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e Quantitative estimates on the enhanced binding for the Pauli-Fierz
operator, J. Math. Phys., vol. 46, no12 (2005).
J.-M. B., Helmut Linde, Semjon Wugalter

e Binding conditions for atomic N-electron systems in non-relativistic
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Introduction - Schrédinger Hamiltonian

Hamiltonian

One electron interacting with a pointwise nucleus of charge e,
(Z=1).

H=-A+V

Coulomb Potential : V(x) = — &

Electron mass m = 1/2; Planck constant & = 1 ; velocity of light
c=1.

Fine structure constant : o« = € ~ 1/137

| \

Binding energy

Energy necessary to remove the electron to spatial infinity :
Y(0) - X(V) =info(—A) —info(—A + V).
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Introduction - Schrédinger Hamiltonian

An elementary computation !
> Coulomb uncertainty principle : fps 17 [1(X)[Pdx < ||V | |4
>

(W, (=8 + V)o) > [V = a| Vel ]
a 2 %
= (vl = Zlel)” =l

>0

2

> T(V) =info(—A+ V) = -2,

Binding energy

£(0) - X(V) = info(~A) —info(~A+ V) =
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Introduction - Pauli-Fierz Hamiltonian

Coupling to the radiation field

Ho=T+V®I sur §=IL3R3Q®Fs
Self-energy : T = (—iVx ® It + /aA(x))? + I ® Hs — Cp.o.cx

» [2(R3) : Hilbert space for one spinless electron.
» §s : Symmetric photonic Fock space.

(e'e] n

=P L&) o
n=0 S 2t larizati

= photon momentum space ransv. polarizations

3

39 = ..

» Vacuum : Q.
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Introduction - Pauli-Fierz Hamiltonian

» Creation/annihilation operators : a;(k), a(k). FquiI the
C.C.R:[ax(k),as (k)] = dano(k — K'), [aA(k) ( ) =0

» Photon field energy : Hr = >°,_; » [ |k|a}(k)ax(k)dk
» Magnetic vector potential :

A(x) = A™(x) +AT(x)

=S / UKD o (k) @ an () + h.c Jdk
A=1,2 27T|k

» Polarization vectors : e)(k), k - ex(k) = 0, €1(k) - e2(k) = 0.
» U.V. cutoff : xa(|k|)
» Normal ordering : —cn. 0.« : commutations of all creation

operators to the left in the term A(x)? (amount to subtract a
constant due to C.C.R.)
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The problem - Binding energy

Ho=T+ VeI sur $=L2R)H®F

T = (—iVx ® I + VaA(x))? + Iy ® H — Cpo.x

Binding energy :

T0(0) — To(V) = info(T) —info(T + V)

Remark :
H,=T+V
= —Ax 4 V(X) + H; + (—2Re aA(x) - iVx 4+ aA(X)? — cho.a)
=W(a)
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The problem - What is expected ?

Hy = —Ax + V(X)) + Hf + W(a)

@ When the interaction W(«) is turned on, as the particle
binds photons, it acquires an effective mass

Megr = Mee(t) / as «a /.

© The free particle binds a larger quantity of (low-energetic)
photons than the confined particle, and thus has a larger
effective mass than the confined particle.

@ Interaction with quantized radiation field increases binding
abilities of a potential. (e.g., for some V, —A + V + H; has
no bound state, but —A + V + H; + W(«) has).

© The binding energy should increase :

%4(0) — Ta(V) > £(0) - £(V)



The problem - Difficulties

Several difficulties !
@ Both the Coulomb potential V and the interaction W(«)
with the radiation field depend on the coupling constant «.

© Usual Kato’s perturbation theory failed : the G.S. energy of
the noninteracting problem is not an isolated e.v.

© The magnetic potential A(x) contains a frequency space

singularity —+ at the origin : Infrared divergence problem.
k|2
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Related results

» Systematical and rigorous study of Pauli-Fierz Hamiltonian
for atoms and molecules initiated by Bach-Fréhlich-Sigal :
[BFS’97, BFS’98, BFS’99, ...] (see also [Sp’95, DG’99]).

ak1:

+ Self-adjointness of H, and T.

- Existence of a ground state : H, WS = 5, (V)w&s

+ Photon number bound : (W&, N;WES) = O(a).

