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The problem

Hamiltonian of a soft, inelastic, non-dissipative, time and space periodic Lorentz gas:

H(q, p, t) =
p2

2
+λV (q, t), V (q, t) =

∑

m∈Zd

W (‖q−xm‖, ωt+φ0), q, p ∈ R
d,

with xm =
∑

miei; ei, i = 1 . . . d basis of R
d, ‖ei‖ = 1;

W : R
+ × T

m → R, W (‖q‖, φ) = 0 if ‖q‖ > 1/2;

ω ∈ R
m a frequency vector.

QUESTION: What is the time-behaviour of the averaged kinetic energy
〈

v2(t)
〉

and

mean squared displacement
〈

q2(t)
〉

of an ensemble of particles with fixed given

initial energy v2
0 >> λ starting of in a random initial direction from a position close

to the origin? How does it depend on d? And on the smoothness of W in t?



SOME ANSWERS (NUMERICS):THE KINETIC ENERGY, d ≥ 2

d = 2, W (q, t) = χ[0,1/2](‖q‖) cos t
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〈v2(t)〉 ∼ t2/5, 〈v2
n〉 ∼ n1/3.

REMARKS: Powers identical for all dimensions d ≥ 2. The same also for a random

lattice, random coupling constants (Aguer-De Bièvre-Lafitte-Parris, JSP, to appear).



SOME ANSWERS (NUMERICS):THE MEAN SQUARED DISPLACEMENT, d ≥ 2

d = 2, W (q, t) = χ[0,1/2](‖q‖) cos t
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〈q2(t)〉 ∼ t2, 〈q2
n〉 ∼ n5/3.

REMARKS: Powers identical for all dimensions d ≥ 2. The same also for a random

lattice, random coupling constants (Aguer-De Bièvre-Lafitte-Parris, JSP, to appear).



QUESTION: The particles speed up on average. But 〈q2(t)〉 grows only

quadratically with time, so in this sense the motion is ballistic. How is this possible?

ANSWER: The particle turns while traveling. The increase in its average speed is

compensated exactly by these detours, leading to a ballistic growth of 〈q(t)2〉. Mote

on this later.

A PULSED ROTOR: The energy growth of those systems when d ≥ 2 shows they

are unstable in the following sense. The Hamiltonian is invariant under the lattice

translation group Ze1 + · · · + Zed and therefore generates a Hamiltonian

dynamics on the torus, with the same momentum behaviour. It describes a particle

moving on a flat torus with a scatterer described by the time (quasi-)periodic

potential W : a pulsed rotor. As will become clearer below, the potential constitutes

an increasingly small perturbation of the free particle, as the particle momentum

gets larger. The unbounded growth of the energy observed here therefore suggests

that either all invariant tori of this completely integrable system are destroyed by the

perturbation (unlikely), or (more likely) that the momentum variable diffuses between

the remaining tori, slowly increasing with time.



Explaining the power laws: a random walk description of the m otion

CLAIM: The statistical properties of the motion are well described by a random

walk, as in the case where the phases and coupling constants of the scatterers are

random. This is, as we will see, a result of the fact that the geometry of the periodic

lattice together with the instabilities in the dynamics of the individual scattering

events undergone by the particle suffice to effectively randomize the motion, even if

the potential itself is deterministic. As a result, the correct exponents can be

obtained relatively simply from physically straightforward arguments.
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The motion A trajectory = periods of free motion + scattering events at instants

tn, centers yn := xNn
, where the particle is deviated by the local potential;

vn = ‖vn‖en is the velocity just before the nth scattering event, at

y−
n = xNn

− 1
2en + bn, where bn · en = 0, so that bn is the (vector) impact

parameter.



Analysis of energy growth

The velocity just after the nth scattering event is

vn+1 = vn + λR(vn, bn, φn). (1)

For all v, b with v · b = 0, the impulse function is

R(v, b, φ) = −

∫ +∞

0

dt∇W (y(t), ωt + φ) (2)

in which y(t) is the unique solution of

ÿ(t) = −∇W (y(t), ωt + φ), y(0) = b −
1

2

v

‖v‖
, ẏ(0) = v.

Hypothesis: The phases φn and impact parameters bn encountered by the

particle during its journey are i.d. and have short range correlations.

Conclusion: Equation (1) defines a random walk that allows to determine the large

n behaviour of vn, provided one understands the high velocity behaviour of R and

of the energy transfer in a single collision, viewed as random variables in b and φ.



High ‖v‖ expansions:

R(v, κ) =
K

∑

k=1

α(k)(e, κ)

‖v‖k
+ O(‖v‖−K−1), e =

v

‖v‖
,

with κ = (b, φ) and α(1)(e, b, φ) = −
∫ +∞

−∞
dλ ∇W ((b + λe), φ). Then,

∆E(v, κ) =
1

2

(

(v + R(v, κ))2 − v2
)

=
L

∑

ℓ=0

β(ℓ)(e, κ)

‖v‖ℓ
+ O(‖v‖−L−1),

(3)

and with the suggestive notation ∂t := ω · ∇φ

β(0)(e, κ) = e · α(1)(e, κ) = 0

β(1)(e, κ) = e · α(2)(e, κ) =

∫ +∞

−∞

dλ ∂tW ((b + λe), φ)

So, ∆E(v, κ) is of order ‖v‖−1 in this situation. We need the following

information:



Define: f(v) =
∫

db
Cd

∫

dφf(v, b, φ).

THEOREM ∆E(v) = B
‖v‖4 + O(‖v‖

−5
), (∆E(v))2 = D2

‖v‖2 + O(‖v‖
−3

),

where B = (d − 3)D2/2. In particular, for all unit vector e ∈ R
m and for

ℓ = 0, 1, 2, 3,

β(ℓ)(e) = 0, B = β(4)(e) and D2 = (β(1)(e))2 > 0.

