1 such that for all A P BpH1q one has TrpρˆAb 1lH2q “ Trpρ1Aq. Similarly given a density
matrix ρ2 on H2 and an observable A P BpH1 bH2q. Then A1 :“ TrH2p1lH1 b ρ2 ˆ Aq is the
unique element in BpH1q such that for any state ρ1 on H1 one has Trpρ1bρ2ˆAq “ Trpρ1A1q.
A1 is called the partial trace of A w.r.t. the state ρ2, and will be denoted A1 “ Trρ2pAq.

2.2 Open quantum systems

A quantum system S is said to be open when it interacts with another quantum system E . S
is sometimes called the small system, E the environment (which can further be made of several
components), and S ` E is the global system. If HS and HE are the Hilbert spaces describing
S and E respectively then the Hilbert space of the global system is HS`E “ HS bHE , and if
the joint system S ` E is in the state ρS`E then S is in the reduced state ρS “ TrHE pρS`Eq.
Similarly, if the system is initially decoupled, i.e. S ` E is in a state ρS`E “ ρS b ρE where
ρS and ρE are the states of S and E respectively, then for an observable A P BpHS bHEq of
the global system, the observable “seen by S” is TrρE pAq “ TrHE p1lb ρE ˆAq.

The non-interacting dynamics of S and E are described by hamiltonians HS and HE
respectively and the interaction between S and E by some interaction operator V acting on
HS bHE . Then H :“ HS b 1l` 1lbHE ` V is the hamiltonian for the joint evolution. In the
sequel we will often omit the inessential factors 1l in the tensor products.

Fix now some initial (or reference) state ρE of the environment and suppose the system is
in some initially decoupled state ρbρE . Then the state of the global system S`E after some
time τ ą 0 is U ˆ ρb ρE ˆ U

˚ where U :“ e´iτH . Hence the small system S is in the state

Lpρq “ TrHE pU ˆ ρb ρE ˆ U
˚q. (2.2)

One easily checks that L defines a CPTP map. It is called the reduced dynamics map of S
associated to the open quantum system S ` E and for the duration τ . Its dual map describes
the evolution of observables A P BpHSq and is given by

L˚pAq “ TrρE pU
˚ ˆAb 1lˆ Uq.

2.3 Entropy production in an open system

The entropy observable of a quantum system in the faithful state ρ is defined as Spρq :“
´ log ρ where log denotes the natural logarithm. The von Neumann entropy of ρ is then the
expectation value of Spρq in the state ρ, i.e. Entpρq :“ ´Trpρ log ρq “ ρpSpρqq. The relative
entropy of ρ relatively to the faithful state ν is then

Entpρ | νq :“ Trpρplog ρ´ log νqq “ ρpSpνq ´ Spρqq.

It is well-known that Entpρ, νq ě 0 and Entpρ, νq “ 0 if and only if ρ “ ν.
Consider an open system S ` E as in Section 2.2, interacting for a duration τ ą 0.

Denote by U the unitary evolution of the joint system and L the reduced dynamics on S as
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given by (2.2). Assume moreover that the system E is initially in thermal equilibrium, i.e.

ρE :“
e´βHE

Trpe´βHE q
is a Gibbs state at some inverse temperature β. Then a simple calculation

shows that the following entropy balance equation holds, see also [HJPR],

EntpLpρqq´Entpρq “ EntpU ˆρbρE ˆU
˚ |LpρqbρEq´βTr

`

pρbρEqpU
˚HEU ´HEq

˘

. (2.3)

The second term of the right-hand side can be interpreted as the entropy flux coming from E
(it is β times the energy variation in E). This motivates the following

Definition 2.2. We define the entropy production of S during its interaction with E by

σ :“ EntpU ˆ ρb ρE ˆ U
˚ |Lpρq b ρEq. (2.4)

The entropy production is meant to be always nonnegative and to be zero iff there is no
energy flux between S and E . As a matter of fact one easily infers that

σ “ 0 ðñ Tr
`

ρb ρEpU
˚HEU ´HEq

˘

“ EntpLpρqq ´ Entpρq “ 0.

Indeed, see also Section 2 in [JP], σ “ 0 iff U ˆ ρb ρE ˆU
˚ “ Lpρq b ρE so that if σ “ 0 then

on one hand

Tr
`

ρb ρEpU
˚HEU ´HEq

˘

“ Tr
`

Lpρq b ρEHE ´ ρb ρEHEq “ Tr
`

Lpρq ´ ρ
˘

ˆ Tr
`

ρEHE
˘

“ 0,

because L is trace preserving, and on the other hand

Entpρq`EntpρEq “ EntpρbρEq “ EntpUˆρbρEˆU
˚q “ EntpLpρqbρEq “ EntpLpρqq`EntpρEq.

The other implication follows directly from (2.3).
The fact that σ “ 0 iff U ˆ ρb ρE ˆU

˚ “ Lpρq b ρE can also be rephrased as follows: the
entropy production vanishes iff the joint system S ` E is left non-entangled by the dynamics
with moreover the state of E being invariant. This leads to the following definition.

Definition 2.3. Let U be a unitary operator on HS bHE , ρ a state on HS and ρE a state on
HE . We say that the triple pU, ρ, ρEq satisfies the Non-Entanglement condition if

U ˆ ρb ρE ˆ U
˚ “ Lpρq b ρE , (2.5)

in other words if the entropy production of the associated open system vanishes.

The importance of this Non-Entanglement condition for RIS will be made more transpar-
ent in Section 3.4. We mention that it also appears in [HJPR] in the context of adiabatic
RIS. At this point we simply note that if ρ is an invariant state of L then the triple pU, ρ, ρEq
satisfies the Non-Entanglement condition if and only if ρ b ρE is an invariant state of the
interacting dynamics, i.e.

U ˆ ρb ρE ˆ U
˚ “ ρb ρE . (2.6)

As a consequence the entropy observable

Spρb ρEq “ ´ logpρq b 1l´ 1lb logpρEq (2.7)

is a constant of motion.
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3 Non-equilibrium Repeated Interaction Systems

3.1 Repeated Interaction Systems (RIS)

Repeated Interaction Systems form a specific class of open quantum systems in which the
environment E has the following structure E “ E1 ` E2 ` ¨ ¨ ¨ En ` ¨ ¨ ¨ where pEnqn is a
sequence of quantum subsystems with associated Hilbert spaces HEn and free hamiltonians
HEn . S will be called the small system and the En’s will be called the probes. The Repeated
Interaction dynamics consists in the joint evolution of S and E1 for a duration τ1, immediately
followed by the joint evolution of S and E2 for a duration τ2, etc. For any n, p P N˚, En and
Ep are disjoint and never interact directly. The interaction between S and En is described by
the interaction operator Vn. Hence during the n-th interaction the coupled hamiltonian is

Hn :“ HS b 1l` 1lbHEn ` Vn,

and the unitary propagator for the coupled dynamics describing the N first interactions is
thus given by UNUN´1 ¨ ¨ ¨U1 where Un :“ e´iτnHn , n “ 1, . . . , N . Note that by construction
the various HEn commute and that rHEn , Hps “ 0 whenever n ‰ p.

If S is initially in the state ρ and the n-th probe is in the state ρEn which we assume to
be invariant for the free dynamics of En, then the state of S after N interactions is given by

ρN “ TrHE1b¨¨¨bHEN
pUN ¨ ¨ ¨U1 ˆ ρb ρE1 b ¨ ¨ ¨ b ρEN ˆ U˚1 ¨ ¨ ¨U

˚
N q . (3.1)

It is easy to see that the Repeated Interaction structure induces the following markovian
behaviour, see e.g. [BJM3] for more details,

ρN “ TrHEN
pUN ˆ ρN´1 b ρEN ˆ U

˚
N q “: LN pρN´1q,

so that if, for any n, the map

Lnpρq :“ TrHEn pUn ˆ ρb ρEn ˆ U
˚
n q,

denotes the reduced dynamics map associated to the interaction of S with the probe En, we
have

ρN “ LN ˝ ¨ ¨ ¨ ˝ L1pρq. (3.2)

In the simplest situation the probes are copies of an identical system E , i.e. HEn ” HE ,
HEn ” HE , Vn ” V , τn ” τ , ρEn ” ρE . Then the reduced dynamics maps coincide, Ln ” L,
and the evolution of the system S is given by ρN “ LN pρq. We shall refer to this situation as
an equilibrium situation, the various probes being considered as elements of a single reservoir.
One may think of the initial states of the probes as Gibbs states at some common inverse
temperature β.

3.2 Non-equilibrium RIS

In this paper we are interested in understanding RIS in a non-equilibrium situation. The pic-
ture one should have in mind is that the system S is coupled to several reservoirs R1, . . . ,RM

(M ě 2) which are initially in thermal equilibrium but at possibly different temperatures.
The various probes are then associated to one of these M reservoirs.
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More precisely, we fix a finite set of quantum systems Ej , j “ 1, . . . ,M , with the associated
Hilbert spaces HEj , free hamiltonians HEj , interaction operators Vj , interaction times τj and
initial states ρEj . Then Hj , Uj and Lj denote respectively the interacting hamiltonian, acting
on HS bHEj , unitary propagator and reduced dynamics map as given by (2.2). Each probe
will be a copy of one of these M systems.

Remark 3.1. To have a simple picture in mind the reader should think of all data identical,
i.e. HEj ” HE , HEj ” HE , Vj ” V , τj ” τ , except for the initial states ρEj which are Gibbs

states at possibly different temperatures β´1
j .

The sequence of probes is then described by a sequence j :“ pjnqnPN˚ P t1, . . . ,Mu
N˚ where

jn will specify which of the M systems Ej ’s the probe En is a copy of, i.e. @n P N˚, En ” Ejn .
Thus S interacts with M reservoirs R1, . . . ,RM where Rj denotes the “union” of all the
probes corresponding to the index j, i.e.

Rj :“
ă

n, jn“j

En.

If ρ is the initial state of S then after n interactions S is in the state

ρnpjq :“ Ljn ˝ Ljn´1 ˝ ¨ ¨ ¨ ˝ Lj1pρq.

Accordingly, for an observable A P BpHSq, the corresponding Heisenberg evolution is

Anpjq :“ L˚j1 ˝ L
˚
j2 ˝ ¨ ¨ ¨ ˝ L

˚
jnpAq.

In this paper, we shall consider two specific and rather natural situation of non-equilibrium
RIS whose reduced dynamics can be linked to a discrete quantum dynamical semigroup.

3.2.1 Cyclic case

A non-equilibrium RIS is called cyclic when S interacts first with R1, then R2, . . . ,RM ,
then R1 again, etc. In other words the sequence j describing the interactions is the M -
periodic sequence jcy “ pjcyn qn where for any k P t1, . . . ,Mu and n P N one has jcyk`nM “ k.
Consequently, the reduced dynamics of S over the cycles can be described by the discrete
semigroup

`

Lncy
˘

n
where

Lcy :“ LM ˝ LM´1 ˝ ¨ ¨ ¨ ˝ L1. (3.3)

Note that Lcypρq “ TrHEcy pUcy ˆ ρ b ρcy ˆ U˚cyq, where Ecy :“ E1 ` ¨ ¨ ¨ ` EM , HEcy :“
HE1 b ¨ ¨ ¨ bHEM , Ucy :“ UM ¨ ¨ ¨U1 and ρcy :“ ρE1 b ¨ ¨ ¨ b ρEM .

3.2.2 Random case

A non-equilibrium RIS is called random when the order in which the small system S in-
teracts with the pRjq1ďjďM is described by a random process, i.e. for each interaction the
subsystem Ej of which En is a copy will be chosen randomly from E1, . . . , EM . The mo-
tivation to consider random RIS is related to the question of time-reversal invariance, see
Remark 3.8 in Section 3.4.3. Let p denote the uniform probability measure on t1, . . . ,Mu
and P the standard convoluted probability measure on t1, . . . ,MuN

˚

associated to p. For any
T Ă t1, . . . ,MuN

˚

, PpT q is the probability for the random RIS to interact successively with
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the reservoirs Rj1 ,Rj2 , ¨ ¨ ¨ ,Rjn , ¨ ¨ ¨ with j “ pjnqn P T . We denote by EP the expectation
value w.r.t. a measure P. The choice of the measure P reflects the fact that the order in which
the reservoirs R1, . . . ,RM will interact with S is chosen in an i.i.d. manner but on average
S will interact equally much with each of them. This is the simplest and only case we shall
consider here. A generalization of our results to a Markovian situation will be considered in
the forthcoming paper [BJP].

Then one easily gets that EPpLjn ˝ Ljn´1 ˝ ¨ ¨ ¨ ˝ Lj1q “ Lnra where

Lra :“ EppLjq “
1

M
pL1 ` ¨ ¨ ¨ ` LM q .

Thus, at least in expectation, the reduced dynamics of S can be described by the semigroup
pLnraqnPN. We say at least because of the following theorem which was proven in [BJM2] (it
is a particular case of Theorem 1.3 in that paper)

Theorem 3.1. Suppose that there exists 1 ď j ď M such that Lj is primitive. Then Lra
is primitive. Moreover the random RIS dynamics converges almost surely and in the ergodic
mean to the unique invariant state of Lra. More precisely, there is a subset T Ă t1, . . . ,MuN˚

such that PpT q “ 1 and for any j P T , any density matrix ρ, and any family of observables
t1, . . . ,Mu Q j ÞÑ Apjq P BpHSq one has

lim
NÑ`8

1

N

N
ÿ

n“1

Tr
`

Ljn´1 ˝ ¨ ¨ ¨ ˝ Lj1pρq ˆApjnq
˘

“ Tr
`

ρra` ˆ EppAq
˘

, (3.4)

where ρra` denotes the unique invariant state of Lra and EppAq “ 1
M pAp1q ` ¨ ¨ ¨ `ApMqq.

