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What are we physically interested in?

Question:

1 A sample is suitably coupled to thermal reservoirs s.t., for large times, the
system approaches a nonequilibrium steady state (NESS).

2 We consider a class of quasifree fermionic NESS over the discrete line
which are supported by so-called Left/Right movers.

3 We ask: What is the von Neumann entropy density sn = − 1
n

tr(%n log %n)
of the reduced density matrix %n of such NESS restricted to a finite string
of large length n?

r r r r r r r r r r r r r6666666666666| {z }
n

4 The prominent XY chain will serve as illustration (in the fermionic picture).

Remark Several other correlators can be treated similarly (e.g. spin-spin, EFP).
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What are we physically interested in?

Specific model: XY chain [Lieb et al. 61, Araki 84]

The Heisenberg Hamiltonian density reads

Hx =
X

n=1,2,3

Jnσ
(x)
n σ(x+1)

n + λσ
(x)
3 ,

and the XY chain is the special case with J3 = 0.

Experiments SrCuO2, Sr2CuO3 [Sologubenko et al. 01] with J3 6= 0

PrCl3 [D’Iorio et al. 83, Culvahouse et al. 69] with J1 = J2, J3 ≈ 0, i.e.,
J3/J1 ≈ 10−2, and λ = 0
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Formalism of quantum statistical mechanics

Rigorous foundation in the early 1930s:
1 An observable A is a selfadjoint operator on the Hilbert space of the system.
2 The dynamics of the system is determined by a distinguished selfadjoint operator
H, called the Hamiltonian, through A 7→ At = eitHAe−itH .

3 A pure state is a vector ψ in the Hilbert space, and the expectation value of the
measurement of A in the state ψ is (ψ,Aψ).

Algebraic reformulation and generalization (von Neumann, Jordan, Wigner, ...):

Observables

C∗ algebra A

Dynamics

(Strongly) continuous group τ t of ∗-automorphisms on A

States

Normalized positive linear functionals ω on A, denoted by E(A).

Example A = L(h), τ t(A) = eitHAe−itH , and ω(A) = tr(%A) with density matrix %
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1.1 Quasifree setting

Observables

The total observable algebra is:
CAR algebra

The CAR algebra A over the one-particle Hilbert space h = `2(Z) is
the C∗ algebra generated by 1 and a(f) with f ∈ h satisfying:

a(f) is antilinear in f

{a(f), a(g)} = 0

{a(f), a∗(g)} = (f, g)1

The finite subalgebra of observables on the string is:
String subalgebra

Let hn = `2(Zn) be the one-particle subspace over the finite string
Zn = {1, 2, ..., n}. The string algebra An is the C∗ subalgebra of A

generated by a(f) with f ∈ hn.
By the Jordan-Wigner transformation, we have the isomorphism

An ' C2n×2n

.
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Quasifree setting

States

For F = [f1, f2] ∈ h⊕2, we define JF = [cf2, cf1] with conjugation c, and

B(F ) = a∗(f1) + a(cf2).

The two-point function is characterized as follows:
Density

The density of a state ω ∈ E(A) is the operatorR ∈ L(h⊕2) satisfying
0 ≤ R ≤ 1 and JRJ = 1−R, and, for all F,G ∈ h⊕2,

ω(B∗(F )B(G)) = (F,RG).

The class of states we are concerned with is:
Quasifree state

A state ω ∈ E(A) with density R ∈ L(h⊕2) is called quasifree if it
vanishes on odd polynomials in the generators and if

ω(B(F1)...B(F2n)) = pf [(JFi, RFj)]
2n
i,j=1.

Entropy Density of Quasifree Fermionic States supported by Left/Right Movers 7/20



Model
von Neumann entropy

Remarks

Quasifree setting
NESS
Left/Right movers

1.2 Nonequilibrium steady states (NESS)

States

For the nonequilibrium situation, we use:
NESS [Ruelle 01]

A NESS w.r.t the C∗-dynamical system (A, τ t) with initial state ω0 ∈
E(A) is a large time weak-∗ limit point of ω0 ◦ τ t (suitably averaged).

