Perturbative Master Equations for Open Quantum Systems and Decoherence

Dominique Spehner

Laboratoire de Physique et Modélisation des Milieux Condensés

& Institut Fourier, Grenoble

Outlines

- Motivation: decoherence vs dissipation
- Perturbative master equations
- Master equation for a Brownian quantum particle moving on a lattice \mathbb{Z}^d
- Perspectives, open problems

What is decoherence ?

Linear superposition of quantum states $|\psi\rangle = c_1 |\varphi_1\rangle + c_2 |\varphi_2\rangle$

 \rightarrow statistical mixture of the same states.

 $\rho_{S} = |\psi\rangle\langle\psi| = |c_{1}|^{2} |\varphi_{1}\rangle\langle\varphi_{1}| + |c_{2}|^{2} |\varphi_{2}\rangle\langle\varphi_{2}| + (c_{1}c_{2}^{*}|\varphi_{1}\rangle\langle\varphi_{2}| + \text{h.c.})$ $\rightarrow |c_{1}|^{2} |\varphi_{1}\rangle\langle\varphi_{1}| + |c_{2}|^{2} |\varphi_{2}\rangle\langle\varphi_{2}|$

What is decoherence ?

Linear superposition of quantum states $|\psi\rangle = c_1 |\varphi_1\rangle + c_2 |\varphi_2\rangle$

 \rightarrow statistical mixture of the same states.

 $\rho_{S} = |\psi\rangle\langle\psi| = |c_{1}|^{2} |\varphi_{1}\rangle\langle\varphi_{1}| + |c_{2}|^{2} |\varphi_{2}\rangle\langle\varphi_{2}| + (c_{1}c_{2}^{*}|\varphi_{1}\rangle\langle\varphi_{2}| + \text{h.c.})$ $\rightarrow |c_{1}|^{2} |\varphi_{1}\rangle\langle\varphi_{1}| + |c_{2}|^{2} |\varphi_{2}\rangle\langle\varphi_{2}|$

Dynamical process characterized by a decoherence time $t_{
m dec}$ (depending on φ_1, φ_2)

= time scale for the quantum-to-classical transition.

What is decoherence ?

Linear superposition of quantum states $|\psi\rangle = c_1 |\varphi_1\rangle + c_2 |\varphi_2\rangle$

 \rightarrow statistical mixture of the same states.

 $\rho_{S} = |\psi\rangle\langle\psi| = |c_{1}|^{2} |\varphi_{1}\rangle\langle\varphi_{1}| + |c_{2}|^{2} |\varphi_{2}\rangle\langle\varphi_{2}| + (c_{1}c_{2}^{*}|\varphi_{1}\rangle\langle\varphi_{2}| + \text{h.c.})$ $\rightarrow |c_{1}|^{2} |\varphi_{1}\rangle\langle\varphi_{1}| + |c_{2}|^{2} |\varphi_{2}\rangle\langle\varphi_{2}|$

Dynamical process characterized by a decoherence time $t_{
m dec}$ (depending on φ_1, φ_2)

= time scale for the quantum-to-classical transition.

Cannot result from unitary dynamics \Rightarrow irreversibility.

Open Quantum Systems

• A quantum system is coupled to its environment

Initially, $\rho = \underbrace{|\psi\rangle\langle\psi|}_{\text{SYSTEM}} \otimes \underbrace{\rho_B}_{\text{BATH}}$ with $|\psi\rangle = c_1 |\varphi_1\rangle + c_2 |\varphi_2\rangle$.

(e.g. a thermal bath).

Reduced density matrix of the system at time $t \ge 0$:

 $\rho_S(t) = \operatorname{tr}_B(e^{-itH}\rho \, e^{itH}) \quad , \quad H = H_S + \lambda H_{\text{int}} + H_B$

Open Quantum Systems

• A quantum system is coupled to its environment

(e.g. a thermal bath).

