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Critical quench dynamics in confined quantum systems

Crossing a critical point

Qualitative picture

Time-dependent hamiltonian

H(t) = Hcritical + g(t)V

Power-law tuning parameter g(t) ∼ sgn(t)|t/τ |α = sgn(t)v |t|α driving
the system through the critical point.

The system remains in the instantaneous ground state |GS(t)〉 as
long as it is protected by a finite gap ∆(t) from the excited states.

Breaking of the adiabaticity close to the critical point since the gap
vanishes right at the QCP.
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Crossing a critical point

Kibble-Zurek argument

Kibble-Zurek mechanism

Adiabatic: Sufficiently away
from the critical point no
transitions between
instantaneous eigenstates

Impulse: Sufficiently close
to the critical point critical
slowing down ⇒ no change
in the wave function except
for an overall phase factor

Adiabatic-Impulse approximation
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FIG. 2: Transition probability when the system starts time
evolution from a ground state at ti → −∞ and evolves to
tf → +∞. Dots: exact expression (11). Solid line: AI predic-
tion (12) with α = π/2 determined from diabatic solution in
Appendix A. Dashed thick line: lowest order diabatic result,
1− πτQ/2, coming from (A5) and (A6) with η = 1/2.

leading to Eqs. (A5) and (A6) is not only much easier
then determination of exact LZ solution [18], but also
really elementary. Therefore, we expect that it can be
done comparably easily for any model of interest.

Now we are ready to compare our AI approximation
with α determined as above, to the exact result, i.e.,

P = exp
(
−πτQ

2

)
. (11)

First, the agreement between the exact and AI result is
up to O(τ3

Q), i.e., one order above the first nontrivial
term. This is the advantage that the AI approximation
provides over a simple diabatic approximation performed
in Appendix A. Second, we see that the AI expansion
contains the same powers of τQ as the diabatic (small τQ)
expansion of the exact result. Third, Fig. 2 quantifies
the discrepancies between exact, AI and diabtic results.
For the AI prediction, we plot in Fig. 2 instead of a
Taylor series (10) the full expression evaluated in [9]

PAI =
2

(ατQ)2 + ατQ

√
(ατQ)2 + 4 + 2

, (12)

with α = π/2. As easily seen the AI approximation
significantly outperforms a diabatic solution. In other
words, the combination of AI simplification of dynam-
ics and diabatic prediction for the purpose of getting the
constant α leads to fully satisfactory results considering
simplicity of the whole approach.

It is instructive to consider now separately three sit-
uations: (i) dynamics in a nonsymmetric avoided level
crossing (Sec. III A); (ii) dynamics beginning at the anti-
crossing center (Sec. III B); and (iii) dynamics starting
at ti → −∞ but ending at the anti-crossing center (Sec.
III C). The first case will give us a hint whether O(τ3
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FIG. 3: The same as in Fig. 1 but for nonsymmetric Landau-
Zener problem with δ > 1 – see (13).

agreement we have seen above is accidental and has some-
thing to do with the symmetry of the Landau-Zener prob-
lem. The second problem was preliminarily considered in
[9], but without comparing the AI prediction to exact an-
alytic one being interesting on its own. Finally, the third
problem is an example where AI approximation correctly
suggests at a first sight unexpected symmetry between
this problem and the one considered in Sec. III B.

A. Nonsymmetric Landau-Zener problem

We assume that system Hamiltonian is provided by the
following expression

H =
1
2

(
1
χ

t
τQ

1
1 − 1

χ
t

τQ

)
, χ =

{
1 for t ≤ 0
δ for t > 0 (13)

with δ > 0 being the asymmetry parameter – see Fig.
3(a) for schematic plot of the spectrum.

Once again, evolution starts at ti → −∞ from a ground
state. The exact expression for finding the system in the
excited eigenstate at the end of time evolution (tf →
+∞) is

P = 1− e−
1
8π(1+δ)τQ

2
sinh

(
1
4
πτQδ

)
∣∣∣∣∣Γ(1/2 + iτQδ/8)

Γ(1/2 + iτQ/8)
+

√
1
δ

Γ(1 + iτQδ/8)
Γ(1 + iτQ/8)

∣∣∣∣∣
2

,(14)

and its derivation is presented in Appendix B. Naturally,
for δ = 1, i.e., in a symmetric LZ problem, the expression
(14) reduces to (11).