The nonequilibrium setting for the XY chain is:
Theorem: XY NESS [Dirren et al. 98, Araki-Ho 00, A-Pillet 03]

Let h = Re(u) [⊕−Re(u)] generate the coupled dynamics τ t. Then,
the decoupled quasifree initial state with density R0 = (1 + eQ0)−1

and Q0 = 0 ⊕ βLhL ⊕ βRhR converges under τ t to the unique
quasifree NESS with density R = (1 + eQh)−1, where

Q = βLPL + βRPR, Pα = s− limt→∞e−ithi∗αiαe−ith.

u right translation, hα = iαhi∗α with the natural injection iα : `2(Zα)→ h = `2(Z)

Entropy Density of Quasifree Fermionic States supported by Left/Right Movers 8/20



Model
von Neumann entropy

Remarks

Quasifree setting
NESS
Left/Right movers

1.3 Left/Right movers

Left/Right mover state

An L/R-state ω% ∈ E(A) is a quasifree state whose density R = (1− %)⊕ c%c is

% = ρ(Qh) with Q = βLPL + βRPR,

where ρ ∈ C(R, [0, 1]), 0 < βL ≤ βR <∞, and h, Pα ∈ L(h) satisfy:
Assumptions: Chiral charges

(A1) h = h∗, Pα = P ∗α
[Pα, h] = 0

(A2) [h, u] = 0, [Pα, u] = 0

(A3) [h, θ] = 0
θPL = PRθ

(A4) ρ(x) = (1 + e−x)−1

(A5) P 2
α = Pα
PL + PR = 1

u, θ ∈ L(h) are the right translation and the parity.

XY NESS h = Re(u) and Pα = s− limt→∞e−ithiαi
∗
αeith
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2. von Neumann entropy

Reduction to the subsystem

The restriction of the L/R-state to the string subalgebra is:
Reduced density matrix

The reduced density matrix %n ∈ An of the string associated to the
L/R-state ω% ∈ E(A) is

ω%(A) = tr(%nA), A ∈ An.

The correlation of the string with the environment is measured by:
von Neumann entropy

The von Neumann entropy of the string in the L/R-state ω% ∈ E(A) is

Sn = −tr(%n log %n).

Remark Sn is a widely used measure of entanglement in the ground state (T = 0).
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2.1 Toeplitz Majorana correlation

L/R-Majorana correlation matrix: d∗i = di, {di, dj} = 2δij

Let Fi = [f1
i , f

2
i ] ∈ h⊕2

n , f1
i (x) = [τ⊕n]i,2x, f2

i (x) = [τ⊕n]i,2x−1, and τ =
h
1 1
i −i

i
.

Then, di = B(Fi) for i = 1, ..., 2n are Majorana operators. The L/R-Majorana
correlation matrix Ωn ∈ C2n×2n is defined by

Ωn = [ω%(didj)]
2n
i,j=1.

Proposition: Toeplitz structure

Let (A1) and (A2) hold. Then,

Ωn = 1 + iTn[a] with Tn[a] = −Tn[a]t ∈ R2n×2n,

where the symbol a = −a∗ ∈ L∞2×2(T) of the block Toeplitz operator
T [a] ∈ L(`22(N)) is given by

a =

"
i
`b%−cθ%´ b%+cθ%− 1

1− b%−cθ% i
`b%−cθ%´

#
.
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Toeplitz Majorana correlation

Toeplitz operators

Let `2N (N) be the square summable CN -valued sequences and L∞N×N (T)
the CN×N -valued functions with components in L∞(T).
Toeplitz theorem [Toeplitz 11]

Let {ax}x∈Z ⊂ CN×N and let the operator T on `2N (N) be defined on
its maximal domain by the action

Tf =

(
∞X
j=1

ai−jfj

)∞
i=1

.

Then, T ∈ L(`2N (N)) iff there is an a ∈ L∞N×N (T), called the
(scalar/block) symbol (if N = 1/N > 1), s.t., for all x ∈ Z,

ax =

Z π

−π

dk

2π
a(k) e−ikx.

In this case, we write T = T [a] and Tn[a] = PnT [a]Pn, where
Pn{x1, x2, . . .} = {x1, . . . , xn, 0, 0, . . .}.
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2.2 Reduced density matrix

Proposition: Density matrix [Vidal et al. 03, Latorre et al. 04, A 07]

Let (A1) and (A2) hold. Then, there exists a set of fermions {ci}ni=1 ⊂ An s.t.