» Binding condition : [GLL01, LL03, BCV’03]
For all «
« For hydrogen atom : ¥,(0) — £,(V) > a?/4 = £(0) — (V)

+ Similar a priori photon number bound for the ground state.
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Related results

» Self-energy at fixed total momentum : [F'74], [C’'01],
[CF07], [C’08].
The operator T = —A + Hf + W(«) commutes with the
total momentum Py,

Pot = (—iVy@T)+ (lu@ Py), Pj— Z/kaj(k)aA(k)dk
A

T~ T(P)dP
JR3
infa(T(0)) =info(T) = X,(0)
¥,(0) is an eigenvalue of T(0) : T(0)Wg® = L, (0)V§®. J

> Study of £,(0) : [HVV'03], [H'03], [CH04], [BLV05],
[BCVV'08], [BV'10]

[BCVV’08] : £,(0) up to the order o2, with error O(a*). |
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Related results

» [HiSp’01] (large «), [HS’03] (spin, aZ fixed)
[CVV'03] : £,(0) — Z,(V) > a?/4 (« small).
> [HHSp'05] : = «(0) — Z4(V) up to the order o2, with error
O(az log o) (scalar boson)

» [BFP’06] : Expansion in « for info(H,) and its associated
ground state, for arbitrary N (using a scheme going back to
early work of A. Pizzo)

Yo(V) = info(H, —eoJrZek o2 + o(aM)

V6 > 0, lim,_g(cdex(a)) = 0 (“typically” ex(a) = log a)

Remark : Scaling Xger = ax, Kgre) = ék
-2
H[BFP] ~a “H,

i.e., A\ < oo fixed in [BFP] corresponds to o®A fixed in [BCVV].



Main results - Conjecture

Occurrence of In o terms in the expansion for the binding
energy ¥,(0) — X, (V).
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Main results

24(0) = Za(V)

2
(6%
= 4 eMad  +elo*+el® adloga +o(a®loga)
~——" ——
Z(O\fz/( " increase of bind. energy infrared divergence

o 1 oo xa(t)

T 2n o 1+t

dt >0

e®= %W(m(m + PRIt (0) - AT (0)0y, (Hr + P) Ty

138 1 _ 1 _
15 2 I(PF + H) ™ 2 PP + H) TTAT(0) - AT O F — S IIAT(0)-(Hy + PP T AT ()17

12 &
11 1 K+k: 1
2 —5 L 2 1 2
(A - — + ) 2atag|?, g = ———— xa(k|)dky dkydk,
oll( ] 7 1l o pREITAE ‘k|2+‘k|></\(\ )dky dkadks
4 11
3 5 2
e¥=Zji(—a - —+ )2vhlP £ 0
I [x| 4
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Proof - Unitary transform

Z/{ — eI'P/rvX
The e~ momentum variable is shifted by P.
The photon “position” is shifted by x.

o U(IV)U* = iVy+ Py
(iVx acquires now the meaning of the total momentum, i.e., momentum of
particle + field).

o UA(X)U* = A(0).
o UTU* = (P — Ps — \JaA(0))? + Hs — Cro.cv, P = iVy.
o U(T + VYU* = (P = Py — JaA(0))® + Hy— & — Choa

]

T

(0%

H:=U(T + V)U* = (P? X

) + T(0) — 2Re P.(P; + /aA(0))
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Proof - General strategy

- Iterative procedure to estimate the binding energy

Yo (0) = Zo(V).

- No need to compute ¥, (0) and (V) separately up to the
required order : E.g., to compute the difference

Y.(0) —2,(V)

with the error o(a® log o) it suffices to know ¥, (0) and ¥ (V)
with the error O(a*) :
» Estimate up to the order o2 with error O(a* log o) improved
to O(a*).
» Estimate up to the order o° log o with error o(a® log ).
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Proof - Increase of the binding energy

> Let £, be the GS of (—A — o/|x]), with e.v. —ey = —a?/4.
> Let WE° be the G.S. of the operator

T(0) = (=Pt — Vah(0))* + Hy
» Normalized trial state : ©"% = f,(x)V® € L3(R®) ® §

Za(V) § <etrial’ \/"I/ @trial>

U(T+ VU
— @[+ (P—Pr— VaK(O)R : +Hy — ) v
= ((P? - %)fawss,faw% (Vg T(0)
Y %0 (0)
— 2Re (P - (Ps + /aA(0))f, W5®, f,WE°)
0 by sym.
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Proof - increase of the binding energy

Thus
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Proof - where does loga term come from ?

Improved trial function : add a state orthogonal to u,,. :
etria] _ fa(X)Wgs +g.

A priori estimates for states orthogonal to f,
Assume that g € $ is such that for all kK > 0 we have

(Mk@; fa) 12(r3 ax) = 0. Then there exists v > 0 and ag > 0 such
that for all 0 < a0 < g we have

1
(9, Hg) > (Za(0) — e0)llg1* +3/320%| gII + [ H7 gII?

v

Photon number bound

Let W& be the GS of H := UH,U*. Then there exists ¢ > 0
such that for all & small enough

(W, NaW®S) < ca?log(a™")

v
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Proof - where does log o term come from ?

Translationnaly invariant case/free case [BCVV’08]

®p := —(H; + PF)~'AT(0) - AT(0)Q,
g := —(H; + PF) ™' P AT(0)
&= —(Hr + P2)_1 Ps- A (0)d, .