Now we would like to compare (14) to predictions com-
ing from AI approximation. Due to asymmetry of the
Hamiltonian the systems enters the impulse regime in
the time interval [−t̂L, t̂R] – see Fig. 3(b) for illustra-
tion of these concepts. The instants t̂L and t̂R are easily
found in the same way as in the symmetric case. It is
a straightforward exercise to verify that according to AI

t ∈ [−∞,−t̂L] : |ϕ(t)〉 ≈ e−iα(t)|0(t)〉
t ∈ [−t̂L, t̂R ] : |ϕ(t)〉 ≈ e−iβ(t)|0(−t̂L)〉
t ∈ [t̂R ,+∞] : |〈ϕ(t)|0(t)〉|2 = const.
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Crossing a critical point

Kibble-Zurek argument

Kibble-Zurek time-scale τKZ

Kibble-Zurek timescale τKZ

τ0/∆(τKZ ) = ∆(τKZ )/|∆̇(τKZ )|
with

∆(t) ∼ |g(t)|νz ∼ vνz |t|νzα

one has
τKZ ∼ v−νz/(1+ανz); ` ∼ τ 1/z

KZ

Scaling for defect density

n ∼ `−d ∼ vdν/(1+νzα)

A. Polkovnikov, PRB 72, 161201(R) (2005)
W. H. Zurek, U. Dorner and P. Zoller, Phys. Rev. Lett. 95, 105701 (2005).
B. Damski, Phys. Rev. Lett. 95, 035701 (2005);
B. Damski and W. H. Zurek, Phys. Rev. A 73, 063405 (2006);
ibid, Phys. Rev. Lett. 99, 130402 (2007).
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Crossing a critical point

Kibble-Zurek argument

3

FIG. 1: Variation of the defect density n with the quench
exponent α for representative values of τ = 10 (black solid
line), τ = 15 (red dashed line) and τ = 20 (blue dotted line).
A polynomial fit of the form n = aαb yields exponents which
are very close to the theoretical result 1/2 for all values of τ .

t when the energy levels of H ′(!k; t) (Eq. (8)) for a given
!k are close to each other: (t − t0)/τ ∼ ∆(!k). Also,
for a slow quench, the contribution to the defect den-
sity is significant only when p(!k) is significant, ie., when
|∆(!k)|2 ∼ 1/τeff(α). Using these arguments, it is easy
to see that Rn/Rn−1 = (α− n + 1)g−1/α(t− t0)/(nτ) ∼
(α − n + 1)/(n

√
τ ). Thus we find that all higher order

terms Rn>1, which were neglected in arriving at Eq. (9),
are unimportant in the limit of slow quench (large τ).

The scaling relations for the defect density n given by
Eqs. (7) and (10) represent the central results of this
letter. For such power-law quenches, unlike their linear
counterpart, n depends crucially on whether the quench
term vanishes at the critical point. For quenches which
do not vanish at the critical point, n scales with the same
exponent as that of a linear quench, but is character-
ized by a modified non-universal effective rate τeff(α). If,
however, the quench term itself vanishes at the critical
point, we find that n scales with a novel α dependent
exponent ανd/(αzν + 1). For α = 1, τeff(α) = τ and
ανd/(αzν + 1) = νd/(zν + 1); hence both Eqs. (7) and
(10) reproduce the well-known defect production law for
linear quenches as a special case [13]. We note that the
scaling of n will show a cross-over between the expres-
sions given in Eqs. (7) and (10) near some value of τ = τ0

which can be found by equating these two expressions;
this yields τ0 ∼ |b(!k0)|−zν−1/α. For α > 1, the scaling law
will thus be given by Eq. 7 (Eq. 10) for τ $ (%)τ0. We
also note here that our results do not apply to quenches
which take a system through a critical line [20, 22].