Remark 3.2. The observables Apjq should be understood in the following sense. They repre-
sent the same physical quantity but their expression might vary depending on which probe S
is interacting with. They are called instantaneous observables in [BJM2]. A typical example
is that of energy flux observables, see Section 4.1.

If in particular Apjq ” A, i.e. one considers a fixed observable, then (3.4) indeed traduces
the ergodicity of the random RIS.

Notation. Throughout the paper when assumptions, results or identities are formulated for
both the cyclic and random situation we will often use the symbol 7 which will stand for either
cy in the cyclic case or ra in the random case.

3.3 Assumptions

In this section we formulate the various assumptions that will be used in the paper.

3.3.1 Temperatures and thermal forces

The first assumption concerns the initial states of the probes. We will assume that they are
initially in thermal equilibrium. Namely,

Assumption (KMS). For any 1 ď j ďM , ρEj “
e
´βjHEj

Tr
´

e
´βjHEj

¯ for some βj.
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From now on, we will always suppose Assumption (KMS) holds.

Fix some βref ą 0. If ζj :“ βref´βj then ζ “ pζ1, ζ2, . . . , ζM q denotes the vector of thermal
forces. In the sequel, for any quantity A depending on ζ, we will write Aζ when we need to
stress its dependence on ζ, and only A otherwise. When all the temperatures are equal (but
not necessarily to β´1

ref ), i.e. ζ “ pζ, . . . , ζq, we will write Aζ instead of Aζ .

Note that Ej depends only on ζj . Hence we may write Lj,ζ “ Lj,ζj , ρEj ,ζ “ ρEj ,ζj ,...

3.3.2 Ergodicity

The next assumption concerns spectral properties of the reduced dynamics maps L7,ζ , 7 “ cy
or ra, and the large time behaviour of S (recall Proposition 2.2).

Assumption (ER7). There exists ζ P RM such that L7,ζ is primitive.

Proposition 3.2. Suppose assumption (ER7) holds. Then

1. For any ζ P RM , L7,ζ is primitive. As a consequence, for any ζ P RM and any ρ (not

necessarily a state), lim
nÑ8

Ln7,ζpρq “ Trpρqρ7
`,ζ where ρ7

`,ζ denotes the unique invariant

faithful state of L7,ζ.

2. ρ7
`,ζ is infinitely differentiable w.r.t. ζ P RM .

Proof. 1. Let λjk, ϕjk denote the eigenvalues and eigenvectors ofHEj so thatHEj “
ÿ

k

λjk|ϕjkyxϕjk|.

Then it follows from (2.2) that

Lj,ζj pρq “
ÿ

k,k1

e´λjkpβref´ζjq

Zζj
Vjkk1 ρ V

˚
jkk1 ,

where Vjkk1 “
@

ϕjk1 , e
´iτjHjϕjk

D

does not depend on ζ. It follows immediately that the maps

L7,ζ have Kraus decomposition of the form L7,ζ “
ÿ

i

fipζqViρV
˚
i where the Vi do not depend

on ζ and with fipζq ą 0. For any ζ, ζ1 the maps L7,ζ and L7,ζ1 therefore have the same Kraus
decomposition up to positive scalar factors which proves 1. (recall Definition 2.1).

2. It follows from 1. and Proposition 2.1 that 1 is an isolated simple eigenvalue for any ζ
so the result follows by regular perturbation theory [Ka].

Finally, we have the following result which shows that it suffices to have information on
one of the probes to get information on the entire non-equilibrium RIS.

Proposition 3.3. Let ζ P RM . If Lj,ζj is primitive for some 1 ď j ď M then (ER7) holds
for 7 “ ra, and if moreover Lj,ζj is positivity improving then (ER7) holds for 7 “ cy.

The proof follows directly from Lemma 3.4 below in the cyclic case and from Theorem 3.1
in the random case.

Lemma 3.4. If ρ is positive definite then so is Ljpρq. As a consequence, if there exists
1 ď j ďM such that Lj,ζj is positivity improving, then so is Lcy,ζ.



12 3 NON-EQUILIBRIUM REPEATED INTERACTION SYSTEMS

Proof. If ρ is positive definite so is ρEj and hence ρb ρEj as well. Thus for any non-negative
and non-zero A one has

Tr pLjpρqAq “ Tr
`

ρb ρEj ˆ U
˚
j Ab 1lUj

˘

ą 0,

so that Ljpρq is indeed positive definite.

3.3.3 Time-reversal

The next assumption concerns time-reversal invariance. A time reversal of a quantum system
pH, Hq is an antiunitary involution θ on H such that θH “ Hθ. Given such a θ we denote
by Θ the antilinear ˚-automorphism acting on BpHq as ΘpXq “ θXθ. Note in particular that
one has Θpe´itHq “ eitH for all t P R, or in an equivalent way if γtpXq :“ eitHXe´itH is the
Heisenberg evolution of an observable X then

Θ ˝ γt ˝Θ “ γ´t, @t P R. (3.5)

In open systems one usually further specifies the structure of θ. Namely we assume that we
are given time reversals θS and θE associated to pHS , HSq and pHE , HEq respectively and such
that θS b θEV “ V θS b θE where V is the interacting operator. Then θ “ θS b θE is a time
reversal for the coupled system pHS bHE , HS `HE ` V q.

A state ρ is then called time-reversal invariant for θ if Θpρq “ ρ which is equivalent
to ρpΘpXqq “ ρpX˚q for all X P BpHq, and in particular ρpΘpXqq “ ρpXq when X is an
observable hence self-adjoint. Finally, a quantum system pH, H, ρq is called time-reversal
invariant iff there exists a time reversal θ on pH, Hq such that ρ is time-reversal invariant for
θ. We consider the following assumption.

Assumption (TRI). There exist antiunitary involutions θ and pθEj q1ďjďM acting on HS
and pHEj q1ďjďM such that θHS “ HSθ, θEjHEj “ HEjθEj and θ b θEjVj “ Vjθ b θEj .

Since the ρEj are KMS states (TRI) guarantees that all the probes pHEj , HEj , ρEj q are time-
reversal invariant systems. We shall come back to time-reversal invariance in Section 3.4.3.

3.4 The Non-Entanglement condition

There is a last assumption, see Assumption (NE) on p.14, which will play an important role
in our paper and which is very specific to RIS. The purpose of this section is first to explain
its origin and then to derive some of its consequences.

3.4.1 The Non-Entanglement condition: a signature of equilibrium

One of our goal is to understand linear response theory for RIS, which means how does the
system respond to a small perturbation from equilibrium. It is therefore important to specify
what do we mean by equilibrium. In this perspective the most ideal situation is certainly
that of a single type of probes, i.e. M “ 1, all initially at the same inverse temperature β.
One of the usual features of equilibrium is that it is characterized by the vanishing of entropy
production. During its interaction with a single probe E the entropy production of the system
is given by (2.4), and if the system is initially in an invariant state ρ we simply have

σ “ EntpU ˆ ρb ρE ˆ U
˚ | ρb ρEq
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which vanishes iff U ˆ ρb ρE ˆU
˚ “ ρb ρE . It is thus natural to require that for each species

of probes, and whatever is their initial temperature, there exists an invariant state ρj such
that the triple pUj , ρj , ρEj q satisfies the Non-Entanglement condition (2.6).

Consider now the general framework of Section 3.2 and more precisely the random situation
of Section 3.2.2. When Assumption (ER7) holds the entropy production in the system is given
by, see Proposition 4.3 and also [BJM2, BJM3],

σ`ra “ ´
M
ÿ

j“1

βjρ
ra
` pΦjq, (3.6)

where Φj “ ´
1

T
TrρEj pU

˚
j HEjUj ´HEj q, T “ τ1` ¨ ¨ ¨` τM , denotes the energy flux observable

associated to the j-th type of probe (see Section 4.1 for more details about these Φj). A
natural notion of equilibrium is that it leads to a vanishing of entropy production. The
following proposition gives a simple characterization in terms of the individual probes.

Proposition 3.5. If Assumption (ER7) holds then σ`ra “ 0 if and only if

Uj ˆ ρ
ra
` b ρEj ˆ U

˚
j “ ρra` b ρEj , @j P t1, . . . ,Mu, (3.7)

i.e. the states ρra` b ρEj are invariant states of the joint systems S ` Ej so that in particular
Ljpρra` q “ ρra` for all j. In other words ρra` is a common invariant state for all the probes and
the triples pUj , ρ

ra
` , ρEj q all satisfy the Non-Entanglement condition (2.6).

Proof. One direction is obvious. Namely, if (3.7) holds for any j one easily computes

ρra` pΦjq “ ´
1

T
Tr

“

ρra` b ρEj pU
˚
j HEjUj ´HEj q

‰

“ 0,

i.e. all the steady fluxes vanish, hence σ`ra “ ´
M
ÿ

j“1

βjρ
ra
` pΦjq “ 0.

Suppose now that σ`ra “ 0. Using (2.3) we have for all j P t1, . . . ,Mu

EntpLjpρra` qq ´ Entpρra` q

“ Ent
´

Uj ˆ ρ
ra
` b ρEj ˆ U

˚
j |Ljpρra` q b ρEj

¯

´ βjTr
´

pρra` b ρEj qpU
˚
j HEjUj ´HEj q

¯

“ Ent
´

Uj ˆ ρ
ra
` b ρEj ˆ U

˚
j |Ljpρra` q b ρEj

¯

` βjTρ
ra
` pΦjq.

Summing these identities over j and using (3.6) we get

1

M

M
ÿ

j“1

Ent
`

Ljpρra` q
˘

´ Entpρra` q “
1

M

M
ÿ

j“1

Ent
´

Uj ˆ ρ
ra
` b ρEj ˆ U

˚
j |Ljpρra` q b ρEj

¯

. (3.8)

Relative entropies are non-negative quantities so that the right-hand side is non-negative. But
the left-hand side is non-positive. Indeed von Neumann entropy is strictly concave so that,
using Lrapρra` q “ ρra` , we have

1

M

M
ÿ

j“1

Ent
`

Ljpρra` q
˘

´ Entpρra` q

ď Ent

˜

1

M

M
ÿ

j“1

Ljpρra` q

¸

´ Entpρra` q “ Ent
`

Lrapρra` q
˘

´ Entpρra` q “ 0,
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with equality iff all the Ljpρra` q are equal. This proves that both sides of (3.8) vanish.

As a consequence all the Ljpρra` q are equal and, because Lrapρra` q “ ρra` , they have to be
equal to ρra` , i.e. ρra` is a common invariant state for all the probes. Moreover since all the
terms on the right-hand side of (3.8) are non-negative they all vanish, i.e.

Ent
`

Ujˆρ
ra
` bρEjˆU

˚
j |Ljpρra` qbρEj

˘

“ 0 ñ Ujˆρ
ra
` bρEjˆU

˚
j “ Ljpρra` qbρEj “ ρra` bρEj ,

that is the triples pUj , ρ
ra
` , ρEj q satisfy the Non-Entanglement condition (2.6).

The above proposition refers only to the vanishing of entropy production. If we want to
consider the case where all the temperatures are equal as an equilibrium situation, whatever
is this temperature, this immediately leads to the following

Assumption (NE). There exists a function R Q ζ ÞÑ ρ`,ζ such that, for any j P t1, . . . ,Mu
and ζ P R, the triple pUj , ρ`,ζ , ρEj ,ζq satisfies the Non-Entanglement condition

Uj ˆ ρ`,ζ b ρEj ,ζ ˆ U
˚
j “ ρ`,ζ b ρEj ,ζ .

Remark 3.3. If moreover Assumption (ER7) holds this obviously implies that, when all the
temperatures are equal, the unique invariant states in the cyclic and random cases coincide
with ρ`,ζ , i.e. ρcy

`,ζ “ ρra`,ζ “ ρ`,ζ .

Assumption (NE) may look quite restrictive at first sight. Indeed it requires that for any
probe and at any temperature there is a non-entangled invariant state, and that this invariant
state depends only on the temperature and not on the probe itself. Proposition 3.5 however
shows that this is the natural condition if one wants to consider equal temperatures as an
equilibrium situation, in the sense of vanishing of entropy production. Since linear response
theory deals with a situation close to equilibrium, if Assumption (NE) does not hold one
should therefore also take into account a departure from this assumption. It is however not
clear how to quantify this or, said differently, what is the natural quantity one can associate
to a generic RIS and the vanishing of which would correspond to the fulfilment of Assumption
(NE). In particular, if Assumption (NE) fails, the Green-Kubo formulas (4.14) and (4.15) do
not hold, at least in the form given in the present paper, and Onsager reciprocity relations
are not valid.

On the other hand the large deviation principle for entropy production and the fluctuation
relation are not directly related to any equilibrium situation. One can therefore expect that
they hold true even without Assumption (NE) and this is indeed the case, see (5.10) and
Theorem 5.8. However, when all temperatures are equal the vanishing of entropy production
is also equivalent to energy conservation, see (3.6). Therefore, if Assumption (NE) does not
hold this proves that, at least at equilibrium, energy conservation fails (which explains why
we need it in Proposition 4.2). As we already mentioned in the introduction one should not be
surprised. This comes from the fact that the RIS hamiltonian (1.1) is time-dependent. As a
consequence the translation symmetry (5.11), which is directly related to energy conservation,
also fails if Assumption (NE) does not hold.