%n =
nY
i=1

„
1 + λi

2
c∗i ci +

1− λi
2

cic
∗
i

«
,

where {±iλi}ni=1 ⊂ iR are the eigenvalues of the Toeplitz matrix Tn[a].

Proof.
1 [Basis from fermions] For any family of fermions {ci}ni=1 ⊂ An, we set
e11i = c∗i ci, e12i = c∗i , e21i = ci, and e22i = cic

∗
i .

Then, {
Qn
i=1 e

αiβi
i }α1,...,βn=1,2 is an ONB of An w.r.t. (A,B) 7→ tr(A∗B),

and we can write

%n =
X

α1,...,βn=1,2

ωρ

 "
nY
i=1

eαiβi
i

#∗! nY
j=1

e
αjβj

j .
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Reduced density matrix

2 [Special choice of fermions] For any V ∈ O(2n), set Gi = [g1
i , g

2
i ] ∈ h⊕2

n

with g1
i (x) =

ˆ
τ−1⊕nV τ⊕n

˜
2i−1,2x

and g2
i (x) =

ˆ
τ−1⊕nV τ⊕n

˜
2i−1,2x−1

.
Then, ci = B(Gi) is a family of fermions,

{ci, cj} =
ˆ
τ−1⊕nV V tτ̄⊕n

˜
2i−1,2j−1

= 0,

{c∗i , cj} =
ˆ
τ−1⊕nV V ∗τ⊕n

˜
2i−1,2j−1

= δij .

3 [Special choice of V ] Let {±iλi}ni=1 ⊂ iR be the eigenvalues of Tn[a].
Since Tn[a] = −Tn[a]t ∈ R2n×2n, there exists a V ∈ O(2n) s.t.

V Tn[a]V t = ⊕ni=1λiiσ2.

4 [Factorization] This block diagonalization leads to

ω%(cicj) =
1

4

ˆ
τ∗⊕nV ΩnV

tτ̄⊕n
˜
2i−1,2j−1

= 0,

ω%(c
∗
i cj) =

1

4

ˆ
τ t⊕nV ΩnV

tτ̄⊕n
˜
2i−1,2j−1

= δij
1 + λi

2
.

Hence, we can factorize as ωρ
“Qn

i=1 e
αiβi
i

”
=
Qn
i=1 δαiβi ω% (eαiαi

i ).

�

Entropy Density of Quasifree Fermionic States supported by Left/Right Movers 14/20



Model
von Neumann entropy

Remarks

Toeplitz Majorana correlation
Reduced density matrix
Asymptotics

2.3 Asymptotics

Theorem: L/R entropy density [A 07]

Let (A1)-(A4) hold. Then, with Shannon’s entropy H, the asymptotic von
Neumann entropy density in the Left mover-Right mover state ω% ∈ E(A) is

lim
n→∞

Sn
n

=
X
ε=0,1

1

2

Z π

−π

dk

2π
H
`
th
ˆ

1
2
bθεcQhbθε˜´.

Proof.
1 [Planck Toeplitz symbol] Using (A3) and (A4) in the previous form of the

block symbol, we get, with Q± = β±(PR ± PL) and β± = (βR ± βL)/2,

i a =
1

ch
ˆ bQ+

bh˜+ ch
ˆ bQ−bh˜

"
sh
ˆ bQ−bh˜ −i sh

ˆ bQ+
bh˜

i sh
ˆ bQ+

bh˜ sh
ˆ bQ−bh˜

#
.

2 [Spectral radius] Using ‖T [a]‖ = ‖a‖∞, we have

‖Tn[a]‖ ≤ ess supT th
ˆ

1
2

`˛̨ bQ+

˛̨
+
˛̨ bQ− ˛̨´˛̨bh˛̨˜ < 1.
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Asymptotics

3 [von Neumann entropy] Let H(x) = −
P
σ=± log[(1 + σx)/2](1 + σx)/2

for x ∈ (−1, 1) be the (symmetrized) Shannon entropy function. Then,

Sn = −
X

ε1,...,εn=0,1

λε1,...,εn log(λε1,...,εn)

=

nX
i=1

H(λi),

where λε1,...,εn =
Qn
i=1

1
2
(1 + (−1)εiλi) are the 2n eigenvalues of %n with

0 < λε1,...,εn < 1.
4 [Asymptotics] Since ia ∈ L∞2×2(T) is selfadjoint, Szegő’s first limit theorem

for block Toeplitz operators yields the asymptotic first order trace formula

lim
n→∞

tr H(Tn[ia])

2n
=

1

2

Z π

−π

dk

2π
tr H(ia(k)).