Reduced density matrix of the system at time $t \ge 0$:

$$\rho_S(t) = \operatorname{tr}_B(e^{-itH}\rho \, e^{itH}) \quad , \quad H = H_S + \lambda H_{\text{int}} + H_B$$

• Simple model: $H_S = 0$

$$H_{\text{int}} = \underbrace{S}_{\text{SYSTEM}} \otimes \underbrace{B}_{\text{BATH}}, \ S |\varphi_i\rangle = s_i |\varphi_i\rangle$$

Open Quantum Systems

• A quantum system is coupled to its environment

(e.g. a thermal bath).

Reduced density matrix of the system at time $t \ge 0$:

$$\rho_S(t) = \operatorname{tr}_B(e^{-itH}\rho \, e^{itH}) \quad , \quad H = H_S + \lambda H_{\text{int}} + H_B$$

• Simple model: $H_S = 0$

$$H_{\text{int}} = \underbrace{S}_{\text{SYSTEM}} \otimes \underbrace{B}_{\text{BATH}}, \ S |\varphi_i\rangle = s_i |\varphi_i\rangle$$
$$\Rightarrow \rho_S(t) = \sum_{i,j} c_i \overline{c_j} |\varphi_i\rangle \langle \varphi_j | \underbrace{\text{tr}_B(e^{-it(s_i B + H_B)} \rho_B e^{it(s_j B + H_B)})}_{\text{decoherence factor } K_t(s_i, s_i)}$$

Environment-induced decoherence

Decoherence factor

$$K_t(s_i, s_j) = \operatorname{tr}_B(e^{-it(H_B + s_i B)}\rho_B e^{it(H_B + s_j B)})$$

Quantum CLT [Goderis & Vets '90, Verbeure, DS]. Assume:

(i) bath initially in a Gibbs state at temperature $\beta^{-1} > 0$ (ii) $B = N^{-\frac{1}{2}} \sum_{\nu=1}^{N} B_{\nu}$, B_{ν} acts on \mathcal{H}_{ν} , B acts on $\bigotimes_{n=1}^{N} \mathcal{H}_{\nu}$ (iii) no long-range correlations: $\operatorname{tr}_{B}(B_{\mu}B_{\nu}\rho_{B}) \to 0$ faster than $1/|\mu - \nu|$ as $|\mu - \nu| \to \infty$.

Environment-induced decoherence

Decoherence factor

$$K_t(s_i, s_j) = \operatorname{tr}_B(e^{-it(H_B + s_i B)}\rho_B e^{it(H_B + s_j B)})$$

Quantum CLT [Goderis & Vets '90, Verbeure, DS]. Assume:

(i) bath initially in a Gibbs state at temperature $\beta^{-1} > 0$ (ii) $B = N^{-\frac{1}{2}} \sum_{\nu=1}^{N} B_{\nu}$, B_{ν} acts on \mathcal{H}_{ν} , B acts on $\bigotimes_{n=1}^{N} \mathcal{H}_{\nu}$ (iii) no long-range correlations: $\operatorname{tr}_{B}(B_{\mu}B_{\nu}\rho_{B}) \to 0$ faster than $1/|\mu - \nu|$ as $|\mu - \nu| \to \infty$. Then for fixed times t,

$$\lim_{N \to \infty} |K_t(s_i, s_j)| = \exp\left\{-\frac{(s_i - s_j)^2}{2} \underbrace{\int_0^t \mathrm{d}\tau \int_0^t \mathrm{d}\tau' h_B(\tau - \tau')}_{\geq 0}\right\}$$

If $s_i \neq s_j$, $\lim_{N \to \infty} |K_t(s_i, s_j)|$ decreases to 0 as $t \to \infty$. $h_B(\tau) = 2$ -point bath correlator $= \underset{B}{\operatorname{tr}} (e^{-i\tau H_B} B e^{i\tau H_B} B \rho_B)$. Rencontre "Systèmes quantiques ouverts", Cergy-Pontoise, 17/11/2009 – p. 5

Decoherence vs relaxation times Main question: how is the decoherence time $t_{dec}(\varphi_i, \varphi_j) = \min\{t_d \ge 0; |K_t(s_i \ne s_j)| \le e^{-1} \forall t \ge t_d\}$ related to the time scale t_{rel} of the relaxation to the steady state (if any)?