In the rest of this section we derive two consequences of this Non-Entanglement assumption
which will play an important role in our analysis.
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3.4.2 Effective hamiltonian

The first consequence is the existence of a conserved quantity for the Lj ’s and which plays
the role of an effective hamiltonian. This is directly related to the conservation of the entropy
observable (2.7), see the end of Section 2.3.

Proposition 3.6. Suppose (ER7) and (NE) hold and let H 1S “ ´ log
´

ρ
1{βref
`,0

¯

so that ρ`,0 “

e´βrefH
1
S . Then for any ζ P R the state ρ`,ζ is a Gibbs state at inverse temperature β “ βref´ζ

for the effective hamiltonian H 1S , i.e. ρ`,ζ “
e´βH

1
S

Tr
´

e´βH
1
S

¯ , β “ βref ´ ζ.

Moreover, for any j, the observable H 1S ` HEj is a conserved quantity of the interacting
dynamics, namely

U˚j
`

H 1S b 1l` 1lbHEj
˘

Uj “ H 1S b 1l` 1lbHEj . (3.9)

Proof. Let ζ P R and β “ βref ´ ζ. Assumption (ER7) together with Proposition 3.2 imply
that ρ`,0 is positive definite. Hence H 1S is well defined and Assumption (NE) guarantees

that, for any 1 ď k ďM ,
”

ρ`,0 b e´βrefHEk , Uk

ı

“ 0. So

„

ρ
β
βref
`,0 b e´βHEk , Uk



“

”

e´βH
1
S b e´βHEk , Uk

ı

“ 0, @β. (3.10)

Hence
e´βH

1
S

Tr
´

e´βH
1
S

¯ is an invariant state of Lk,ζ for any k and hence of L7,ζ . Since the latter

admits only one invariant state it coincides with ρ`,ζ .

Finally, (3.9) is a direct consequence of (3.10).

Remark 3.4. Note that the effective hamiltonian H 1S is intrinsic to the system and that chang-
ing the reference temperature βref only amounts to an irrelevant shift by a constant.

We also note the following lemma which can be seen as a sort of gauge invariance and
whose proof is a straightforward computation left to the reader.

Lemma 3.7. If Assumptions (ER7) and (NE) hold and H 1S is as in Proposition 3.6, then
for any state ρ, j P t1, . . . ,Mu and t P R one has

Lj
´

e´itH
1
S ρ eitH

1
S

¯

“ e´itH
1
SLjpρq eitH

1
S .

Remark 3.5. Of course one has the same property in the Heisenberg picture,

L˚j
´

eitH
1
S X e´itH

1
S

¯

“ eitH
1
SL˚j pXqe´itH

1
S . (3.11)

In particular, taking X “ H 1S , we get that rL˚j pH 1Sq, H 1Ss “ 0 for all j.
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3.4.3 Non-entanglement, time-reversal invariance and detailed balance

The second consequence of Assumption (NE) is related to time-reversal invariance. Assump-
tion (TRI) is written in terms of the full interacting dynamics Uj . However the central
objects in RIS are the reduced dynamics maps Lj . It is therefore natural, and important, to
understand what are the consequences of Assumption (TRI) on them.

Definition 3.1. Let L be a CPTP map and ρ an invariant state of L. The pair pL, ρq is
said to satisfied the standard quantum detailed balance (SQDB) condition with respect to the
time-reversal Θ if Θpρq “ ρ and Θ ˝L˚ ˝Θ “ L˚ρ where L˚ρ denotes the ρ adjoint of L˚, i.e.
its adjoint with respect to the inner product xA,Byρ :“ Tr pρA˚Bq.

Remark 3.6. The above definition can be traced back to [Ag], see also [FU, Ma]. We mention
that several other notions of quantum detailed balance which do not make reference to any
time-reversal operator exist in the literature. The probably most common one is due to
Kossakowski, Frigerio, Gorini and Verri [KFGV]. It is called GNS quantum detailed balance
and it holds iff L˚ is ρ self-adjoint, i.e. L˚ρ “ L˚. To enhance its dependence on the
time-reversal operation the notion of quantum detailed balance as given in Definition 3.1 is
sometimes called SQDB ´Θ condition in the literature, see e.g. [FR].

Remark 3.7. In [JPW] Definition 3.1 is called time-reversal invariance. Indeed, if pH, H, ρq is
a quantum system with ρ an invariant state and γtpXq “ eitH X e´itH denotes the Heisenberg
evolution, it is easy to see that for all t P R the ρ adjoint γρt of γt is γ´t so that (3.5) amounts
to Θ˝γt ˝Θ “ γρt . In the markovian description of open systems one then simply replaces the
unitary evolution γt by the markovian one L˚ and the relation Θ˝L˚ ˝Θ “ L˚ρ can therefore
also be understood as a signature of time-reversal invariance.

The following proposition shows that the Non-Entanglement condition allows one to make
the connection between our Assumption (TRI) and Definition 3.1.

Proposition 3.8. Let θ and θE be time reversals for the quantum systems pHS , HSq and
pHE , HEq respectively and V P BpHS b HEq such that θS b θEV “ V θS b θE . Let τ ą 0
and ρE be such that pHE , HE , ρEq is time-reversal invariant, and let L be given by (2.2). If
L is primitive and its (unique) invariant state ρ is such that the triple pU, ρ, ρEq, U “ e´iτH

with H “ HS `HE ` V , satisfies the Non-Entanglement condition (2.6), then the pair pL, ρq
satisfies the SQDB condition.

In our framework of RIS we thus immediately get

Corollary 3.9. If Assumptions (ER7), (TRI) and (NE) hold then for any ζ P R and any j
the pair pLj,ζ , ρ`,ζq satisfies SQDB in the sense that Θpρ`,ζq “ ρ`,ζ and

Θ ˝ L˚j,ζ ˝Θ “ L˚ρ`,ζj,ζ . (3.12)

Proof. Since the indices j and ζ do not play any role we omit them to alleviate the notation.
For X P BpHEq let ΘEpXq :“ θEXθE . One immediately gets ΘbΘEpUq “ U˚ so that

U ΘpρqbρE U
˚ “ U pΘbΘEq

`

ρbρE
˘

U˚ “ pΘbΘEq
´

U˚ ρbρE U
¯

“ pΘbΘEq
`

ρbρE
˘

“ Θpρ
˘

bρE ,

where we have used successively ΘEpρEq “ ρE , ΘbΘEpUq “ U˚, (2.6) and ΘEpρEq “ ρE again.
Hence Θpρq is an invariant state of L.
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We have proven that Θpρq is an invariant state of Lj for all j so Θpρq is an invariant
state of Lcy and Lra. Since the latter are primitive by Assumption (ER7) this proves that
Θpρq “ ρ.

On the other hand, for any A,B P BpHSq we have

Tr pρL˚ρpAq˚Bq “ Tr pρA˚L˚pBqq
“ Tr pρA˚ b ρE ˆ U

˚ ˆB b 1l ˆ Uq

“ Tr pBρb ρE ˆ U ˆA
˚ b 1lˆ U˚q

“ Tr pΘpBρq bΘEpρEq ˆ U˚ ˆΘpA˚q b 1lˆ Uq

“ Tr pΘpBρqL˚ pΘpAq˚qq
“ Tr

`

Bρ pΘ ˝ L˚ ˝ΘpAqq˚
˘

,

which proves that Θ ˝ L˚ ˝Θ “ L˚ρ. Here we have used the definition of L˚ρ in line 1, of L˚
in line 2, cyclicity of the trace and (2.6) in line 3, antilinearity of Θ{ΘE in line 4, ΘEpρEq “ ρE
and definition of L˚ in line 5, and finally in line 6 that L˚ is completely positive so that
L˚pX˚q “ pL˚pXqq˚.

Remark 3.8. Note that for cyclic RIS Assumption (TRI) makes the RIS time-reversal invari-
ant only for the duration of the joint evolution with each individual probe, that is only locally
in time. Indeed, the time-reversal operator Θ does not change the order of the interactions.
This lack of global time-reversal invariance will however be resolved in the random model.

Remark 3.9. If (ER7), (TRI) and (NE) hold it also follows from (3.9) that the effective
hamiltonian H 1S is invariant under time reversal, i.e. ΘpH 1Sq “ H 1S .

3.5 A toy example

Suppose that HS and HE are copies of C2, HS “ Ea˚a, HE “ E0b
˚b, and the interaction V has

the form V “ λ
2 pa

˚bb`abb˚q. Here a{a˚, b{b˚ are the usual annihilation/creation operators

on HS and HE respectively, i.e. a “ b “

ˆ

0 1
0 0

˙

. E and E0 denote the excited energy levels

of S and E respectively, and the interaction consists in an exchange of excitation between
S and E . This model can be seen as a toy version of the Jaynes-Cummings hamiltonian
describing the interaction between one mode of a quantized electro-magnetic field in a cavity
and a two-level atom, see e.g. [CDG], and the corresponding RIS as a toy version of the
one-atom maser model studied in [BP, Bru]. The spectral analysis and ergodic properties of
this toy model can be found in [BJM3].

One easily sees that the total number operator NS b 1l ` 1l b NE ” a˚a b 1l ` 1l b b˚b is

a conserved quantity. As a consequence, if ρE “
e´βHE

Trpe´βHE q
, HE “ E0b

˚b, then ρ “ e´βH
1
S

Tr
´

e
´βH1S

¯ ,

H 1S “ E0NS , is an invariant state and the triple
`

e´iτH , ρ, ρE
˘

satisfies condition (2.6).

Consider now the RIS where the probes Ej are copies of E with possibly different tem-
peratures. We have just seen that Assumption (NE) indeed holds and leads to the effective
hamiltonian H 1S “ E0NS . Assumption (TRI) is then obviously satisfied with θ and θEj the
complex conjugation operations in the canonical bases of C2.
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Finally let νj :“
b

pE ´ E0q
2 ` λ2

j . A simple calculation shows that if νjτj is not a multiple

of 2π then Lj is primitive and that its unique invariant state is ρ`pζjq :“ e´βjH
1
S

Tr
´

e
´βjH

1
S
¯ (see e.g.

[BJM3] for more details). One thus infers that, if at least one of the νjτj ’s is not a multiple
of 2π, at equilibrium the maps Lcy and Lra are primitive as well so that (ER7) holds.

Remark 3.10. It is easy to see that the true one-atom maser model based on the Jaynes-
Cummings hamiltonian also satisfies Assumptions (TRI) and (NE). Its ergodic properties
are however much more delicate to study (here S is equivalent to a harmonic oscillator, in
particular HS has infinite dimension) and even the bare question of return to equilibrium,
that is when all the probes are initially at the same temperature, turned out to be a difficult
problem [BP, Bru].

4 Linear response of energy fluxes and entropy production

4.1 Energy flux observables

The energy flux observables describe the energy fluxes that get out of the reservoirs Rj , as
they are seen by the small system S. Moreover we have to take into account the discrete-time
nature of the RIS dynamics to define these fluxes. In other words we choose to study averaged
fluxes, averaged over the duration of one interaction, instead of instantaneous ones.

Clearly the reservoir Rj can exchange energy only when it interacts with S. Moreover the
typical time scale of the non-equilibrium RIS is T “ τ1 ` ¨ ¨ ¨ ` τM where we recall that τj is
the duration of the interaction with probe Ej . This leads to the following (see Section 2.2).

Definition 4.1. The energy flux observable associated to Rj is

Φj :“ ´
1

T
TrρEj pU

˚
j HEjUj ´HEj q.

In the cyclic framework it will be convenient to also use a slightly different, but closely
related, flux observable. If S is in the state ρ, e.g. the steady state ρ`,ζ (see Remark 4.5),
at the beginning of a cycle, i.e. before it interacts with R1, then at the beginning of its
interaction with Rj it is in the state Lj´1 ˝ ¨ ¨ ¨ ˝L1pρq. Hence the corresponding expectation
value of the flux observable is

xΦjy “ Tr pLj´1 ˝ ¨ ¨ ¨ ˝ L1pρqΦjq .

It is thus natural to introduce

Φcy
j :“ L˚1 ˝ L˚2 ˝ ¨ ¨ ¨ ˝ L˚j´1pΦjq, (4.1)

so that xΦjy “ Tr
´

ρΦcy
j

¯

. We shall call Φcy
j the cyclic flux observable associated to Rj . It is

easy to see that one also has

Φcy
j “ ´

1

T
TrρcypU

˚
cyHEjUcy ´HEj q,

which is the mean energy variation observable in the reservoir Rj during the entire cycle.



4.1 Energy flux observables 19

Remark 4.1. If we compare the definitions of Φj and Φcy
j we can see that the latter contains

a supplementary information which is the order of the interactions in a cyclic RIS. Taking
two distinct definitions allows us to obtain Green-Kubo formulas which are similar in both
the cyclic and random situations, see (4.14), (4.15) and (4.17).

Remark 4.2. Note that the flux observables depend on the thermodynamic parameters but
that Φcy

j depend on ζ1, ζ2, ..., ζj whereas Φj depends only on ζj .

Notation. In the sequel the various results will often have a similar form when written in
terms of Φcy

j in the cyclic case and of Φj in the random case. When we will write Φ7j , 7 “ cy
or ra, the notation Φra

j will therefore stand for Φj .

Time reversal plays an important role in linear response theory and the derivation of Green-
Kubo formula and Onsager relations. Since we consider here averaged flux observables we
need to consider also what we call the reversed-time flux observables.

Definition 4.2. The reversed-time flux observable associated to Rj is

Φj,rev :“
1

T
TrρEj pUjHEjU

˚
j ´HEj q, Uj “ e´iτjHj .

