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Hamiltonian models

• C ∗- or W ∗-algebra A generated by sub-algebras AS , AR1 , . . .

• Groups τt
S = etδS , τt

R1
= etδR1 , . . . of ∗-automorphisms of

AS , AR1 , . . .

• Reference state ω of A, e.g., ω|Rj
is τt
Rj

-KMS state.

• Coupling Vj = V ∗j ∈ AS ∨ ARj
.

• Coupled dynamics τt = etδ, δ = δS + δR1 + · · ·+ i[V1, · ] + · · ·
• Natural Steady State

ω+ = w∗ − lim
t→∞ 1

t

∫ t
0
ω ◦ τs ds.

• Mean entropy production rate

Ep(ω+) = − lim
t→∞ 1

t
Ent(ω ◦ τt |ω).
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Markovian models: Level I

• ”Small” W ∗-algebra AS = B(HS).

• AS∗ identified with trace class operators on HS .

• Quantum master equation in Heisenberg picture

d

dt
A = L(A) = i[H,A] +

1

2

∑
ι

V ∗ι [A,Vι] + [V ∗ι ,A]Vι.

• Semi-group αt = etL of CP, 1-preserving maps on AS .

• Steady state condition L∗(ρ) = 0.

• Convergence to steady state

w − lim
t→∞ etL

∗
(ω) = ρ.
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Markovian models: Level II

• Z = HS ⊗ Γ+(L2(R,dτ)⊗ h)

• Quantum Langevin equation in Schrödinger picture

i
d

dt
Ut = (H⊗I−I⊗dΓ(i∂τ))Ut+

∑
ι

Vι⊗a∗ι (δ0)U
t+V ∗ι ⊗aι(δ0)U

t ,

generates a unitary group Ut on Z.

• Associated Markovian semigroup

etL(A) = 〈Ω|Ut(A⊗ I )Ut∗|Ω〉

is generated by

L(A) = i[H,A] +
1

2

∑
ι

V ∗ι [A,Vι] + [V ∗ι ,A]Vι.
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Repeated interaction models
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Markovian models

• Return to equilibrium [Hepp-Lieb, Davies in the early 70’].

• Convergence to steady state and nonequilibrium

thermodynamics [Davies, Davies-Spohn, Lebowitz-Spohn in

the late 70’].

• Repeated interactions −→ quantum Langevin [Attal-Pautrat,

Attal-Joye].

• Repeated interaction [Bruneau-Joye-Merkli, Bruneau-P].

• Current fluctuations [Avron-Bachmann-Graf-Klich, De

Roeck-Dereziński-Maes].
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Hamiltonian ←→ Markovian

• Weak coupling (van Hove) limit [Davies 70’].

• Unitary dilation and quantum stochastic evolution

[Accardi-Frigerio-Lewis, Hudson-Parthasarathy, Frigerio,

Maassen mid 80’].

• Stochastic limit [Accardi-Frigerio-Lu-Volovich 90’, 00’].

• Extended weak coupling limit [De Roeck-Dereziński].

• Generalized weak coupling limit [Taj].
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Hamiltonian models

• Return to equilibrium [Robinson 70’, Jakšić-P,

Dereziński-Jakšić, Bach-Fröhlich-Sigal, Fröhlich-Merkli].

• Convergence to steady state and nonequilibrium

thermodynamics [Jakšić-P, Fröhlich-Merkli-Ueltschi, Abou

Salem-Fröhlich, Merkli-Mück-Sigal].

• Fluctuation-dissipation near equilibrium

[Jakšić-Ogata-Pautrat-P].
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thermodynamics [Jakšić-P, Fröhlich-Merkli-Ueltschi, Abou
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NESS

• MMS combine the L∞-Liouvillian approach with a hybrid

spectral deformation technique to prove existence of NESS in

open systems coupled to bosonic reservoirs

• The MMS machinery is quite heavy.

• A streamlined approach to the problem could have very

important consequences in the field (somewhat like the

Aizenman-Molchanov proof of Anderson localization).

• A starting point may be a more clever choice of the cyclic

vector in the standard representation of A.
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The strong coupling limit

• Except for quasi-free systems where scattering theory plays
the central rôle, all available techniques in open systems are
perturbative:

• in the coupling to the environment;
• in the (non-quadratic) interactions.

• Many important physical problems are beyond reach of these

perturbative approaches.

• Exact solution, via Bethe Ansatz ?
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The strong coupling limit

Example (The Anderson model)

HL = −t
∑

x<0,σ

a∗σ(x)aσ(x − 1) + a∗σ(x − 1)aσ(x)
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The strong coupling limit

Example (The Anderson model)

HR = −t
∑

x>0,σ

a∗σ(x)aσ(x + 1) + a∗σ(x + 1)aσ(x)
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The strong coupling limit

Example (The Anderson model)

HD = −
∑
σ

ε0a
∗
σ(0)aσ(0) + Ua∗−(0)a−(0)a∗+(0)a+(0)
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The strong coupling limit

Example (The Anderson model)

H = HL + HR + HD + λ
∑

x∈{±1},σ

a∗σ(x)aσ(0) + a∗σ(0)aσ(x)
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The strong coupling limit

Example (The Anderson model)

The Kondo regime

U � λ ' t

is non-perturbative.
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The strong coupling limit

Example (The Anderson model)

Is there a ”non-linear” Landauer-Büttiker formula ?
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Large systems: Hamiltonian approach

• Except again for quasi-free systems, all available techniques in
open systems are limited to ”small” system S with finitely
many degrees of freedom (dimHS <∞), e.g.,

• in matter-radiation systems, atoms have a finite number of

levels;
• in mesoscopic systems multibody interactions can only take

place on a finite dimensional subspace of the 1-body Hilbert

space.

• This limitation is mainly due to the use of perturbative
techniques:

• in the Liouvillian approach, the Fermi golden rule only gives

uniform control of finitely many resonances;
• in the C∗-scattering approach, the Dyson expansion can not

be controlled uniformly in the ”dimension” of the perturbation.
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• This limitation is mainly due to the use of perturbative
techniques:

• in the Liouvillian approach, the Fermi golden rule only gives

uniform control of finitely many resonances;
• in the C∗-scattering approach, the Dyson expansion can not

be controlled uniformly in the ”dimension” of the perturbation.
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Large systems: Markovian approach

• The situation is better in the Markovian approach. Some
results for repeated interaction systems with infinite
dimensional ”small” system:

• repeated interactions of a 1-mode QED cavity with 2-level

atoms;
• repeated interactions of a particle on a tight-binding lattice

with 2-level atoms.

• The usual Davies approach to the weak coupling limit also

suffer from the restriction to finite dimensional ”small”

system. A fact which strongly limit the use of Markovian

description of such systems. Some recent results by [Taj] may

change this! (continuous spectrum)

• Quantum Brownian motion.
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The rotating wave approximation

• Matter-radiation problem

H = ω0b
∗b + dΓ(|k |) + λ (b + b∗) (a(f ) + a∗(f )) .

• Resonant interaction: ||k | −ω0|� ω0 on supp f .

• RW approximation

H = ω0b
∗b + dΓ(|k |) + λ (b∗a(f ) + ba∗(f )) .

• Get effective bounds on dynamics at positive temperature.

• Compare the corresponding Markovian approximations.

• Apply the RW approximation to matter-radiation problems

and do the relevant spectral analysis (generalization of

Friedrichs type models).
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Quantum probability & statistics

• Quantum CLT for sums of iid variables (extends Kuperberg’s

result to non-tracial states).

• Quantum hypothesis testing and nonequilibrium

thermodynamics.

• Quantum random walks.

• . . .
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