We now supplement these analytical results with nu-
merical studies of well-known models. The first model

FIG. 2: Plot of ln(n) vs ln(τ ) for the 1D Kitaev model for
α = 2 (black solid line), α = 4 (red dotted line), α = 6 (blue
dashed line) and α = 8 (green dash-dotted line). The slopes
of these lines agree reasonably with the predicted theoretical
values −α/(α + 1) as shown in the table.

that we choose for this purpose is the one-dimensional
Ising model in a transverse field with the Hamiltonian
HIsing = −J(

∑
〈ij〉 Sz

i Sz
j −g0

∑
i Sx

i ) where J is the near-
est neighbor coupling and g0 is the dimensionless trans-
verse field. A standard Jordan-Wigner transformation
[1] then maps HIsing to a free fermionic Hamiltonian
H ′

Ising/J =
∑

k ψ†
k[(g0 − cos(k))τ3 + sin(k)τ1]ψk. Thus

a time variation g0(t) = |t/τ |αsign(t) takes the system
through two critical points at t0 = τ(−τ) where the en-
ergy gap vanishes at k0 = 0(π) so that g0 = 1(−1) at
these points. Thus the defect production around both
these critical points have the same τeff(α) = τ/α and we
expect (Eq. (9)) the defect density to go as n ∼ √α
for a fixed τ . To confirm this expectation, we solve
the time-dependent Schrödinger equation i∂tψ(k, t) =
H ′

Isingψ(k, t) and compute the defect probability pk and
hence n for fixed τ and for several representative values
of α ≥ 1. These values of α and τ are chosen so that we
are in the regime where all Rn>1 can be safely neglected.
The plot of n as a function of α for τ = 10, 15, and20
is shown in Fig. 1. A fit to these curves yields expo-
nents of 0.506 ± 0.006 (τ = 10), 0.504 ± 0.004 (τ = 15),
and 0.505 ± 0.002 (τ = 20) which are indeed remark-
ably close to the theoretical value 1/2 predicted by Eq.
(9). The systematic positive deviations in the exponents
comes from the neglected terms Rn>1. We note that the
range of α for which such deviation remains small grows
with τ , as expected from our theoretical prediction.

Next, we consider the one-dimensional Kitaev model
[20, 23, 24] which has the Hamiltonian HK =∑

i∈even

(
J1S

x
i Sx

i+1 + J2S
y
i Sy

i−1

)
, where the sum ex-

tends over even sites i on the disconnected chains of
the underlying hexagonal lattice, and Si denotes the

n ∼ τ−ανd/(αzν+1) ∼ vdν/(1+νzα)

A. Polkovnikov, PRB 72, 161201(R) (2005)
D. Sen, K. Sengupta, S. Mondal, PRL 101, 016806 (2008)
R. Barankov, A. Polkovnikov, PRL 101, 076801 (2008)
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Confining potential

Power-law spatial inhomogeneity

A power-law deviation in one direction of the quantum control parameter
h form its critical value hc :

δ(x , t) ≡ h(x , t)− hc ' g(t)xω, x > 0

g(t) = v |t|αsgn(t) g(t)

x2

x

The perturbation introduces a crossover region in space-time (x , t)
around the critical locus (0,0).

Lenght-scale

`(t) ∼ δ(`, t)−ν → `(t) ∼ |g(t)|−1/yg

yg = (1 + νω)/ν

Time-scale

τ ∼ `(τ)z → τ ∼ v−z/yv

yv = yg + zα

The exponent yv is the RG dimension of the perturbation field, such that
under rescaling by a factor b the amplitude transforms as v ′ = byv v .
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Confining potential

Scaling arguments

Under rescaling, the profile ϕ(x , t, v) associated to an operator ϕ with
scaling dimension xϕ transform as

ϕ(x , t, v) = b−xϕϕ(xb−1, tb−z , vbyv )

Taking b = v−1/yv ∝ ` ∝ τ 1/z one obtains

ϕ(x , t, v) = v xϕ/yv Φ(xv1/yv , tv z/yv )

Trap-size scaling ϕ ∼ `−xϕ associated to a finite size system with
` ∼ v−1/yv .

T. Platini, D. Karevski and L. Turban, J. Phys. A 40 1467 (2007)
B. Damski and W. H. Zurek, New J. Phys. 11 063014 (2009)
M. Campostrini and E. Vicari, Phys. Rev. Lett. 102, 240601 (2009)
M. Collura, D. Karevski and L. Turban, J. Stat. Mech. P08007 (2009)
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Adiabatic approximation

Adiabatic approximation

Time evolution of a quantum system described by a time-dependent
Hamiltonian H(t)

The system is initially in the instantaneous ground state of the
Hamiltonian H(t0):

|ϕ(t0)〉 = |0(t0)〉
At time t

|ϕ(t)〉 = U(t, t0)|0(t0)〉
where the time evolution operator is

U(t, t0) = T̂ exp−i

∫ t

t0

dsH(s)
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Adiabatic approximation