Accordingly the cyclic reversed-time flux observable associated to Rj is

Φcy
j,rev :“ L˚M,rev ˝ ¨ ¨ ¨ ˝ L˚j`1,revpΦj,revq “

1

T
TrρcypUcyHEkU

˚
cy ´HEkq, (4.2)

where Lj,rev is the reduced dynamics map associated to a time-reversed interaction, i.e.

Lj,revpρq :“ TrHEj

`

eiτjHjρb ρEj e´iτjHj
˘

.

Remark 4.3. If (ER7) and (NE) hold then for any j “ 1, . . . ,M we actually have

L˚j,rev “ L
˚ρ`,ζj
j , (4.3)

the ρ`,ζj -adjoint of L˚j , where we recall that ρ`,ζ is the global invariant state as given in
Assumption (NE). The proof is very similar to the one of (3.12) and is left to the reader.
This is of course related to the fact that in the Heisenberg picture the ρ adjoint of the dynamics
γtp¨q “ eitH ¨e´itH is γ´t, see Remark 3.7. Note also that if Assumption (TRI) holds it follows
directly from the definition of Lj,rev that

Lj,rev “ Θ ˝ Lj ˝Θ, (4.4)

i.e. Lj,rev is the time-reversal of Lj which is in agreement with (3.12).

Remark 4.4. 1) The sign discrepancy in the definitions of Φj and Φj,rev takes into account
the fact that we have reversed the time. Assume for simplicity that all the interaction times
τj are equal to τ . In the limit τ Ñ 0 of instantaneous interactions it is easy to see that the
flux observables Φj and Φj,rev both coincide with

Φinst
j “

1

M
TrρEj

`

´irHj , HEj s
˘

.
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2) When (TRI) holds the fluxes Φj and Φj,rev satisfy the relation

Φj,rev “ ´Θ pΦjq . (4.5)

In the limit of instantaneous interactions one retrieves the usual relation Φinst
j “ ´Θ

`

Φinst
j

˘

,
i.e. flux observables are odd with respect to time reversal.
3) In the cyclic case, one can notice that Φcy

j,rev corresponds to a total time-reversal, where
the order of the interactions is reversed as well (compare (4.1) and (4.2)).

When (ER7) and (NE) hold then H 1S ` HEj is a conserved quantity of the interacting
system S ` Ej where we recall that H 1S is the effective hamiltonian, see Section 3.4.2. Hence
Φj is naturally the flux observable associated to H 1S . Namely we have

Proposition 4.1. Suppose (ER7) and (NE) hold. Then

Φj “
1

T
pL˚j pH 1Sq ´H 1Sq, (4.6)

i.e. Φj is the flux corresponding to the effective energy H 1S . Similarly one has

Φj,rev “ ´
1

T
pL˚j,revpH

1
Sq ´H

1
Sq, (4.7)

Proof. Using (3.9) we have U˚j HEjUj ´HEj “ H 1S ´ U
˚
j H

1
SUj hence

Φj “
1

T
TrρEj pU

˚
j H

1
SUj ´H

1
Sq “

1

T
pL˚j pH 1Sq ´H 1Sq,

where we have used that H 1S P BpHSq and the definition of Lj . This proves (4.6).
Then (4.7) follows from (4.6) using (4.3), (4.5) and Remark 3.9.

4.2 Steady fluxes, energy conservation and entropy production

The first central concepts in non-equilibrium systems are energy conservation (1st law) and the
relation between entropy production and steady fluxes (entropy balance equation), together
with non-negativity of entropy production.

Proposition 4.2. [1st law] If (ER7) and (NE) hold we have

M
ÿ

j“1

ρ7`pΦ
7

jq “ 0, 7 “ cy or ra. (4.8)

Remark 4.5. In the cyclic framework, ρcy` is the asymptotic state at the beginning of a cycle
and not at the beginning of the interaction between S and the j-th reservoir (which is thus
Lj´1 ˝ ¨ ¨ ¨ ˝ L1pρ

cy
` q). So the steady expectation value of the energy flux out of Rj is indeed

ρcy`
`

L˚1 ˝ L˚2 ˝ ¨ ¨ ¨ ˝ L˚j´1pΦjq
˘

“ ρcy` pΦ
cy
j q.

Proof. Using (4.1), (4.6) and Lcypρcy` q “ ρcy` we have

M
ÿ

j“1

ρcy` pΦ
cy
j q “ T

M
ÿ

j“1

ρcy`
`

L˚1 ˝ ¨ ¨ ¨ ˝ L˚j´1pL˚j pH 1Sq ´H 1Sq
˘

“ Tρcy`
`

L˚cypH 1Sq ´H 1S
˘

“ 0.
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Similarly, recall Lra “
1

M
pL1 ` ¨ ¨ ¨ ` LM q, so that using (4.6) and Lrapρra` q “ ρra` we get

M
ÿ

j“1

ρra` pΦjq “ T
M
ÿ

j“1

ρra`
`

L˚j pH 1Sq ´H 1S
˘

“ TMρra`
`

L˚rapH 1Sq ´H 1S
˘

“ 0.

Remark 4.6. Of course, as expected and mentioned at the beginning of the proof of Proposition
3.5, when all the temperatures are equal each steady flux vanishes, i.e. ρ7`pΦ

7

jq “ 0 for all j.

We now turn to entropy production. Recall that the entropy production during an in-
teraction between S and a system E is given by (2.4). For a non-equilibrium RIS, and if
j :“ pjnqnPN˚ describes the sequence of interactions (see Section 3.2), the entropy production
during the nth interaction is thus

σnpjq :“ EntpUjn ˆ ρn´1pjq b ρEjn ˆ U
˚
jn | ρnpjq b ρEjn q,

where ρnpjq “ Ljn ˝ ¨ ¨ ¨ ˝ Lj1pρq denotes the state of S after n interactions. Using (2.3) we
have the following entropy balance equation for the N first interactions

N
ÿ

n“1

σnpjq “ EntpρN pjqq ´ Entpρq ´ T
N
ÿ

n“1

βjnTr
`

Ljn´1 ˝ ¨ ¨ ¨ ˝ Lj1pρq ˆ Φjn

˘

. (4.9)

As a consequence in the random, resp. cyclic, cases we can define the entropy production
associated to the N first interactions, resp. cycles, by

σrapj, Nq :“
N
ÿ

n“1

σnpjq, resp. σcypNq :“
NM
ÿ

n“1

σnpjq. (4.10)

For cyclic interactions (4.9) becomes

σcypNq “ Ent
`

LNcypρq
˘

´ Entpρq ´ T
M
ÿ

j“1

N
ÿ

n“1

βjTr
´

Ln´1
cy pρq ˆ Φcy

j

¯

. (4.11)

Definition 4.3. We define the asymptotic entropy production rate of a cyclic or random
Repeated Interaction System by

σ`cy :“ lim
NÑ`8

σcypNq

NT
, σ`rapjq :“ lim

NÑ`8

σrapj, Nq

N T
M

,

provided the limits exist.

We then have the following entropy balance result.

Proposition 4.3. Assume (ER7) holds. Then the asymptotic entropy productions exist and
we moreover have

σ`cy “ ´
M
ÿ

j“1

βjρ
cy
` pΦ

cy
j q and σ`rapjq “ ´

M
ÿ

j“1

βjρ
ra
` pΦjq P ´ a.s.
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Proof. Since HS has finite dimension the von Neumann entropies Ent
`

LNcypρq
˘

and Ent pρN pjqq
are uniformly bounded hence give no contribution to the asymptotic entropy production. In
the cyclic case the result thus follows directly from (4.11) and Proposition 3.2.

In the random case, using (4.9), Proposition 3.2 and Theorem 3.1 with Apjq :“ βjΦj we
get that σ`rapjq indeed exists P-almost surely and is given by

σ`rapjq “ ´Mρra` pEppβΦqq “ ´
M
ÿ

j“1

βjρ
ra
` pΦjq .

Remark 4.7. In the cyclic case we have divided by T which is the total duration of a cycle
while in the random case we have divided by T

M which is the mean duration of an interaction,
in agreement with (4.10). These different scalings will appear regularly in the sequel.

In the random case we could have equivalently divided by the total duration
řN
n“1 τjn

instead of N T
M because P-almost surely 1

N

řN
n“1 τjn Ñ

T
M by the strong law of large numbers.

4.3 Green-Kubo formula and Onsager relations

The next step is linear response theory which is concerned with the response of the system to
a small perturbation from equilibrium. In this section we derive the Green-Kubo fluctuation-
dissipation formula which relates the transport coefficients of the system out of equilibrium
to flux-flux correlations at equilibrium. Linear response theory will be completed in Section
5.4 by the Central Limit, aka Fluctuation-Dissipation, Theorem 5.9. As we have mentioned
at the end of Section 3.4.1, and since they make reference to equilibrium, our results require
that the Non-Entanglement Assumption (NE) holds.

In order to state the Green-Kubo formula we first recall the notion of dissipation function.
Recall that the characteristic time of the system is T .

Definition 4.4. The dissipation function associated to the reservoir Rj is

DjpX,Y q :“
1

T

`

L˚j pX˚Y q ´ L˚j pX˚qY ´X˚L˚j pY q `X˚Y
˘

. (4.12)

If the Kraus decomposition of Lj is given by (2.1) it is easy to see that DjpX,Y q “
1

T

ÿ

iPI

rVi, Xs
˚rVi, Y s.

In particular DjpX,Xq “
1

T

ÿ

iPI

rVi, Xs
˚rVi, Xs is non-negative and is zero only if X commutes

with all the Vi’s.

Remark 4.8. The dissipation function has been introduced in [Li] for continuous-time quantum
dynamical semigroups

`

etL
˘

tě0
as the sesquilinear map D acting on BpHSq and defined by

DpX,Y q “ LpX˚Y q ´ LpX˚qY ´X˚LpY q.

Here L is the Lindblad generator of a semigroup of unital completely positive maps, i.e.
corresponding to the Heisenberg picture. If we fix some characteristic time T , according to
(4.12) the dissipation function associated to the unital completely positive map eTL is

DT pX,Y q :“
1

T

`

eTLpX˚Y q ´ eTLpX˚qY ´X˚eTLpY q `X˚Y
˘

and it is easy to see that lim
TÑ0

DT pX,Y q “ DpX,Y q.
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Theorem 4.4 (GK formula and Onsager relations). Suppose (ER7) and (NE) hold.
1) The maps ζ ÞÑ ρ7

`,ζ, ζ ÞÑ Φj,ζ and ζ ÞÑ Φcy
j,ζ are infinitely differentiable. The quantities

L7jk :“ Bζkρ
7

`,ζpΦ
7

j,ζq
P

ζ“0
, 7 “ cy or ra, (4.13)

are called the kinetic coefficients.
2) We have the following Green-Kubo formulas

Lcyjk “ T
`8
ÿ

n“0

ρ`

´

L˚k`1 ˝ ¨ ¨ ¨ ˝ L˚M ˝ L˚ncy ˝ L˚1 ˝ ¨ ¨ ¨ ˝ L˚j´1pΦjq ˆ Φk,rev

¯

(4.14)

`δjąk Tρ`

´

L˚k`1 ˝ ¨ ¨ ¨ ˝ L˚j´1pΦjq ˆ Φk,rev

¯

`
1

2
δjkρ`pDjpH

1
S , H

1
Sqq,

Lrajk “
T

M

`8
ÿ

n“0

ρ`pL˚nra pΦjqΦk,revq `
1

2
δjkρ`pDjpH

1
S , H

1
Sqq, (4.15)

where all the quantities on the right-hand side are calculated at equilibrium ζ “ 0, e.g. ρ`
stands for ρ` “ ρcy`,0 “ ρra`,0 (see Remark 3.3).
3) If moreover Assumption (TRI) holds then the following analogs of the Onsager reciprocity
relations are satisfied:

Lcyjk “ Lrcykj and Lrajk “ Lrakj , (4.16)

where Lrcykj denotes the kinetic coefficient associated to the cyclic RIS in which we reverse the
order of the interactions, i.e. Lrcy “ L1 ˝ ¨ ¨ ¨ ˝ LM . In the specific case M “ 2, we retrieve
the usual Onsager reciprocity relations Lcyjk “ Lcykj for the cyclic case too.

Let us comment on identities (4.14) and (4.15).
i) The sum in (4.14) describes the flux-flux correlation at equilibrium between reservoirs

Rj and Rk. Since Rj interacts only once during each cycle, using (4.1)-(4.2), it is easy to see
that this sum can actually be written in terms of Lcy leading to the more condensed form

`8
ÿ

n“0

ρ`

´

L˚k`1 ˝ ¨ ¨ ¨ ˝L˚M ˝L˚ncy ˝L˚1 ˝ ¨ ¨ ¨ ˝L˚j´1pΦjqˆΦk,rev

¯

“

`8
ÿ

n“0

ρ`pL˚ncy pΦ
cy
j qΦ

cy
k,revq. (4.17)

ii) The sum (4.17) takes into account only the correlations when at least one cycle has
been achieved. The second term in the right-hand side of (4.14) then takes into account the
contribution of the flux-flux correlation between reservoirs Rk and Rj if less than a cycle has
already occured, which can happen only if j ą k.

iii) In both (4.14) and (4.15) the δjk term takes into account the self-correlation of reservoir
Rj with itself during its first interaction with S. It is non-negative and vanishes only if S is not
effectively coupled to Ej in the following sense. If Lj “

ř

i Vi ¨ V
˚
i then ρ`pDjpH

1
S , H

1
Sqq “ 0

iff DjpH
1
S , H

1
Sq “ 0 (the latter is non-negative and ρ` is positive definite) which in turn holds

iff rVi, H
1
Ss “ 0 for all i. But this implies that L˚j pH 1Sq “

ř

i V
˚
i H

1
SVi “

ř

i V
˚
i ViH

1
S “ H 1S

because L˚j is unital, and hence Φj “ 0 by (4.6): whatever are the various temperatures and
whatever is the state of S there is no flux between S and Rj . We mention that a similar term
appears in [JPW] in the framework of quantum dynamical semigroups.

iv) Finally the prefactors T and T
M represent the “time-step”. In the cyclic case, Lcy

describes the evolution during a cycle while Lra is associated only to a time-step T
M .
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Remark 4.9. The Onsager reciprocity relations are satisfied only for the random and the
M “ 2 cyclic cases. In the M ą 2 cyclic case Assumption (TRI) reverses the time only
locally, leaving the order of the interactions unchanged (see Remark 3.8). This explains why
Lcyjk has to be compared to the kinetic coefficient Lrcykj of the reversed-order cyclic model.
This is similar to what happens when time reversal invariance is broken by the presence of a
magnetic field and one has to replace Onsager relations by Onsager-Casimir relations.