Decoherence vs relaxation times Main question: how is the decoherence time $t_{dec}(\varphi_i, \varphi_j) = \min\{t_d \ge 0; |K_t(s_i \ne s_j)| \le e^{-1} \forall t \ge t_d\}$ related to the time scale t_{rel} of the relaxation to the

steady state (if any)?

In our model: t_{dec} decreases with the distance $|s_i - s_j|$ between the components of the initial superposition. $\hookrightarrow t_{dec} \ll t_{rel}$ for "macroscopic superpositions" ($|s_1 - s_2| \gg \hbar$) $\hookrightarrow t_{dec}$ can be smaller than the bath correlation time (\Rightarrow Markov approximation is not justified!).

LARGE TIME ASYMPTOTICS OF THE DYNAMICS (given e.g. by spectral properties of the Liouvillian or Lindblad generator) PROVIDES LITTLE INFORMATION ABOUT DECOHERENCE

(see however [Merkli, Sigal & Berman, '07]).

Limitations of the model

1. The system's proper dynamics (generated by H_S) has not been taken into account:

OK only if the time scale of this dynamics is much larger than t_{dec} (as is the case e.g. in quantum dots, in nanocircuits with Josephson junctions, and for ideal quantum measurements).

Limitations of the model

1. The system's proper dynamics (generated by H_S) has not been taken into account:

OK only if the time scale of this dynamics is much larger than t_{dec} (as is the case e.g. in quantum dots, in nanocircuits with Josephson junctions, and for ideal quantum measurements).

- **2.** For more realistic interaction Hamiltonians H_{int} :
 - A saturation of t_{dec} as $|s_1 s_2|$ increases occurs for translation-invariant Hamiltonians [Gallis & Fleming '90, Hornberger & Sipe '03]
 - In specific physical situations such as in a Bose Josephson junction, $t_{\rm dec}$ is independent of $|s_1-s_2|$

[Ferrini, DS, Minguzzi & Hekking '09]

Outlines

- Motivation: decoherence vs dissipation
- Perturbative master equations

Lindblad master equation

$$\frac{d\rho_S}{dt} = -i[H_S, \rho_S(t)] + \frac{\gamma}{2} \Big([L, \rho_S(t)L^*] + \text{h.c.} \Big)$$

→ can be derived from the unitary (system+bath)
 dynamics with Hamiltonians

(a) $H = H_S + H_B + \lambda S \otimes B$ for $\lambda \to 0$ and $t = \tau \lambda^{-2} \to \infty$, τ fixed (Weak Coupling Limit)

(b) $H = \lambda^2 H_S + H_B + \lambda S \otimes B$, same limits (Singular Coupling) However, the W.C. limit in (a) is *not well-defined* if H_S has continuous spectrum. *Many physical processes* (spin relaxation in NMR, decoherence in solid state devices,...) are *not correctly described by the Lindblad equation!* Lindblad master equation

$$\frac{d\rho_S}{dt} = -i[H_S, \rho_S(t)] + \frac{\gamma}{2} \Big([L, \rho_S(t)L^*] + \text{h.c.} \Big)$$

→ can be derived from the unitary (system+bath)
 dynamics with Hamiltonians

(a) $H = H_S + H_B + \lambda S \otimes B$ for $\lambda \to 0$ and $t = \tau \lambda^{-2} \to \infty$, τ fixed (Weak Coupling Limit)

(b) $H = \lambda^2 H_S + H_B + \lambda S \otimes B$, same limits (Singular Coupling) However, the W.C. limit in (a) is not well-defined if H_S has continuous spectrum. Many physical processes (spin relaxation in NMR, decoherence in solid state devices,...) are not correctly described by the Lindblad equation! **Reason:** W.C.L. contains a local time averaging (= rotating wave approximation), valid for $t_{rel}^{-1} \ll$ spectral gap ΔE between neighboring eigenvalues of H_S .

Born-Markov approximation

 $H = H_S + H_B + \lambda S \otimes B$

Bath correlation function: $h_B(\tau) = \operatorname{tr}_B(e^{-i\tau H_B}Be^{i\tau H_B}B\rho_B)$.