Adiabatic expansion in the instantaneous eigenbasis

Instantaneous eigenstates

H(t)|k(t)〉 = Ek(t)|k(t)〉

Adiabatic expansion up to first order

Rate of change of the Hamiltonian: ∂tH(t) ∼ ∂tg(t) ∼ v → 0

|ϕ(t)〉 = e
−i

R t
t0

dsE0(s)|0(t)〉+
∑
k 6=0

e
−i

R t
t0

dsE0(s)
ak(t0, t)|k(t)〉
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Adiabatic approximation

Adiabatic expansion up to first order

|ϕ(t)〉 = e
−i

R t
t0

dsE0(s)|0(t)〉+
∑
k 6=0

e
−i

R t
t0

dsE0(s)
ak(t0, t)|k(t)〉

ak(t0, t) =

∫ g(t)

g(t0)

dg
〈k(g)|∂gH(g)|0(g)〉

δωk0(g)
e−iϑk (g ,g(t))

where

ϑk(x , y) =
v−1/α

α

∫ y

x

dg |g |1/α−1δωk0(g)

δωk0(g) = Ek(g)− E0(g)

For v � 1, ak ' 0:
instantaneous ground state

For v � 1, exp(−iϑk) ∼ 1:
sudden quench
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Adiabatic approximation
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Density of defects

Density of defects

Density of defects

n =
∑
k 6=0

|ak |2

General scaling arguments (` ∼ g−1/yg ):

δωk0 ∼ `−zΩ(`−z/kz); 〈k(g)|∂gH(g)|0(g)〉 ∼ `−z+yg G (`−z/kz)

For a quench crossing the QCP,
in order that the integral
converges at g = 0 the scaling
function G (u)/Ω(u) = uf (u) at
small u.

n ∼ `−d ∼ vdν/(1+νzα)

In the inhomogeneous case the
convergence close to the critical
point is not garanted.
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Density of defects

Density of defects

Density of defects

n =
∑
k 6=0

|ak |2

General scaling arguments (` ∼ g−1/yg ):

δωk0 ∼ `−zΩ(`−z/kz); 〈k(g)|∂gH(g)|0(g)〉 ∼ `−z+yg G (`−z/kz)

Inhomogeneous QCP

τKZ ∼
(
τ0

Ω0

zα
yg

)yg/yv

v−z/yv

n ∼ [∆(τKZ )]d/z ∼
(
τ0

Ω0

zα
yg

)dα/yv

vd/yv
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Ising quantum chain

Ising quantum chain in time-dependent inhomogeneous transverse field

H(t) = −1

2

L−1∑
n=1

σx
nσ

x
n+1 −

1

2

L∑
n=1

hn(g)σz
n

hn(g) = 1 + g(t)nω, g(t) = v |t|αsgn(t)

Introducing the 2L-component real
Majorana field Γ† =

`
Γ1†, Γ2† ´ with

components

Γ1
n =

n−1Y
j=1

(−σz
j )σx

n , Γ2
n = −

n−1Y
j=1

(−σz
j )σy

n

H(t) =
1

4
Γ†T(g)Γ

where T(g) is a 2L× 2L
hermitian matrix.
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Ising quantum chain

Bogoliubov time-dependent transformation

The Hamiltonian is diagonalized in terms of Dirac fermionic algebra
{η†p(g), ηq(g)} = δpq through the mapping

ηp(g) =
1

2

X
n

˘
φp(n, g)Γ1

n + iψp(n, g)Γ2
n

¯
η†p(g) =

1

2

X
n

˘
φp(n, g)Γ1

n − iψp(n, g)Γ2
n

¯
Γ1

n =
X

p

φp(n, g)
h
ηp(g) + η†p(g)

i
Γ2

n = −i
X

p

ψp(n, g)
h
ηp(g)− η†p(g)

i

with real Bogoliubov coefficients φ and ψ. One has

H(t) =
∑

p

εp(g)
[
η†p(g)ηp(g)− 1/2

]
where εp(g) are the L-positive eigenvalues of T(g).
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Ising quantum chain

In the scaling limit g → 0, L→∞ while keeping gLω costant, the
Bogoliubov coefficients φp(x) and ψp(x) are solutions of the differential
set