Notation In the rest of the paper, any quantity with a subscript/superscript rcy should be
understood as the quantity associated to the reversed-order cyclic RIS in which S interacts
first with RM , then RM´1, . . . For example Lrcy “ L1 ˝ ¨ ¨ ¨ ˝LM , Φrcy

j “ L˚M ˝ ¨ ¨ ¨ ˝L˚j`1pΦjq.
Of course, any result which holds true for the cyclic RIS also holds for the reversed cyclic one.

5 Entropic fluctuation

The purpose of this section is to go beyond Proposition 4.3 and to study the statistical
fluctuations of the entropy fluxes βjΦj going out the reservoirs pRjq1ďjďM .

5.1 Full counting statistics

To study the entropy fluctuation we consider the statistics of the increments of the entropy
observable as given by a two time measurement protocol, also called Full Couting Statistics
(FCS), and which we briefly recall for the convenience of the reader. This approach goes
back to [Ku] and, independently, [Ta]. It has more recently been used in e.g. [JOPP, BDBP,
BJPPP, BPP, BPR], see also the review [EHM].

Consider a quantum system S with underlying finite dimensional Hilbert space H and
let A be the observable of interest. Suppose the system is in the state ρ when we perform a
first measurement of A. The possible outcomes of the measurement are eigenvalues of A and
a P sppAq is observed with probability

PpA “ aq “ TrpΠapAqρΠapAqq

where ΠapAq is the spectral projector of A associated to the eigenvalue a. After this first

measurement, given that the outcome is a, the state of the system becomes
ΠapAqρΠapAq

TrpΠapAqρΠapAqq
.

Subsequently, if the evolution of the system during some time interval of length τ is described
by some unitary operator U , a second measurement of A at time τ gives the value a1 P sppAq
with probability

Tr
`

Πa1pAqUΠapAqρΠapAqU
˚Πa1pAq

˘

TrpΠapAqρq
.

The joint probability distribution of the two measurements is thus given by

Ppa, a1q “ Tr
`

Πa1pAqUΠapAqρΠapAqU
˚Πa1pAq

˘

,

and the statistics of the increment ∆A of A as given by this protocol is therefore given by

Pp∆A “ δq “
ÿ

a,a1PsppAqˆsppAq
a1´a“δ

Tr
`

Πa1pAqUΠapAqρΠapAqU
˚Πa1pAq

˘

.
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Note that if A commutes with the initial state ρ we simply have

Pp∆A “ δq “
ÿ

a,a1PsppAqˆsppAq
a1´a“δ

Tr
`

Πa1pAqUΠapAqρU
˚
˘

(5.1)

so that the expectation of ∆A as given by this two-measurement protocol is

EPp∆Aq “
ÿ

a,a1PsppAqˆsppAq

pa1 ´ aqTr pΠa1pAqUΠapAqρU
˚q “ Tr

`

ρpU˚AU ´Aq
˘

, (5.2)

and coincides with the expectation value of the flux observable U˚AU ´A associated to A.
Note also that, although it does not appear in the notation, the probability law P depends

on the initial state ρ of the system when the first measurement is performed.

In this section, we are interested in the full statistics of the increment of entropy observables
of the probes, where the entropy observables are defined in Section 2.3. Since probes are
initially in thermal equilibrium, up to an irrelevant constant the entropy observable of Ej is
SEj :“ βjHEj . The corresponding entropy increment observable is therefore U˚j SEjUj ´ SEj “
βjpU

˚
j HEjUj ´HEj q. We shall also consider the energy increment observables U˚j HEjUj ´HEj

which up to a prefactor 1
T correspond to the flux observables considered in Section 4.1.

Let now j :“ pjnqnPN˚ P t1, . . . ,Mu
N˚ be the sequence of indices describing the sequence

of probes with which S interacts, and denote by Enjn the nth probe. Recall that Enjn is a copy
of Ejn . Then, according to (5.1), the probability distribution of the increment of entropy for
the n-th interaction is given by

P
´

∆SEnjn “ ς
¯

“
ÿ

s1´s“ς

Tr
´

Πs1

´

SEnjn

¯

UnΠs

´

SEnjn

¯

ˆ ρb ρEnjn ˆ U
˚
n

¯

,

where the sum runs over s, s1 P sp
´

SEnjn

¯

such that s1 ´ s “ ς, ρ is the state of S at the

beginning of the interaction and where we have used that the observable SEnjn commutes with
the “initial state” ρb ρEnjn .

To describe the statistics of entropy increments during theN first interactions we introduce
some more notation. For any s :“ ppsn, s

1
nqqn P pR2qN

˚

and N ě 1 we define

UsN pjq :“ UNpsN ,s1N q

´

SNEjN

¯

ˆ ¨ ¨ ¨ ˆ U1
ps1,s11q

´

S1
Ej1

¯

, where Unps,s1qpSq :“ Πs1pSqUnΠspSq.

Note that clearly Un
ps,s1qpSq is non-zero only when s, s1 P sppSq. Then the statistics of entropy

increments during the N first interactions is given by

P
´

∆SE1
j1
“ ς1, ¨ ¨ ¨ ,∆SENjN

“ ςN

¯

“
ÿ

Tr
`

UsN pjq ˆ ρNtotpjq ˆ UsN pjq˚
˘

,

where the sum runs over s P pR2qN such that @1 ď n ď N, sn, s
1
n P σ

´

SEnjn

¯

ˆ σ
´

SEnjn

¯

and

s1n ´ sn “ ςn, and where ρNtotpjq denotes the total initial state ρb ρE1
j1
b ¨ ¨ ¨ b ρENjN

.

Definition 5.1. The (random) vectors of entropy increments and energy increments after N

interactions are SNR pjq :“
´

SNR1
pjq, ¨ ¨ ¨ ,SNRM

pjq
¯

, QN
Rpjq :“

´

QN
R1
pjq, ¨ ¨ ¨ ,QN

RM
pjq

¯

where

SNRj
pjq :“

ÿ

1ďnďN
jn“j

∆SEnjn , QN
Rj
pjq :“ ´β´1

j SNRj
pjq.
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Remark 5.1. The sign convention in the definition of QN
Rj
pjq is in agreement with the one of

the flux observables Φj of Section 4.1.

We obviously have the following

Proposition 5.1. The joint probability distribution of SNR pjq is given by

P
`

SNR pjq “ ς
˘

“
ÿ

Tr
`

UsN pjq ˆ ρNtotpjq ˆ UsN pjq˚
˘

, (5.3)

where the sum runs over all s such that for all 1 ď n ď N, sn, s
1
n P σ

´

SEnjn

¯

ˆ σ
´

SEnjn

¯

and

for any j P t1, . . . ,Mu one has
ÿ

1ďnďN
jn“j

s1n ´ sn “ ςj with ς “ pς1, . . . , ςM q.

In the case of cyclic RIS, in agreement with (4.11), we shall actually consider

SNR pcyq :“ SNˆMR pjcyq, resp. QN
Rpcyq :“ QNˆM

R pjcyq,

the vector of entropy, resp. energy, increments associated to the cyclic RIS after N cycles.

In the random case note that randomness is now twofold: randomness due to the random
order of interactions and a “quantum” randomness due to the two time measurement protocol,
and that the latter depends on the former. Indeed as already mentioned the probability law P
of a two time measurement protocol depends on the initial state of the (entire) system, hence
on ρ but more importantly on the sequence j of probes (via the ρEnjn ’s). To be precise, given a
sequence j we should denote Pj instead of P and then the joint probability distribution with
respect to the two alea is

P̂pj, sq “ Ppjq ˆ Pjpsq. (5.4)

5.2 Moment generating function

We will analyze the large time limit, i.e. N Ñ 8, statistics of the entropy and energy
increments through their moment generating functions (MGF).

Definition 5.2 (Moment generating function). Let α “ pα1, . . . , αM q P CM . We denote by

rjN,ρpαq and rcyN,ρpαq the respective MGF of the vectors ´SNR pjq and ´SNR pcyq at α, i.e.

rjN,ρpαq :“ EPj

ˆ

e
´
řM
j“1 αjSNRj pjq

˙

and rcyN,ρpαq :“ EP

ˆ

e
´
řM
j“1 αjSNRj pcyq

˙

.

Note that the above MGF are defined with respect to the “quantum” alea. We have also
stressed their dependence on the initial state ρ of the small system. In the random RIS case
we shall also consider the MGF with respect to the two alea.

Definition 5.3. For α P CM , let rraN,ρpαq :“ EP

´

rjN,ρpαq
¯

“ EP̂

ˆ

e
´
řM
j“1 αjSNRj pjq

˙

.

To understand the MGF rjN,ρpαq, r
cy
N,ρpαq and rraN,ρpαq, following e.g. [JPW, BDBP,

vHG, vHG2, BPP], we consider the following deformations of the reduced dynamics maps
pLjq1ďjďM .
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Definition 5.4. For α “ pα1, . . . , αM q P CM we define

Lrαs˚j pXq :“ TrHEj

`

1lb ρ
1´αj
Ej ˆ U˚j ˆX b ρ

αj
Ej ˆ Uj

˘

,

and

Lrαs˚cy :“ Lrαs˚1 ˝ ¨ ¨ ¨ ˝ Lrαs˚M , Lrαs˚ra :“
1

M
pLrαs˚1 ` ¨ ¨ ¨ ` Lrαs˚M q. (5.5)

Remark 5.2. The notation Lrαs˚j is chosen in order to be consistent with the reduced dynamics

maps L˚j . Indeed, Lr0s˚j “ L˚j and Lr0s˚
7

“ L˚7 , 7 “ cy or ra. Of course Lrαsj will denote its

dual map so that Lr0sj “ Lj . Note also that for any j the map Lrαs˚j only depends on αj .

The connection between the MGF and the Lrαs˚j ’s is provided by the following proposition.
For the convenience of the reader we briefly sketch its proof in Section 6.2.

Proposition 5.2. For any α P CM and N ě 1 one has

rjN,ρpαq “ ρ
´

Lrαs˚j1
˝ ¨ ¨ ¨ ˝ Lrαs˚jN

p1lq
¯

. (5.6)

As a consequence

rcyN,ρpαq “ ρ

ˆ

´

Lrαs˚cy

¯N
p1lq

˙

and rraN,ρpαq “ ρ

ˆ

´

Lrαs˚ra

¯N
p1lq

˙

. (5.7)

Of course the same approach can be used to study the energy increments.

Definition 5.5. Let α P CM . We denote by r̃jN,ρpαq and r̃cyN,ρpαq the respective MGF of the

vectors QN
Rpjq and QN

Rpcyq at α, i.e.

r̃jN,ρpαq :“ EP

ˆ

e
řM
j“1 αjQNRj pjq

˙

and r̃cyN,ρpαq :“ EP

ˆ

e
řM
j“1 αjQNRj pcyq

˙

,

as well as, in the random case, the MGF with respect to the two alea, i.e.

r̃raN,ρpαq :“ EP

´

r̃jN,ρpαq
¯

“ EP,P

ˆ

e
řM
j“1 αjQNRj pjq

˙

.

It follows directly from Definition 5.1 that the entropy and energy MGF satisfy the relations

r̃jN,ρpαq “ rjN,ρ

ˆ

α

β

˙

, r̃7N,ρpαq “ r7N,ρ

ˆ

α

β

˙

, 7 “ cy, ra, (5.8)

and where
α

β
denotes the vector

ˆ

α1

β1
, . . . ,

αM
βM

˙

.

Although not mentioned explicitly all the above quantities depend on the vector ζ “

pζ1, . . . , ζM q of thermal forces and, as for Lj , the map Lrαsj,ζ actually only depends on ζj .

Proposition 5.3. If (ER7) holds then, for any ζ,α P RM , the map Lrαs˚
7,ζ is a primitive CP

map. We shall denote by r7ζpαq ą 0 its spectral radius.
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Proof. The proof is the same as the one of Proposition 3.2.

One can then relate the large N behaviour of the moment generating function to the spectral

radius of Lrαs˚
7

using Proposition 5.2.

Theorem 5.4. Suppose (ER7) holds.

1) For any initial state ρ and α, ζ P RM one has

r7ζpαq “ lim
nÑ`8

r7n,ρpαq
1
n . (5.9)

2) If (TRI) holds we have the following version of the Evans-Searles symmetry:

rcyζ p1´αq “ rrcyζ pαq, rraζ p1´αq “ rraζ pαq (5.10)

where rrcyζ pαq is the spectral radius of Lrαs˚rcy,ζ :“ Lrαs˚M,ζ ˝ ¨ ¨ ¨ ˝ L
rαs˚
1,ζ , the deformed reduced

dynamics map corresponding to the cyclic RIS with a reversed order, and 1 “ p1, . . . , 1q.