Conclusion: the energy transfer in a single scattering event is a random variable

with fluctuations of order ‖v‖−1 and a mean of order ‖v‖−4. Then, with

ξn =
‖vn‖

3

3D
, ǫn =

β
(1)
n

D
and γ =

1

3
(

B

D2
+

1

2
) =

1

6
(d − 2) ≥ −

1

6
,

∆ξn = ǫn +
γ

ξn
+ O0(ξ

−1/3
n ) + O(ξ−4/3

n ).

Here the notation O0(‖vn‖
−1) means the term is O(‖vn‖

−1) and of zero

average. After scaling ξn/n2 converges to the square of a Bessel process of

dimension δ = 2γ + 1 > 2/3 (See Thesis B. Aguer). This yields

〈ξk
n〉 ∼ nk/2, for all k > −1 ⇒ 〈‖vn‖

ℓ〉 ∼ nℓ/6, ℓ > −3



The scattering times tn satisfy

tn+1 = tn +
η∗

‖vn+1‖
, so that tn =

n
∑

k=1

η∗
‖vk‖

,

whence 〈tn〉 ∼ n5/6 ∼ 〈‖vn‖〉
5, and 〈‖v(t)‖2〉 ∼ t2/5.

This is precisely what we found numerically.



Asymptotics of 〈y2(t)〉: d > 1

The successive scatterering centers visited by the particle are given by

yn+1 = yn + vn+1∆tn = yn +
η∗

‖vn+1‖
vn+1 = yn + η∗en+1.

To understand ‖yn‖ for large n, we need to know how the particle turns. From a

further analysis of

vn+1 = vn + R(vn, κn) ≃ vn +
α

(1)
n

‖vn‖
+ . . .

one shows the en execute a random walk on the unit sphere

en+1 = en + δn = en + δ⊥n +µnen, ‖δn‖ =
‖α

(1)
n ‖

‖vn‖2
+O(‖vn‖

−3) = ‖δ⊥n ‖,

with |µn| = O(‖vn‖
−4) so that

〈‖en+m−en‖
2〉 ≃ m

〈‖α
(1)
0 ‖2〉

‖vn‖4
∼ 1 provided m ∼ M∗(‖vn‖) := ‖vn‖

4 ∼ n2/3
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Spreading of the velocity vectors for an initial distribution concentrated on a fixed

direction.

This suggests the particle goes straight for N1 ∼ ‖v0‖
4 steps, then turns in a

random direction, goes straight for N
2/3
1 steps etc.:

Nk+1 = Nk + N
2
3

k ⇒ Nk ∼ k3.



After Nk collisions, the particle has turned k times over a macroscopic angle.

Between Nk et Nk+1 it goes straight. So

yNk+1
= yNk

+ η∗(Nk+1 −Nk)eNk
⇒ 〈‖ yNk

‖2〉 ∼
k

∑

ℓ=1

ℓ4 ∼ k5 ∼ N
5/3
k .

Interpolating between the Nk , and using tn ∼ n5/6,

〈‖ yn ‖2〉 ∼ n5/3 ⇒ 〈‖ y2(t) ‖〉 ∼ t2.

The motion is ballistic in d > 1, although the particle accelerates.



In one dimension

The preceding analysis does not apply when d = 1: no random impact parameters!

The energy now remains bounded and 〈q2(t)〉 ∼ t2.
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REMARK: With random coupling constants and phases, one has 〈v2(t)〉 ∼ t2/5.



V (q, t) space and time periodic,
∫ 1

0
dqV (q, t) = 0, for all t, v0 >> 1, q0 = 0.

qn = n, tn+1 ≃ tn +
1

vn+1

vn+1 = vn +
α1(qn, vn, tn)

vn
+

α2(qn, vn, tn)

v2
n

+ O(v−3
n ),

where

α1(qn, vn, tn) = V (qn, tn) − V (qn + vn(tn+1 − tn), tn) = 0

α2(qn, vn, tn) = −∂tV (qn + vn(tn+1 − tn), tn) +

∫ vn(tn+1−tn)

0

dλ ∂t V (q0 + λ, tn

= −∂tV (q0, tn),



so that

vn ≃ v0 +
1

v2
0

n−1
∑

k=0

∂tV (0, tk) + O(v−3
0 ) ≃ v0 +

1

v0

∫ n/v0

0

dt∂tV (0, t)

= v0 +
1

v0

(

V (0,
n

v0
) − V (0, 0)

)

.
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Kicked rotors

It is instructive to notice the difference in behaviour of the pulsed rotors considered

here with kicked rotors, in which the time dependence of the potentials is very

singular, of the form

V (q, t) = λ
∑

n

δ(t − n)v(q). (4)

For such systems the Floquet transformation which gives the evolution of the

system over a period of the potential, is easily written down:

Φ(q, p) = (q′, p′), where p′ = p − λ∇v(q), q′ = q + p′. (5)

In that case, one finds for λ sufficiently large, that
〈

p2(t)
〉

∼ t,
〈

q2(t)
〉

∼ t3CHECK. (6)

(Is there a difference between d = 1 and d > 1? CHECK) This is again easily

understood in terms of the random walk picture we develop in Section ?? . The main



difference with the case of pulsed systems resides in the observation that, whereas

for kicked systems the momentum change undergone by a particle in one period of

the potential is of order 1, independently of the size of the initial momentum of the

particle, this momentum change is of order ‖p‖−1 for pulsed systems. This fully

explains the slower energy growth observed in pulsed systems, as well as the

slower growth of the mean squared displacement.