»
d2

du2
+ Ω2

p − sgn(g)ωuω−1 − u2ω

–
φ̃p(u) = 0, ∂uφ̃p|0 = 0, φ̃p(∞) = 0

»
d2

du2
+ Ω2

p + sgn(g)ωuω−1 − u2ω

–
ψ̃p(u) = 0, ψ̃p(0) = 0, ∂uψ̃p|∞ = 0

with rescaled variables

x = |g |−1/yg u, εp = |g |1/yg Ωp,

φp(x) = |g |1/2yg φ̃p(u), ψp(x) = |g |1/2yg ψ̃p(u),

All the dependence
on g is inside the
rescaled variables.
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Ising quantum chain

Hamiltonian derivative

In terms of fermions ∂gH(g) takes the form

∂gH(g) =
1

2

∑
p,q

Xω
pq(g)[η†p(g) + ηp(g)][η†q(g)− ηq(g)]

with Xω
pq(g) =

∑
n φp(n, g)nωψq(n, g).

The system deviates from the adiabatic ground state |0(g)〉 by tansitions
to the two-particles states |pq(g)〉 = η†q(g)η†p(g)|0(g)〉 only with

〈pq(g)|∂gH(g)|0(g)〉 = [Xω
qp(g)− Xω

pq(g)]/2

Continuum limit

Xω
pq(g) = |g |−ω/(1+ω)(φ̃p, u

ωψ̃q)

with the scalar product (f , g) =
∫∞

0
f ∗(u)g(u)du.
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Linear spatial modulation

For ω = 1 the previous differential equations reduce to a harmonic
oscillator problem.

φp(x) = |g |1/4
√

2χ2p(u)

ψp(x) = sgn(g)|g |1/4
√

2χ2p+sgn(g)(u)

εp = |g |1/2
√

4p + 1 + sgn(g)

Rescaled matrix elements: Gpq(g) = |g |1/2〈pq(g)|∂gH(g)|0(g)〉
Rescaled Bohr frequencies: Ωpq(g) = |g |−1/2(εp(g) + εq(g))

Gpq(g) =

√
p + q + H(g)

2
[δp q−1 − δp q+1]

Ωpq(g) =
√

4p + 2H(g) +
√

4q + 2H(g)

where H(g) = [1 + sgn(g)]/2.
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Linear spatial modulation
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Transition amplitude

The transition amplitude apq(t0, t) for a quench starting at a value
g0 = g(t0) and ending at a new value gt = g(t) is obtained from the first
order adiabatic approximation if the quench parameter stays sufficiently
far away from the critical locus (which is set at t = 0).

Quenches that do not cross the critical point

apq(t0, t) = FpqAφpq (|g0|, |g(t)|) eiΘpq(t)

where

Θpq(t) = πH(−g0) + φpq|g(t)| 2+α
2α

φpq = −2Ωpq
v−1/α

α + 2
sgn(g0)

Aφ(x , y) =
2α

2 + α

h
E1

“
iφx

2+α
2α

”
− E1

“
iφy

2+α
2α

”i
The spatial inhomogeneity
modifies the dependence on g
of the scaling function
Fpq(g) = Gpq(g)/(2Ωpq(g))
close to g = 0 such that it
leads to a complete breakdown
of the approximation
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Transition amplitude

Up to the first order correction we can write the evolution of the Ising
chain ground state |0(g0)〉 as

|ϕ(t)〉 ≈ |0(g)〉+
∑
pq

apq(t0, t)η†q(g)η†p(g)|0(g)〉

Using the properties of the Fermion’s operators, one obtains for the
adiabatic occupation numbers np = 〈ϕ(t)|η†p(g)ηp(g)|ϕ(t)〉

Occupation numbers

np ≈ 4
∑

q

|apq(t0, t)|2

The first two levels

n0 ≈ 4|a01(t0, t)|2
n1 ≈ 4[|a12(t0, t)|2 − |a10(t0, t)|2]
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Finnegans Wake... crossing the QCP
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Conclusion

We have presented a theory of the non-linear quench of a power-law
perturbation, such as a confining potential, close to a critical point

We have determined the scaling properties of such a theory

Power law behavior of the density of defects with the ramping rate
with an exponent which depends on the space-time properties of the
potential.

First order adiabatic calculation and exact results on an
inhomogeneous transverse field Ising chain

What should be looked at...

A relevant extension of this work would be the study of the influence of a
finite temperature on the scaling properties.
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