Davies's 1st theorem [Math. Ann. '76]: Assume $||S|| < \infty$ and $\int d\tau \, \tau \, h_B(\tau) < \infty$. Then, for a fixed $\tau > 0$, $\sup_{0 \le t \le \lambda^{-2} \tau} \left\| \underbrace{\rho_S(t)}_{\text{exact}} - \underbrace{e^{(-i[H_S,\cdot] + \lambda^2 K_D)t}(\rho_S(0))}_{\text{approximate semigroup}} \right\|_1 = \mathcal{O}(\lambda^2)$ with $K_D(\rho_S) = \int_{-\infty}^0 d\tau \left\{ h_B(t) \left[e^{-i\tau H_S} S e^{i\tau H_S}, \rho_S S \right] + \text{h.c.} \right\}.$

Born-Markov approximation

 $H = H_S + H_B + \lambda S \otimes B$

Bath correlation function: $h_B(\tau) = \operatorname{tr}_B(e^{-i\tau H_B}Be^{i\tau H_B}B\rho_B)$.

Davies's 1st theorem [Math. Ann. '76]: Assume $||S|| < \infty$ and $\int d\tau \, \tau \, h_B(\tau) < \infty$. Then, for a fixed $\tau > 0$, $\sup_{0 \le t \le \lambda^{-2}\tau} \left\| \underbrace{\rho_S(t)}_{0 \le t \le \lambda^{-2}\tau} - \underbrace{e^{(-i[H_S,\cdot] + \lambda^2 K_D)t}(\rho_S(0))}_{0 \le t \le \lambda^{-2}\tau} \right\|_1 = \mathcal{O}(\lambda^2)$ exact approximate semigroup with $K_D(\rho_S) = \int_{-\infty}^0 \mathrm{d}\tau \left\{ h_B(t) \left[e^{-i\tau H_S} S e^{i\tau H_S}, \rho_S S \right] + \mathrm{h.c.} \right\}.$ **Remarks:** 1. K_D is not unique: another generator K_R leads to a similar approximation of $\rho_S(t)$. 2. K_D is not a Lindblad generator \Rightarrow the approximate semigroup is not positivity conserving!

> **3.** 2^{nd} order perturbation but error of order λ^2 ... Rencontre "Systèmes quantiques ouverts", Cergy-Pontoise, 17/11/2009 – p. 10

Redfield Master Equation

[Redfield '57]

TH. [DS, '09] Assume $||S|| < \infty$ and $\int d\tau \tau h_B(\tau) < \infty$. Then for any $0 \le t \le \lambda^{-2} \tau$,

$$\left\|\underbrace{\rho_S(t)}_{\text{exact}} - \underbrace{\widehat{\rho}_S(t)}_{\text{approximate}}\right\|_1 = \mathcal{O}(\lambda^4 t + \lambda^6 t^2)$$

where $\hat{\rho}_{S}(t)$ is the solution of the time-dependent Redfield eq.

$$\frac{\mathrm{d}\widehat{\rho}_S}{\mathrm{d}t} = -i[H_S,\widehat{\rho}_S(t)] + \lambda^2 \int_{-t}^0 \mathrm{d}\tau \left\{ h_B(\tau) \left[S,\widehat{\rho}_S(t) e^{i\tau H_S} S e^{-i\tau H_S} \right] + \mathrm{h.c.} \right\}$$

Moreover, if $[H_S, S] = 0$ then $\widehat{\rho}_S(t) = \rho_S(t)$ for all λ and t.

Redfield Master Equation

[Redfield '57]

TH. [DS, '09] Assume $||S|| < \infty$ and $\int d\tau \tau h_B(\tau) < \infty$. Then for any $0 \le t \le \lambda^{-2} \tau$,

$$\left\|\underbrace{\rho_S(t)}_{\text{exact}} - \underbrace{\widehat{\rho}_S(t)}_{\text{approximate}}\right\|_1 = \mathcal{O}(\lambda^4 t + \lambda^6 t^2)$$

where $\hat{\rho}_{S}(t)$ is the solution of the time-dependent Redfield eq.

$$\frac{\mathrm{d}\widehat{\rho}_S}{\mathrm{d}t} = -i[H_S,\widehat{\rho}_S(t)] + \lambda^2 \int_{-t}^0 \mathrm{d}\tau \left\{ h_B(\tau) \left[S,\widehat{\rho}_S(t) e^{i\tau H_S} S e^{-i\tau H_S} \right] + \mathrm{h.c.} \right\}$$

Moreover, if $[H_S, S] = 0$ then $\widehat{\rho}_S(t) = \rho_S(t)$ for all λ and t.