3) If (NE) holds we have the following translation symmetry

r7ζpαq “ r7ζpα` λβ
´1q, 7 “ cy, ra, (5.11)

for any α, ζ P RM , λ P R and where β´1 “ pβ´1
1 , . . . , β´1

M q.

In view of (5.9) we will call α ÞÑ r7ζpαq the large time moment generating function of the
entropy fluxes. Of course (5.8) immediately leads to a similar result for energy fluxes, i.e.

r̃7ζpαq :“ lim
nÑ`8

r̃7n,ρpαq
1
n “ r7ζ

ˆ

α

β

˙

.

In particular the translation symmetry (5.11) becomes

r̃7pαq “ r̃7pα` λ1q (5.12)

for any α P RM and λ P R. This translation symmetry (5.12) is related to the energy
conservation (4.8), see Remark 5.8 below. As we have already mentioned at the end of
Section 3.4.1 it is thus not surprising that we need to assume (NE) at this point.

Remark 5.3. We mention that analogous results are obtained in [AGMT, BPP] for systems
continuously interacting with infinitely extended reservoirs. There the authors consider a two
time measurement protocol with finitely extended reservoirs, then perform a thermodynamic
limit which leads to the infinitely extended reservoirs and finally look at a large time limit.
Their analysis requires some ultra-violet condition on the coupling between the small system
S and the reservoirs to control the large time limit (this ultraviolet assumption was initially
missing in [AGMT] leaving a gap in the proof which was further corrected in [BPP]). The
situation is somehow simpler here because at finite time only finitely many probes have already
been coupled to S. Said differently the thermodynamic and large time limit are in a sense
taken simultaneously. On the other hand the RIS structure leads to a repeated two time
measurement protocol (after n interactions 2n measurements have been done) instead of a
single one.
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5.3 First moments and link with linear response theory

Our next result concerns the first and second moments of the entropy/energy increments and
makes the connection with the results presented in Section 4.3. We thus suppose throughout
this section that (ER7) and (NE) hold. We also introduce the following maps which act on
BpHSq.

Definition 5.6. For any j “ 1, . . . ,M let

ϕjpXq :“
1

T

`

L˚j pXH 1Sq ´ L˚j pXqH 1S
˘

, ϕcyj :“ L˚1 ˝ ¨ ¨ ¨ ˝ L˚j´1 ˝ ϕj ˝ L˚j`1 ˝ ¨ ¨ ¨ ˝ L˚M . (5.13)

Remark 5.4. If follows from (4.1) and (4.6) that ϕjp1lq “ Φj and ϕcyj p1lq “ Φcy
j .

The maps ϕj appear naturally as the derivatives with respect to α of the deformed maps

Lrαs˚j , see Lemma 6.4. Of course, similarly to the flux observable Φj , the map ϕj depends on
the thermodynamical force ζj . It then follows directly from (4.3) that for any ζ P R one has

ϕ
ρ`,ζ
j,ζ pXq “

1

T

`

L˚j,revpXqH
1
S ´ L˚j,revpXH

1
Sq
˘

so that in particular, using (4.7), we get

ϕ
ρ`,ζ
j,ζ p1lq “ Φj,rev. (5.14)

Theorem 5.5. Suppose (ER7) and (NE) hold. Then we have

1) For all j “ 1, . . . ,M ,

Brcypαq

Bαj
rα“0“ βjTρ

cy
` pΦ

cy
j q,

Brrapαq

Bαj
rα“0“ βj

T

M
ρra` pΦjq, (5.15)

2) For all j, k “ 1, . . . ,M ,

B2rcypαq

BαkBαj
rα“0 “ βjβkT

2
8
ÿ

n“0

ρcy`

´

ϕcyj ˝ L
˚n
cy pΦ

cy
k ´ ρ

cy
` pΦ

cy
k qq ` ϕ

cy
k ˝ L

˚n
cy pΦ

cy
j ´ ρ

cy
` pΦ

cy
j qq

¯

`δkąjβjβkT
2ρcy`

`

L˚1 ˝ ¨ ¨ ¨ ˝ L˚j´1 ˝ ϕj ˝ L˚j`1 ˝ ¨ ¨ ¨ ˝ L˚k´1pΦkq
˘

`δjąkβjβkT
2ρcy`

`

L˚1 ˝ ¨ ¨ ¨ ˝ L˚k´1 ˝ ϕk ˝ L˚k`1 ˝ ¨ ¨ ¨ ˝ L˚j´1pΦjq
˘

`δjkβ
2
jTρ

cy
`

`

L˚1 ˝ ¨ ¨ ¨ ˝ L˚j´1

`

DjpH
1
S , H

1
Sq
˘˘

. (5.16)

and

B2rrapαq

BαkBαj
rα“0 “ βjβk

ˆ

T

M

˙2 8
ÿ

n“0

ρcy`
`

ϕj ˝ L˚nra
`

Φk ´ ρ
ra
` pΦkq

˘

` ϕk ˝ L˚nra
`

Φj ´ ρ`pΦjq
˘˘

`δjkβ
2
j

T

M
ρra`

`

DjpH
1
S , H

1
Sq
˘

. (5.17)

Remark 5.5. In the above theorem all the quantities depend on the vector ζ of thermal forces
and all the results hold for any value of ζ. We have not mentioned the dependence on ζ to
make the formula not too heavy.



30 5 ENTROPIC FLUCTUATION

Remark 5.6. The prefactors T and T 2, resp. T
M and T 2

M2 , in (5.15)-(5.16), resp. (5.15) and

(5.17), are due to the fact that the definitions of r7npαq correspond to the variation of entropy
fluxes per interaction or cycle and not per unit time.

Remark 5.7. Of course (5.15) is in agreement with (5.2).

Remark 5.8. As mentioned at the end of the previous section (4.8) is a direct consequence of
the translation symmetry (5.12) combined with (5.15).

Finally, we recall that the Green-Kubo formula (4.14)-(4.15) can also be obtained via the
moment generating function r̃pαq, see e.g. [JPR, JPW]. Indeed, we infer from (5.15) and
(5.8) that

B2r̃raζ pαq

BζkBαj
rα“ζ“0“

T

M
Lrajk,

B2r̃cyζ pαq

BζkBαj
rα“ζ“0“ TLcyjk,

B2r̃rcyζ pαq

BζkBαj
rα“ζ“0“ TLrcyjk .

If moreover (TRI) holds, then Evans-Searles symmetry gives for any α, ζ

r̃rcyζ pαq “ r̃cyζ pβref1´ ζ ´αq, r̃raζ pαq “ r̃raζ pβref1´ ζ ´αq,

and using translation symmetry with λ “ βref we get

r̃rcyζ pαq “ r̃cyζ p´ζ ´αq, r̃raζ pαq “ r̃raζ p´ζ ´αq.

Using the chain rule we therefore have

B2r̃cyζ pαq

BζkBαj
rα“ζ“0`

B2r̃rcyζ pαq

BζkBαj
rα“ζ“0“

B2r̃cyζ pαq

BαkBαj
rα“ζ“0,

B2r̃raζ pαq

BζkBαj
rα“ζ“0“

1

2

B2r̃raζ pαq

BαkBαj
rα“ζ“0.

The above computation is summarized in the following

Proposition 5.6. If Assumptions (ER7), (NE) and (TRI) are satisfied then

B2r̃cyζ pαq

BαkBαj
rα“ζ“0“ T pLcyjk ` L

rcy
jk q “ T pLcyjk ` L

cy
kjq,

B2r̃raζ pαq

BαkBαj
rα“ζ“0“

2T

M
Lrajk,

where in the cyclic case the second equality follows from (4.16).

Note that similarly to what happens in continuous-time quantum dynamical semigroups
[JPW], using (5.17) the above proposition gives another path to derive the Green-Kubo for-
mula provided Assumption (TRI) holds. However due to the lack of global time-reversal
invariance this does not allow us to retrieve (4.14) even if (TRI) holds. Nevertheless we have
the following relations which hold without (TRI).

Corollary 5.7. If Assumptions (ER7) and (NE) are satisfied, then

B2r̃cyζ pαq

BαkBαj
rα“ζ“0“ T pLcyjk ` L

cy
kjq,

B2r̃raζ pαq

BαkBαj
rα“ζ“0“

T

M
pLrajk ` L

ra
kjq.

Proof. Combining Remark 4.6, Eq. (4.3) and (5.14), and the fact that ρ` is an invariant state
of all the Lj ’s, one easily gets that at equilibrium the various terms on the right-hand sides
of (5.16)-(5.17) coincide with those in (4.14)-(4.15).



5.4 Fluctuation Theorem and fluctuation relation 31

5.4 Fluctuation Theorem and fluctuation relation

Let e7n,ρpαq and e7pαq denote the cumulant generating functions of transient and large time
entropy fluxes, i.e.

e7n,ρpαq :“
1

τ7
log r7n,ρpαq “

1

τ7
logEP7

ˆ

e
´
řM
j“1 αjSNRj p7q

˙

, e7pαq :“
1

τ7
log r7pαq,

where τcy “ T and τra “
T
M , Pcy “ P, Pra “ P̂ and, with a slight abuse of notation, SNR p7q

stands for SNR pjq when 7 “ ra. Let also I7pςq :“ sup
αPRM

`

α.ς ´ e7p´αq
˘

be the Fenchel-Legendre

transform of e7p´αq.

Theorem 5.8. Suppose Assumption (ER7) holds. Then
1) The entropy fluxes satisfy a large deviation principle with rate function I7. Namely, for
any Borel set G Ă RM ,

´ inf
ςPG̊

I7pςq ď lim inf
NÑ`8

1

Nτ7
logP7

ˆ

SNR p7q
Nτ7

P G̊

˙

ď lim sup
NÑ`8

1

Nτ7
logP7

ˆ

SNR p7q
Nτ7

P G

˙

ď ´ inf
ςPG

I7pςq.

(5.18)
2) ς ÞÑ I7pςq P r0,`8s is closed convex, with compact level sets and inf

ςPRM
I7pςq “ 0.

3) The sequence of random vectors
´

SNR p7q
Nτ7

¯

NPN˚
converges in probability and exponentially

fast to S`p7q :“ p´β1ρ
7
`pΦ

7
1q, ¨ ¨ ¨ ,´βMρ

7
`pΦ

7

M qq. Namely,

@ε ą 0, DApεq ą 0,@N P N˚,P7
ˆ›

›

›

›

SNR p7q
Nτ7

´ S`p7q
›

›

›

›

ą ε

˙

ď e´NApεq. (5.19)

Moreover 1?
Nτ7

`

SNR p7q ´ E
`

SNR p7q
˘˘

converges in distribution towards a centered Gaussian µ

whose covariance matrix is pBαjBαke
7p0qqj,k.

4) If Assumption (TRI) holds, we have the fluctuation relations

@ς P RM , Icyp´ςq ´ Ircypςq “ Irap´ςq ´ Irapςq “
M
ÿ

j“1

ςj , (5.20)

where Ircy is the analog of Icy for the reversed-order cyclic RIS.
5) If Assumption (NE) holds then

@ς P RM ,
M
ÿ

j“1

β´1
j ςj ‰ 0 ñ I7pςq “ `8. (5.21)

In particular the gaussian measure µ in 3) is supported on the hyperplane
M
ÿ

j“1

β´1
j ςj “ 0.

Remark 5.9. Losely speaking the large deviation principle (5.18) can be written

P7
`

SNR p7q “ ς
˘

« e´Nτ7I7pςq,
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as N goes to `8. So equation (5.20) can also be translated as

P
`

SNR pcyq “ ´ς
˘

P
`

SNR prcyq “ ς
˘ « e´NT pς1`¨¨¨`ςM q and

P̂
`

SNR pjq “ ´ς
˘

P̂
`

SNR pjq “ ς
˘ « e´N

T
M
pς1`¨¨¨`ςM q.

The latter is the original form of the fluctuation relation, see [ES, GC].

Remark 5.10. Recall from Definition 5.1 that

SNR p7q “
`

SNR1
p7q, . . . ,SNRM

p7q
˘

“
`

´β1QN
R1
p7q, . . . ,´βMQN

RM
p7q

˘

so that (5.19) is of course related to Proposition 4.3.

Remark 5.11. We would like to stress that except in point 5) the above theorem does not
make use of Assumption (NE). Those results concern what happens far from equilibrium
hence there is indeed no reason that (NE), which is related to the notion of equilibrium,
plays any role.

Concerning 5), it is related to energy conservation (4.8). As we have argued at the end of
Section 3.4.1 this explains why Assumption (NE) is needed here.

Obviously Theorem 5.8 has its analog for the energy flux variables QN
R. At equilibrium,

3. in the above theorem allows us to complete the linear response theory results of Section
4.3 with a Central Limit theorem on the large time behaviour of energy fluxes at equilibrium.
Namely we have the following

Theorem 5.9 (Fluctuation-Dissipation). If Assumptions (ER7), (NE) and (TRI) hold, then
the sequence of random vectors 1?

Nτ7

`

QN
Rp7q ´ E

`

QN
Rp7q

˘˘

NPN˚ converges in distribution to

a centered Gaussian whose covariance matrix
´

D7jk

¯

1ďj,k,ďM
is given by Dcy

jk “ Lcyjk ` Lrcyjk

and Dra
jk “ 2Lrajk.