@m“‘l Qf + ad>2 + 2042<D1 aF 2(12 Cbg
Then
¥4(0) = info(T) = infa(T(0))
_ <@Brial’ T(O)@glal> + O(()é4)
= —aP|| P2 + a®(2]| A7 (0) P[> — 4 P5|Z—4]D1]12) + O(a?) ,

where (¢, ¥). = (¢, (Hr + PZ))).
For the true GS W§® of T(O) wes = ofil + Ry, with

IRoll = O(a), [|Roll = O(a?).
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Proof - where does loga term come from ?

(LGS +9), H(LYE® +g))
2
= (To(a) = ) +(g: Hg) +2Re (LWE®, Hg)

responsible for the increase of the binding energy
2

o) = ) + (g, Hg)—4Re (Pr + VaA(0)).P LGS, g)

The largest contribution to the cross-term comes from the projection
of W& onto the vacuum-vector Qy

—4Re \/a(AT(0).P 1,9, M19)
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Proof - where does loga term come from ?

e The term —4Re \/a(AT(0).P £, , M19) is estimated together with

(H+ eo)Myg,T1g) = (—A — |0‘7| + e0)M119. M1g) +{((Hr + PA)MN19,M19)

>0 since g.Lf,
«

=((-a - X Tet k| + |k[*)M1g,T119)

=:B2
e We can minimize w.r.t. [1g (—2va+ t? > -

—2Re /o (2B~ AT (0).P £,Q;, BMyg) + (BM4g, Bllyg)
> —a(2B71AT(0).P£,Qs, 2B~ AT (0).P £,Q;)

Leading correction term to the binding energy.

e Forgetting coef. and polarization vectors, and rescaling in x yields
3’ x(lk]) of |2
3 oxyll
K12 (JK]+ K2+ 02(-a = L+ 1))* 7
where f; is the ground state of (—A — 1/|x]).
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Proof - where does loga term come from ?

The operator (—A — 1/|x| + 1/4) acts on 9f/9xy. For simplicity, we
replace it by a constant C :

e / x([K|)? d%K
KICTK + rkr2+a20)

X(|k])2 d®k a2 Cx(|k|)? d®k
Ikl k(K| + k12 " K|(|k| + |k[2 + a2 C)(|k| + |k[?)
1
dlk|
_ 3 5 5
= Cia "+ G /0 ’k’+a20+0(a )
=cza’log o

In the case of a sharp infrared cutoff or a sufficiently strong infrared
regularization, or photons with mass, or large Z limit (i.e. «Z =: 8
fixed and independent of « in the Coulomb potential), this log o term
would not exist here.
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Ground state energy of T(0) - improved estimate
We have

¥2(0) = d9a? + dVa® +d®a* + 0,

with
2 1 — 2 2 2
d® = —jey)2, oV = 2)A" 0|7 — 4052 — 4|02
_ 2
0@ <2HA 0512 — 4|0 |2 — 4n¢aui>
NP
— — — 2 — 2 = 2 2 2 2
+BR(Py, AT - AT b3)+8]| AT || +8[|AT 0512 —16]| B |2 —16]|d4]|Z + |12 [|P2]|% .
and
Oy i=—(Hy + P2 TIAT At Qp, g = —(Hi+ PP - ATy, &y = —(Hi+P2) TP ATy,

- _ _ 1 _
b, ::—POZL(H, + P! (P, CAYO; 4 P AT 0y EA+ A ¢2)

1
o4 =—(H+ P (P MM 0y 1 LA AYey)




The ground state energy ¥, (V) of H fulfils

Yo (V) = d©a? + dMa® + d@a* + d®adloga + o(a®log ).
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Soft photon bound

Photon number bound
Let WeS be the true GS of UH,U*.
Then there exists ¢ > 0 such that for all a small enough

(Ve N;wes) < ca?log(at)
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Soft photon bound

Using [a\(k), Hf] = |k|, and

[ax(K), (1Y — Vah()) = 2Eha(kl)eh,

v
Pull-through formula
a,\(k)E\UGS = a,\(k)HalUGS
(03
_ ((Hf K2 (6) ~ @) + v (k)] + Vv aA(’O]) e
Thus

—vaxa(|k]) 1 . K.
a)(k)ves = vaxa( 2(—iV—vaA(x))-ex(k)eKXWes
X T SR

which implies

a®xa([kl)

lan(kywes2 < UKD (s ) yos) e, @ yesyy < ¢
W Hav®) P

k[ x|
O(a)
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Soft photon bound

l.e.
a?xa(lk
Jax(kywes|? < @ Xa UKD ()
On the other hand ([BFS’99], [GLLO01])
axa(|k
la(kwes|| < cf“é") I xwes |
O(a 4)
Thus .
a2 k
la(k)wes|2 < cm() | @)

e M) = [ (v ak = +/
|k|<a?/4 |k|>a7/4

3
g, of Pxa(K)
<) (2) C & XN gkt e L XN dk< ca?|log a
S @ /|k<am K sarie JKP lloga
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