Remarks: 1. Going to higher orders in perturbation theory does not help for large times $t \ge t_{\rm rel} \propto \lambda^{-2}$, but leads to smaller errors for $t \ll t_{\rm rel}$.

2. As in Davies's theorem, the master eq. is

not unique \rightarrow which is the best one?

Outlines

- Motivation: decoherence vs dissipation
- Perturbative master equations
- Master equation for a Brownian quantum particle moving on a lattice \mathbb{Z}^d

Model

 Consider a free particle on the lattice Z^d with Hamiltonian H_S = -λ²Δ on ℓ²(Z^d) (Δ = discrete Laplacian). The mass of the particle diverges like λ⁻² with the coupling constant.

Model

- Consider a free particle on the lattice Z^d with Hamiltonian H_S = -λ²Δ on ℓ²(Z^d) (Δ = discrete Laplacian). The mass of the particle diverges like λ⁻² with the coupling constant.
- The particle is coupled to a phonon bath initially in a Gibbs state $\rho_{\rm ph}$ with $\beta^{-1} > 0$ and $h_{\rm ph} : \varphi(q) \mapsto |q|\varphi(q)$. The coupling Hamiltonian is translation-invariant,

$$H_{\text{int}} = \int_{\mathbb{T}^d} d^d q \, g(q) \, e^{iqX} \otimes \left(a_q^{\dagger} + a_{-q}\right)$$
$$= \sum_{x \in \mathbb{Z}^d} |x\rangle \langle x| \otimes \underbrace{\left(a^*(g_x) + a(g_x)\right)}_{\text{creation/annihilation op.}}, \ g_x(q) = g(q) \, e^{iqx}$$

 $\{|x\rangle\}_{x\in\mathbb{Z}^d}$ = canonical basis of $\ell^2(\mathbb{Z}^d)$, X = position op., g(q) = g(|q|) form factor (analytic in a strip around \mathbb{R} -axis). Rencontre "Systèmes quantiques ouverts", Cergy-Pontoise, 17/11/2009 – p. 13

Main result

Let $\rho_S(t) = \operatorname{tr}_B \left(e^{-it[-\lambda^2 \Delta + \Gamma_s(h_{\mathrm{ph}}) + \lambda H_{\mathrm{int}}, \cdot]} \left(\rho_S(0) \otimes \rho_{\mathrm{ph}} \right) \right).$ Space-dependent phonon correlation function $h_{x-y}(t-s) = \operatorname{tr}_B \left(\left(a^* (e^{ith_{\mathrm{ph}}} g_x) + a(e^{ith_{\mathrm{ph}}} g_x) \right) \left(a^* (g_y) + a(g_y) \right) \rho_{\mathrm{ph}} \right)$

Main result

Let $\rho_{S}(t) = \operatorname{tr}_{B} \left(e^{-it[-\lambda^{2}\Delta + \Gamma_{s}(h_{\mathrm{ph}}) + \lambda H_{\mathrm{int}}, \cdot]} \left(\rho_{S}(0) \otimes \rho_{\mathrm{ph}} \right) \right).$ Space-dependent phonon correlation function $h_{x-y}(t-s) = \operatorname{tr}_{B} \left(\left(a^{*}(e^{ith_{\mathrm{ph}}}g_{x}) + a(e^{ith_{\mathrm{ph}}}g_{x}) \right) \left(a^{*}(g_{y}) + a(g_{y}) \right) \rho_{\mathrm{ph}} \right)$