Proof. Theorem 5.8 gives the convergence with D7jk “ B
2
αjαk

ẽ7p0q where ẽ7pαq “ 1
τ7

log r̃7pαq.

The result follows using Corollary 5.7 and the fact that at equilibrium Bαj r̃p0q “ τ7ρ
7
`pΦ

7

jq “

0.

6 Proofs of the main results

6.1 Proof of Theorem 4.4

This proof is inspired by the one given in [LS] (see also [JPW]) for open quantum systems
interacting with thermal reservoirs in the Van Hove weak coupling limit. In order to sim-
plify the notation, all the quantities without any ζ or ζ parameter should be understood at
equilibrium ζ “ 0.

1)-2) The differentiability of ρ7
`,ζ follows from Proposition 3.2 and the one of Φ7j,ζ is clear

from its definition. Thus we have

L7jk “ Bζkρ
7

`,ζ

P

ζ“0
pΦ7jq ` ρ`

´

BζkΦ7j,ζ
P

ζ“0

¯

. (6.1)
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Since L7,ζ
´

ρ7
`,ζ

¯

“ ρ7
`,ζ for any ζ we get p1l´ L7,ζq

´

Bζkρ
7

`,ζ

¯

“ pBζkL7,ζq pρ
7

`,ζq, hence

`

1l´ LN7,ζ
˘

´

Bζkρ
7

`,ζ

¯

“

N´1
ÿ

n“0

Ln7,ζ ˝ BζkL7,ζpρ
7

`,ζq, @N ě 1. (6.2)

Using Proposition 3.2 we have lim
NÑ8

LN7,ζ
´

Bζkρ
7

`,ζ

¯

“ Tr
´

Bζkρ
7

`,ζ

¯

ρ7
`,ζ “ 0 where we have

used that Trpρ7
`,ζq “ 1 for all ζ so that Tr

´

Bζkρ
7

`,ζ

¯

“ 0. Letting N Ñ 8 in (6.2) we get

Bζkρ
7

`,ζrζ“0“

`8
ÿ

n“0

Ln7 ˝ BζkL7,ζrζ“0pρ`q, and (6.1) becomes

L7jk “
`8
ÿ

n“0

ρ`

´

BζkL
˚
7,ζrζ“0 ˝L˚n7 pΦ7jq

¯

` ρ`

´

BζkΦ7j,ζ
P

ζ“0

¯

. (6.3)

Lemma 6.1. For all k and X P BpHSq one has ρ`
`

BζkL
˚
k,ζk

rζk“0pXq
˘

“ Tρ` pXΦk,revq .

Proof. Using BζkρEk,ζk “ HEkρEk,ζk ´ TrpHEkρEk,ζkqρEk,ζk and the definition of Lk,ζk we have

ρ`
`

BζkL
˚
k,ζk

rζk“0pXq
˘

“ Tr p1lbHEk ˆ ρ` b ρEk U
˚
k X b 1lUkq ´ Tr pρ` b ρEk U

˚
k X b 1lUkq ˆ TrpHEkρEkq

“ Tr pUk 1lbHEk U
˚
k ˆ ρ`X b ρEkq ´ Tr pρ`Xq ˆ TrpHEkρEkq

“ Tr
``

Uk 1lbHEk U
˚
k ´ 1lbHEk

˘

ˆ ρ`X b ρEk
˘

“ TTr pΦk,revρ`Xq ,

where we have used the cyclicity of the trace and Assumption (NE) in line 2.

Corollary 6.2. For all k “ 1, . . . ,M and X P BpHSq one has

ρ`
`

BζkL
˚
cy,ζrζ“0pXq

˘

“ Tρ`
`

L˚k`1 ˝ ¨ ¨ ¨ ˝ L˚M pXqΦk,rev

˘

“ Tρ`

´

XΦcy
k,rev

¯

, (6.4)

ρ`
`

BζkL
˚
ra,ζrζ“0pXq

˘

“
T

M
ρ` pXΦk,revq . (6.5)

Proof. Eq. (3.3) gives BζkL
˚
cy,ζrζ“0“ L˚1 ˝ ¨ ¨ ¨ ˝L˚k´1 ˝ BζkL

˚
k,ζk

rζk“0˝L˚k`1 ˝ ¨ ¨ ¨ ˝L˚M . The first
equality in (6.4) then follows from Lemma 6.1 and the fact that ρ` is a joint invariant state
of Lj , j “ 1, . . . ,M , while the second equality follows from (4.3) and Definition 4.2.

The second identity is immediate by definition of Lra,ζ .

Inserting (6.4)-(6.5) into (6.3) leads to the infinite sums in (4.14)-(4.15)-(4.17). It thus

remains to compute ρ`

´

BζkΦ7j,ζ
P

ζ“0

¯

. For 7 “ ra it follows from (4.6) and Lemma 6.1 that

ρ`

´

BζkΦj,ζ

P

ζ“0

¯

“ δjk
1

T
ρ`

´

BζjL
˚
j,ζj

rζj“0pH
1
Sq
¯

“ δjkρ`
`

H 1SΦj,rev

˘

,

while for 7 “ cy, using moreover (4.1) and the fact that ρ` is a joint invariant state of the
Lj ’s, we have for k ă j

ρ`

´

BζkΦcy
j,ζ

P

ζ“0

¯

“ ρ`
`

BζkL
˚
k,ζk

rζk“0 ˝L˚k`1 ˝ ¨ ¨ ¨ ˝ L˚j´1pΦjq
˘

“ T ρ`
`

L˚k`1 ˝ ¨ ¨ ¨ ˝ L˚j´1pΦjq ˆ Φk,rev

˘

,
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while ρ`

´

BζkΦcy
j,ζ

P

ζ“0

¯

“ 0 for k ą j and

ρ`

´

BζjΦ
cy
j,ζ

P

ζ“0

¯

“
1

T
ρ`

´

BζjL
˚
j,ζj

rζj“0pH
1
Sq
¯

“ ρ`
`

H 1SΦj,rev

˘

.

Equations (4.14)-(4.15) finally follow because ρ`
`

H 1SΦj,rev

˘

“
1

2
ρ`pDjpH

1
S , H

1
Sqq. Indeed,

ρ`
`

H 1SΦj,rev

˘

“
1

T
ρ`

´

H 12S ´H
1
SL˚j,revpH

1
Sq
¯

“
1

T
ρ`

´

H 12S ´ L˚j pH 1SqH 1S
¯

“
1

2T
ρ`

´

H 12S ` L˚j pH 12S q ´ L˚j pH 1SqH 1S ´H 1SL˚j pH 1Sq
¯

“
1

2
ρ`

`

DjpH
1
S , H

1
Sq
˘

,

where we have used (4.7) in line 1, (4.3) in line 2, and in line 3 that at equilibrium ρ` is Lj
invariant and rL˚j pH 1Sq, H 1Ss “ 0, see Remark 3.5.

3) We now prove the Onsager relations (4.16). We thus now assume that Assumption
(TRI) also holds. It follows from (3.12) that Θ ˝ L˚ra ˝ Θ “ L˚ρ`ra , and ρ`pΘpXqq “ ρ`pX

˚q

for any X P BpHSq because ρ` is Θ invariant. Hence using (4.5) we get for all n

ρ`pL˚nra pΦjqΦk,revq “ ρ`

´

ΘpΦk,revq ˆ pL˚ρ`ra q
npΘpΦjqq

¯

“ ρ`

´

Φk ˆ pL˚ρ`ra q
npΦj,revq

¯

“ ρ`pL˚nra pΦkqΦj,revq, (6.6)

from which Lrajk “ Lrakj follows.

Similarly, let

Lrcy :“ L1˝L2˝¨ ¨ ¨˝LM , Φrcy
j :“

1

T
L˚M˝¨ ¨ ¨˝L˚j`1pΦjq and Φrcy

j,rev :“
1

T
L˚1,rev˝¨ ¨ ¨˝L˚j´1,revpΦj,revq,

denote the reversed-order analogs of Lcy, Φcy
j and Φcy

j,rev. The associated kinetic coefficients
Lrcyjk are thus given by

Lrcyjk “ T
`8
ÿ

n“0

ρ`pL˚nrcypΦ
rcy
j qΦrcy

k,revq

` δkąj Tρ`

´

L˚k´1 ˝ ¨ ¨ ¨ ˝ L˚j`1pΦjq ˆ Φk,rev

¯

`
1

2
δjkρ`pDjpH

1
S , H

1
Sqq,

It follows from Lemma 3.12 and (4.4)-(4.5) that

Θ ˝ L˚cy ˝Θ “ L˚ρ`rcy , Θ
´

Φcy
j

¯

“ ´Φrcy
j,rev and Θ

´

Φcy
k,rev

¯

“ ´Φrcy
k ,

and the same reasoning than in (6.6) shows that Lcyjk “ Lrcykj .
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6.2 Proof of Proposition 5.2

The idea of the proof is close to the one of an analogous statement in [vHG]. The main
difference comes from the fact that we consider a double measurement with each probe while
they only have a single post-interaction measurement.

Since rHEj , HEks “ rHEj , Hks “ 0 for j ‰ k, we have

UsN pjq “ Πs1N

´

SNEjN

¯

¨ ¨ ¨Πs11

´

S1
Ej1

¯

ˆ UN ¨ ¨ ¨U1 ˆΠs1

´

S1
Ej1

¯

¨ ¨ ¨ΠsN

´

SNEjN

¯

,

so that (5.3) becomes

PpSNR pjq “ ςq

“
ÿ

Tr
´

Πs1N
pSNEjN

q ¨ ¨ ¨Πs11
pS1

Ej1
q ˆ UN ¨ ¨ ¨U1 ˆΠs1pS

1
Ej1
q ¨ ¨ ¨ΠsN pSEjN q

N ˆ ρNtotpjq ˆ U
˚
1 ¨ ¨ ¨U

˚
N

¯

,

where the sum is as in (5.3). Hence

rjN,ρpαq

“
ÿ

ς1,...,ςM

e´pα1ς1`¨¨¨`αM ςM qPpSNR pjq “ ςq

“
ÿ

s

N
ź

n“1

e´αjn ps
1
n´snqTr

´

Πs1N
pSNEjN

q ¨ ¨ ¨Πs11
pS1

Ej1
q ˆ UN ¨ ¨ ¨U1 ˆΠs1pS

1
Ej1
q ¨ ¨ ¨ΠsN pS

N
EjN
q

ˆρNtotpjq ˆ U
˚
1 ¨ ¨ ¨U

˚
N

¯

“ Tr

ˆ

e
´αjN S

N
EjN ¨ ¨ ¨ e

´αj1S
1
Ej1 ˆ UN ¨ ¨ ¨U1 ˆ e

αj1S
1
Ej1 ¨ ¨ ¨ e

αjN S
N
EjN ˆ ρNtotpjq ˆ U

˚
1 ¨ ¨ ¨U

˚
N

˙

.

Now, recall that ρNtotpjq “ ρb ρEj1 b ¨ ¨ ¨ b ρEjN where ρEjn “
e
´SEjn

Tr
´

e
´SEjn

¯ for any n, and that

the e
´SnEjn ’s act on different probes. Hence we get

rjN,ρpαq “ Tr
´

1lS b ρ
αj1
Ej1
b ¨ ¨ ¨ b ρ

αjN
EjN

ˆ UN ¨ ¨ ¨U1 ˆ ρb ρ
1´αj1
Ej1

b ¨ ¨ ¨ b ρ
1´αjN
EjN

ˆ U˚1 ¨ ¨ ¨U
˚
N

¯

,

and (5.6) follows exactly in the same way than (3.2) follows from (3.1).

6.3 Proof of Theorem 5.4

1) The proof is standard, see e.g. [HMO, JPW, vHG], so we only briefly sketch it. Since Lrαs˚
7,ζ

is completely positive, and primitive by Proposition 5.3, it follows from Perron-Frobenius the-
ory for completely positive maps [EHK] that r7ζpαq is a simple dominant eigenvalue with pos-
itive definite left and right eigenvectors and (5.9) follows then from (5.7). Indeed there exists

γ ą 0 (spectral gap) such that for all n one has
´

Lrαs
˚

7

¯n
“ pr7ζpαqq

n|Ayxν|`O
´

pr7ζpαq ´ γq
n
¯

where ν and A denote the positive definite left and right eigenvectors of Lrαs˚
7,ζ normalized such

that νpAq “ 1. Thus

r7n,ρpαq “ ρ
´´

Lrαs
˚

7

¯n
p1lq

¯

“ pr7ζpαqq
n

«

ρpAq ˆ νp1lq `O

˜˜

1´
γ

r7ζpαq

¸n¸ff

,
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and the result follows since both ρpAq ą 0 and νp1lq ą 0.

2) The symmetry relies on the following Lemma which is a direct consequence of (TRI).

Lemma 6.3. For any j “ 1, . . . ,M and ζ,α P RM one has Θ ˝ Lrαs˚j,ζ ˝ Θ “ Lr1´αsj,ζ . As a
consequence

Θ ˝ Lrαs˚cy,ζ ˝Θ “ Lr1´αsrcy,ζ and Θ ˝ Lrαs˚ra,ζ ˝Θ “ Lr1´αsra,ζ .

The lemma indeed implies that the maps Lrαs˚ra,ζ and Lr1´αsra,ζ , resp. Lrαs˚cy,ζ and Lr1´αsrcy,ζ , have the
same spectral radius which proves (5.10).