Using the evenness of the Shannon entropy, we arrive at

tr H(ia) =
X
ε=0,1

H
`
th
ˆ

1
2
bθεcQhbθε˜´.

�
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Asymptotics

Special cases.
We can rewrite the double of the integrand of the entropy density as

s =
X
σ=±

H
`
th
ˆ

1
2

`
β+

˛̨ bPR + bPL ˛̨+ σβ−
˛̨ bPR − bPL ˛̨´˛̨bh˛̨˜´.

1 Case β− = 0.
We then have the two equal contributions

s = 2 H
`
th
ˆ

1
2
β+

˛̨ bPR + bPL ˛̨˛̨bh˛̨˜´.
2 Case with additional (A5), i.e. P 2

α = Pα and PR + PL = 1.
Since (PR − PL)2 = PR + PL, we get

s =
X
σ=±

H
`
th
ˆ

1
2

`
β+ + σβ−

´˛̨bh˛̨˜´ = H
`
th
ˆ

1
2
βR
˛̨bh˛̨˜´+ H

`
th
ˆ

1
2
βL
˛̨bh˛̨˜´.

XY NESS Pα = s− limt→∞e−ithiαi
∗
αeith
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If (A1)-(A5) hold, then the block symbol a ∈ L∞2×2(T) of the Toeplitz operator is

i a =
1

ch
ˆ
β+
bh˜+ ch

ˆ
β−bh˜

"
sign

` bPR− bPL´shˆβ−bh˜ −i sh
ˆ
β+
bh˜

i sh
ˆ
β+
bh˜ sign

` bPR− bPL´shˆβ−bh˜
#
.

Let PR, PL be nontrivial and bh sufficiently smooth.

Nonequilibrium (β− > 0)

(Leading order) The singular nature of the symbol does not affect the
leading order of the entropy density asymptotics.

(Nonvanishing density) Any strictly positive temperature in the system
leads to a nonvanishing asymptotic entropy density. This is due to the fact,
that, in such a case, the Toeplitz symbol ia has at least one eigenvalue
with modulus strictly smaller than 1.

(Strong subadditivity) The existence of a nonnegative entropy density
for translation invariant spin systems can also be shown by using the
strong subadditivity property of the entropy.
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Nonequilibrium (β− > 0)

(Block symbols) The effect of a true nonequilibrium on the Toeplitz
determinant approach to quasifree fermionic correlators is twofold:
(a) The symbol becomes nonscalar.
(b) The symbol loses regularity.
Since Coburn’s Lemma [Coburn 66] does not hold in the block case, it is
in general very difficult to establish invertibility. Moreover, Szegő-Widom
[Widom 76] and Fisher-Hartwig [Widom, Basor, ... 73-...] are not
applicable (higher order).

Equilibrium (β− = 0)

(Symbol) The entropy can be expressed using a scalar Toeplitz operator
whose symbol is smooth.

(Subleading order) Second order trace formulas then imply that the
subleading term has the form o(n) = C + o(1).
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Ground state (β− = 0, β+ =∞)

(Logarithmic growth) For β+ →∞, the entropy density vanishes. Using
a proven case of the Fisher-Hartwig conjecture [Basor 79] and

Sn = lim
ε→0

1

2πi

I
γε

dz H̃(z)
d

dz
log det(Tn[a12]− z)

for suitable H̃ and γε, one has Sn = 1
3

logn+ C + o(1) [Jin-Korepin 03].
(Entanglement) It plays an important role in:

Strongly correlated quantum systems
Quantum information theory
Theory of quantum phase transitions
Long-range correlations, e.g., critical entanglement in the XY/XXZ chains and
CFT (logarithmic growth vs. saturation) [Vidal et al. 03, Calabrese-Cardy 04].

But quantum phase transitions can leave fingerprints at T > 0.
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