TH. [De Roeck & DS '09]. Assume that

$$\begin{split} \lim_{n \to \infty} \frac{1}{n} \int_0^\infty dt \sup_{x \in \mathbb{Z}^d} |h_x(t)| e^{-\kappa |x|/n} &< \infty \text{ for some } \kappa > 0. \\ \text{Then for any } \tau > 0 \text{ and any trace-class op. } \rho_S(0) \text{ on } \ell^2(\mathbb{Z}^d), \\ & \left\| \underbrace{\rho_S(t)}_{\text{exact}} - \underbrace{e^{\tau \mathcal{L}}(\rho_S(0))}_{\text{approx. semigroup}} \right\|_1 \to 0 \quad \text{as } \lambda \to 0, \text{ with} \\ \mathcal{L}(\rho_S) &= i [\Delta, \rho_S] + \int dt \sum_{x,y \in \mathbb{Z}^d} h_{y-x}(t) |x\rangle \langle x|\rho_S|y\rangle \langle y| - \int dt \, h_0(t) \, \rho_S \end{split}$$

Main result

Let $\rho_{S}(t) = \operatorname{tr}_{B} \left(e^{-it[-\lambda^{2}\Delta + \Gamma_{s}(h_{\mathrm{ph}}) + \lambda H_{\mathrm{int}}, \cdot]} \left(\rho_{S}(0) \otimes \rho_{\mathrm{ph}} \right) \right).$ Space-dependent phonon correlation function $h_{x-y}(t-s) = \operatorname{tr}_{B} \left(\left(a^{*}(e^{ith_{\mathrm{ph}}}g_{x}) + a(e^{ith_{\mathrm{ph}}}g_{x}) \right) \left(a^{*}(g_{y}) + a(g_{y}) \right) \rho_{\mathrm{ph}} \right)$

TH. [De Roeck & DS '09]. Assume that

$$\begin{split} \lim_{n \to \infty} \frac{1}{n} \int_0^\infty dt \sup_{x \in \mathbb{Z}^d} |h_x(t)| e^{-\kappa |x|/n} &< \infty \text{ for some } \kappa > 0. \\ \text{Then for any } \tau > 0 \text{ and any trace-class op. } \rho_S(0) \text{ on } \ell^2(\mathbb{Z}^d), \\ & \left\| \underbrace{\rho_S(t)}_{\text{exact}} - \underbrace{e^{\tau \mathcal{L}}(\rho_S(0))}_{\text{approx. semigroup}} \right\|_1 \to 0 \quad \text{as } \lambda \to 0, \text{ with} \\ \mathcal{L}(\rho_S) &= i [\Delta, \rho_S] + \int dt \sum_{x,y \in \mathbb{Z}^d} h_{y-x}(t) |x\rangle \langle x|\rho_S|y\rangle \langle y| - \int dt \, h_0(t) \, \rho_S \end{split}$$

Remarks: 1. Hypothesis fulfilled for $d \ge 2$, but not for d = 1. 2. \mathcal{L} is a Lindblad generator. Rencontre "Systèmes quantiques ouverts", Cergy-Pontoise, 17/11/2009 – p. 14

Outlines

- Motivation: decoherence vs dissipation
- Perturbative master equations
- Master equation for a Brownian quantum particle moving on a lattice \mathbb{Z}^d
- Perspectives, open problems

Perspectives & Open problems

- Convolutionless master eq. for a system-bath coupling Hamiltonian $H_{\text{int}} = \lambda_{\parallel} S_{\parallel} \otimes B_{\parallel} + \lambda_{\perp} S_{\perp} \otimes B_{\perp}$ with $[H_S, S_{\parallel}] = 0$, non-perturbative in λ_{\parallel} and 2^{nd} order in λ_{\perp} .
- Does the time-dependent Redfield equation and/or its higher-order versions conserve positivity? What are the asymptotic states?
- Translation-invariant Hamiltonians: Gallis & Fleming's model of a Brownian particle coupled to light particles, W.C.L. for an electron in a random potential coupled to a phonon bath (Anderson localization regime).
- Decoherence vs entanglement losses.
- Decoherence in Bose-Einstein condensates & link with experiments.
 Rencontre "Systèmes quantiques ouverts", Cergy-Pontoise, 17/11/2009 – p. 16