Proof. Denote by Θj the time-reversal of Ej as in Section 3.3.3. Then for any X,Y we have

Tr
´

Y ˆΘ ˝ Lrαs˚j ˝ΘpXq
¯

“ Tr
´

ΘpY q ˆ Lrαs˚j pΘpXqq
¯

“ Tr
´

ΘpY q b ρ
1´αj
Ej ˆ U˚j ˆΘpXq b ρ

αj
Ej ˆ Uj

¯

“ Tr
´

Y bΘjpρ
1´αj
Ej q ˆΘbΘjpU

˚
j q ˆX bΘjpρ

αj
Ej q ˆΘbΘjpUjq

¯

“ Tr
´

Y b ρ
1´αj
Ej ˆ Uj ˆX b ρ

αj
Ej ˆ U

˚
j

¯

“ Tr
´

Y ˆ Lr1´αsj pXq
¯

,

where we have used Assumption (TRI) in the 4-th line.

3) The argument is again of isospectral type and relies on the following lemma.

Lemma 6.4. If (ER7) and (NE) hold then for any j “ 1, . . . ,M , α “ pα1, . . . , αM q P RM
and ζ “ pζ1, . . . , ζM q P RM and X P BpHSq one has

Lrαs˚j pXq “ L˚j
´

X eβjαjH
1
S

¯

e´βjαjH
1
S “ e´βjαjH

1
SL˚j

´

eβjαjH
1
S X

¯

, (6.7)

where βj is the inverse temperature of Ej, i.e. such that ζj “ βref ´ βj.

Remark 6.1. Note that the mere existence of H 1S requires (ER7) and (NE).

Proof. For any X P BpHSq we have

Lrαs˚j pXq “ TrEj

´

1lb e
βjαjHEj ρEj ˆ U

˚
j ˆX b e

´βjαjHEj ˆ Uj

¯

“ TrEj

´

1lb ρEj ˆ U
˚
j ˆXeβjαjH

1
S b 1lˆ e

´βjαjpH
1
S`HEj q ˆ Uj ˆ 1lb e

βjαjHEj
¯

“ TrEj

´

1lb ρEj ˆ U
˚
j ˆXeβjαjH

1
S b 1lˆ Uj ˆ e´βjαjH

1
S b 1l

¯

“ L˚j
´

X eβjαjH
1
S

¯

e´βjαjH
1
S ,

where we have used (3.9) in line 3. The second equality is a direct consequence of (3.11).
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We finally use the above lemma to prove (5.11). For λ P R let Mλ denote the right-
multiplication by eλH

1
S on BpHSq. It follows from Lemma 6.4 that, for any j,α, ζ, we have

Lrα`λβ
´1s˚

j,ζ “M´1
λ ˝ Lrαs˚j,ζ ˝Mλ, so that

Lrα`λβ
´1s˚

7,ζ “M´1
λ ˝ Lrαs˚

7,ζ ˝Mλ, 7 “ cy, ra.

The maps Lrα`λβ
´1s˚

7,ζ and Lrαs˚
7,ζ thus have the same spectral radius, i.e. r7ζpαq “ r7ζpα`λβ

´1q.

6.4 Proof of Theorem 5.5

The proof is an adaptation of the one in [JPW] for continuous time quantum dynamical
semigroups. In all this section the thermodynamical parameter ζ is arbitrary but fixed, see
Remark 5.5, and we shall omit it.

For α “ 0 the operator Lr0s˚
7

“ L˚7 has a simple dominant eigenvalue 1. By perturbation

theory there exists a small circle Γ centered at 1 such that for α P RM sufficiently close to 0

the only point in sp
´

Lrαs˚
7

¯

inside or on Γ is its dominant eigenvalue r7pαq. We shall further

denote by P
rαs
7

the associated eigenprojection. Note that P
r0s
7
pXq “ ρ7`pXq1l.

For n “ 0, 1 denote by E7npαq the quantity

E7npαq :“

¿

Γ

pz ´ 1qnρ7`

ˆ

´

z ´ Lrαs˚
7

¯´1
p1lq

˙

dz

2πi
. (6.8)

Writing E7npαq as

E7npαq :“

¿

Γ

pz´1qnρ7`

ˆ

´

z ´ Lrαs˚
7

¯´1
˝ pId´ P

rαs
7
qp1lq

˙

dz

2πi
`

¿

Γ

pz ´ 1qn

z ´ r7pαq
ρ7`

´

P
rαs
7
p1lq

¯ dz

2πi
,

the first term on the right-hand side is analytic inside Γ and it follows from Cauchy’s integral
formula that

E70pαq “ ρ7`

´

P
rαs
7
p1lq

¯

and E71pαq “ pr
7pαq ´ 1qρ7`

´

P
rαs
7
p1lq

¯

, (6.9)

so that

r7pαq “ 1`
E71pαq

E70pαq
. (6.10)

Since P
r0s
7
p1lq “ 1l and r7p0q “ 1 it follows from (6.9) that E70p0q “ 1, E71p0q “ 0 hence

Bαjr
7p0q “ BαjE

7
1p0q. Using (6.8) we get

BαjE
7
npαq “

¿

Γ

pz ´ 1qnρ7`

ˆ

´

z ´ Lrαs˚
7

¯´1
˝ BαjL

rαs˚
7

˝

´

z ´ Lrαs˚
7

¯´1
p1lq

˙

dz

2πi
, (6.11)

so that, because L˚7 p1lq “ 1l and L7pρ7`q “ ρ7`,

BαjE
7
np0q “

¿

Γ

pz ´ 1qn´2ρ7`

´

BαjL
rαs˚
7

rα“0p1lq
¯ dz

2πi
,
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hence

BαjE
7
0p0q “ 0 and BαjE

7
1p0q “ ρ7`

´

BαjL
rαs˚
7

rα“0p1lq
¯

. (6.12)

Eq. (6.10) and (6.12) then give BαkBαjr
7p0q “ BαkBαjE

7
1p0q, while from (6.11) we infer that

BαkBαjE
7
1p0q “

¿

Γ

pz ´ 1q´1ρ7`

´

BαkL
rαs˚
7

rα“0 ˝
`

z ´ L˚7
˘´1

˝ BαjL
rαs˚
7

rα“0p1lq
¯ dz

2πi

`

¿

Γ

pz ´ 1q´1ρ7`

´

BαjL
rαs˚
7

rα“0 ˝
`

z ´ L˚7
˘´1

˝ BαkL
rαs˚
7

rα“0p1lq
¯ dz

2πi

`

¿

Γ

pz ´ 1q´1ρ7`

´

BαjBαkL
rαs˚
7

rα“0p1lq
¯ dz

2πi
(6.13)

“: I ` II ` III

The next lemma is the main technical ingredient leading from (6.12)-(6.13) to (5.15)-(5.17).

Lemma 6.5. For any j, k “ 1, . . . ,M one has

BαjLrαs˚ra rα“0pXq “ βj
T

M
ϕjpXq, BαjLrαs˚cy rα“0pXq “ βjTϕ

cy
j pXq, (6.14)

BαkBαjL
rαs˚
ra rα“0p1lq “ δjkβ

2
j

T

M
DjpH

1
S , H

1
Sq, (6.15)

and

BαkBαjL
rαs˚
cy rα“0p1lq “

$

&

%

βjβkT
2 L˚1 ˝ ¨ ¨ ¨ ˝ L˚j´1 ˝ ϕj ˝ L˚j`1 ˝ ¨ ¨ ¨ ˝ L˚k´1pΦkq, if k ą j,

βjβkT
2 L˚1 ˝ ¨ ¨ ¨ ˝ L˚k´1 ˝ ϕk ˝ L˚k`1 ˝ ¨ ¨ ¨ ˝ L˚j´1pΦjq, if k ă j,

β2
jT L˚1 ˝ ¨ ¨ ¨ ˝ L˚j´1

`

DjpH
1
S , H

1
Sq
˘

, if j “ k.

(6.16)

Proof. Using Lemma 6.4, by straightforward calculation we get

BαjL
rαs˚
j pXq “ βj

´

Lrαs˚j pXH 1Sq ´ Lrαs˚j pXqH 1S

¯

and

BαkBαjL
rαs˚
j pXq “ δjkβ

2
j

´

Lrαs˚j pXH 12S q ´ 2Lrαs˚j pXH 1SqH
1
S ` Lrαs˚j pXqH 12S

¯

.

Using the definitions (5.13) of ϕjpXq and (4.12) of DjpX,Y q we thus obtain

BαjL
rαs˚
j rα“0pXq “ βjTϕjpXq and BαkBαjL

rαs˚
j rα“0p1lq “ δjkβ

2
jTDjpH

1
S , H

1
Sq, (6.17)

where we have used that rL˚j pH 1Sq, H 1Ss “ 0 in the second identity, see Remark 3.5.

Finally (6.14)-(6.16) follow directly from (6.17) and (5.5).

End of the proof of (5.15)-(5.17).

Since Bαjr
7p0q “ BαjE

7
1p0q combining (6.12) and (6.14), recall also Remark 5.4, we get (5.15).
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We now turn to (5.16)-(5.17). Using (6.14), the first term on the right-hand side of (6.13)
becomes

I “ βjβkτ
2
7

¿

Γ

pz ´ 1q´1ρ7`

´

ϕ7k ˝
`

z ´ L˚7
˘´1

´

Φ7j

¯¯ dz

2πi
,

where τcy “ T and τra “
T
M . Recall P

r0s
7

denotes the eigenprojection of L˚7 associated to the
eigenvalue 1. One has

¿

Γ

pz´1q´1ρ7`

´

ϕ7k ˝
`

z ´ L˚7
˘´1

˝ P
r0s
7

´

Φ7j

¯¯ dz

2πi
“

¿

Γ

pz´1q´2ρ7`

´

ϕ7k ˝ P
r0s
7

´

Φ7j

¯¯ dz

2πi
“ 0.

Hence

I “ βjβkτ
2
7

¿

Γ

pz ´ 1q´1ρ7`

´

ϕ7k ˝
`

z ´ L˚7
˘´1

˝ pId´ P
r0s
7
q

´

Φ7j

¯¯ dz

2πi

“ βjβkτ
2
7 ρ

7
`

´

ϕ7k ˝
`

1´ L˚7
˘´1

˝ pId´ P
r0s
7
q

´

Φ7j

¯¯

,

where we have used that
´

z ´ L˚7
¯´1

˝ pId ´ P
r0s
7
q is regular at z “ 1. Moreover, since the

spectral radius of L˚7 restricted to RanpId´ P
r0s
7
q is strictly less than one due to Assumption

(ER7) we can write

`

1´ L˚7
˘´1

˝ pId´ P
r0s
7
q

´

Φ7j

¯

“

8
ÿ

n“0

L˚n7
´

pId´ P
r0s
7
qpΦ7jq

¯

“

8
ÿ

n“0

L˚n7
´

Φ7j ´ ρ
7
`pΦ

7

jq

¯

,

so that

I “ βjβkτ
2
7

8
ÿ

n“0

ρ7`

´

ϕ7k ˝ L
˚n
7

´

Φ7j ´ ρ
7
`pΦ

7

jq

¯¯

.

Proceeding in the same way with the second term II in (6.13) we obtain that I ` II indeed
corresponds to the infinite sums in (5.16)-(5.17).

Finally, the third term on the right-hand side of (6.13) is III “ ρ7`

´

BαjBαkL
rαs˚
7

rα“0p1lq
¯

,

and using (6.15)-(6.16) it is easy to see that it leads to the remaining terms in (5.16)-(5.17).

6.5 Proof of Theorem 5.8

The proof of 1)-3) is a direct application of the Gartner-Ellis and Bryc Theorems, see e.g.
[DZ, El, Bry], and the following lemma, while (5.20) and (5.21) are direct consequences of
(5.10) and (5.11) respectively.

Lemma 6.6. Suppose Assumption (ER7) holds. Then e7pαq is a well defined real analytic
function on RM and for any α P RM and initial state ρ one has

lim
nÑ8

1

n
e7n,ρpαq “ e7pαq. (6.18)

Moreover there exists a neighborhood B of 0 in CM on which (6.18) holds.
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The proof is standard, it is similar to the one given for similar results in e.g. [JPW, vHG].
We briefly sketch it for the convenience of the reader.

Proof. The maps α ÞÑ Lrαs˚
7

are clearly analytic on CM . Then Assumption (ER7) and

Proposition 5.3 guarantee that, for any α P RM , r7pαq is a positive isolated simple eigenvalue

of Lrαs˚
7

. Hence regular perturbation theory, see e.g. [Ka], ensures that r7pαq defines a real

analytic map on RM with positive values. This proves that e7pαq “ 1
τ7

log r7pαq is well defined

and real analytic. Eq. (6.18) then follows from 1) in Theorem 5.4.

The extension to a complex neighborhood of 0 follows also by a standard perturbation

theory argument, see also [JPW]. Indeed, Lr0s˚
7

has a simple dominant eigenvalue r7p0q “ 1

so there exists δ, ε ą 0 such that sp
´

Lrαs˚
7

¯

ztr7pαqu Ă
 

z P C
ˇ

ˇ |z| ă |r7pαq| ´ δ
(

for any

α P CM , |α| ă ε. Hence for such α’s we have

r7n,ρpαq “ ρ
´´

Lrαs˚
7

¯n
p1lq

¯

“ r7pαqn
„

ρ
´

P
rαs
7
p1lq

¯

`O

ˆˆ

1´
δ

|r7pαq|

˙n˙

,

where P
rαs
7

denotes the eigenprojection of Lrαs˚
7

associated to r7pαq. In particular P
rαs
7
p1lq “

P
r0s
7
p1lq `Opεq “ 1l`Opεq, see Section 6.4, so that for all n

r7n,ρpαq “ r7pαqn
„

1`Opεq `O

ˆˆ

1´
δ

|r7pαq|

˙n˙

which proves the result.
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