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Quantum measurements in continuous time and non-Markovian

evolutions A. Barchielli — Politecnico di Milano & INFN

1) The problem. Connections among master equations, unravelling and observation

in continuous time in the Markov and non-Markov cases.

2) From a class of master equations with memory (the Lindblad rate equation —

Budini, Breuer, Petruccione...) to a jump/diffusion unravelling with measurement

interpretation. An example: the spectrum of a 2-level atom in a structured bath.

(work with Pellegrini)

3) From non-Markov stochastic Schrödinger equations to the theory of

measurements in continuous time. Possible introduction of coloured noises,

measurement based feedback,... (works with Di Tella, Pellegrini, Petruccione,

Holevo).
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The Markov case. a) We have a stochastic Schrödinger equation (SSE) for a

vector state ψ(t) in a Hilbert space H; part of the noises represent the observed

output. This measurement interpretation is shown to be consistent with the

axiomatic of quantum mechanics: positive operator valued measures, instruments,...

b) By taking the conditional expectation of |ψ(t)⟩⟨ψ(t)| on the σ-algebra generated

by the output we get the stochastic master equation (SME) for the conditional

statistical operator, a stochastic equation in the trace-class T(H).

c) By expectation we get a master equation (ME) with a generator in Lindblad

form: a completely positive (CP) dynamics.

SSE
from H to T(H)

+ conditional expectation
// SME

expectation // ME

ppunravelling

ff

d) To construct a SSE compatible with a given master equation is called

unravelling. Important also for numerical simulations.
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The problem in the non-Markov case. Starting point: the ME

SSE
from H to T(H)

+ conditional expectation
// SME

expectation // ME

ppunravelling

ff

a) There is not a general theory of non-Markov master equations. The problem is

to guarantee the complete positivity of the dynamics. Some classes of bona fide

master equations have been constructed in the literature.

b) One can invent good unravelling for simulations, but a generic unravelling could

be incompatible with the measurement interpretation.

c) Our work. Starting point: the Lindblad rate equation (non-Markov & CP)

c1) We construct unravellings of diffusion and jump type for which we can show

compatibility with the structure of quantum mechanics.

c2) The interpretation induces restrictions on the possible unravellings and on the

possible outputs.

c3) An example: modifications in the heterodyne spectrum of a 2-level system in a

structured bath.
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The problem in the non-Markov case. Starting point: the SSE

SSE
from H to T(H)

+ conditional expectation
// SME

expectation // ME

ppunravelling

ff

a) Easy to respect the CP property of the reduced dynamics.

b) The measurement interpretation gives rise to restrictions.

c) Our proposal: a SSE of diffusive type with memory, with measurement

interpretation

d) Possibility of describing coloured baths and memory effects due to delayed

feedback (closed loop control)
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Lindblad rate equation. System space: H, a separable complex Hilbert space

ηi(t) ∈ T(H) (trace class)
d

dt
ηi(t) = Li[ηi(t)] +Di[η1(t), . . . , ηn(t)],

∀(τ1, . . . , τn), τi ∈ T(H): Li[τi] := −i[Hi, τi] +

d∑
α=1

(
Li
ατiL

i
α

∗ − 1

2

{
Li
α

∗
Li
α, τi

})
,

i = 1, . . . , n Di[τ1, . . . , τn] :=
m∑

β=1

n∑
k=1

(
Rik

β τkR
ik
β

∗ − 1

2

{
Rki

β

∗
Rki

β , τi

})
,

Hi = Hi∗, Li
α, R

ki
β ∈ L(H) (bounded linear operators)

Initial condition: ηi(0) ∈ T(H), ηi(0) ≥ 0,
∑n

i=1 Tr {ηi(0)} = 1.

System state: ηS(t) =
∑n

i=1 ηi(t) ∈ S(H) ⊂ T(H) (statistical operators).

The index i represents some degree of freedom of a structured environment, for

instance the energy bands of a thermal bath.

The Lindblad rate equation is known to give rise to a completely positive (CP)

dynamics and can be approximately deduced from the unitary system/environment

dynamics by the correlated projection technique.
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A dilation. K := H ⊗ Cn. ei: canonical basis in Cn. ∀τ ∈ T(K):

L[τ ] := −i[H, τ ]+

d∑
α=1

(
VατVα

∗ − 1

2
{Vα∗Vα, τ}

)
+

m∑
β=1

n∑
j=1

(
Sj
ατS

j
α

∗ − 1

2

{
Sj
α

∗
Sj
α, τ
})

.

H :=
∑n

i=1H
i ⊗ |ei⟩⟨ei|, Vα :=

∑n
i=1 L

i
α ⊗ |ei⟩⟨ei|, Sk

β :=
∑n

i=1R
ik
β ⊗ |ei⟩⟨ek|.

1) eLt is a CP quantum dynamical semigroup on T(K)

The degree of freedom i determines a superselection rule: the physical states are

block-diagonal. Let C ⊂ T(K) be defined by τ ∈ C ⇔ τ = (τ1, . . . , τn), with

τj ∈ T(H). Projection P : T(K) → C with (P[τ ])j = TrCn{τ(1⊗ |ej⟩⟨ej |}.

2) T (t) := P ◦ eLt
∣∣
C
is a CP semigroup, in spite of the fact that eLt does not

preserve the block diagonal form of the states.

3) The solution of the Lindblad rate equation is ηj(t) =
(
T (t)[η1(0), . . . , ηn(0)]

)
j

The degree of freedom i is unobservable.

Define the map PS : C → T(H) by PS [τ ] =
∑

j τj .

4) The CP dynamics giving the system state is ηS(t) = PS ◦ T (t)[η1(0), . . . , ηn(0)]

and it is this dynamics which is non Markovian.



7

The linear stochastic Schrödinger equation (lSSE). ζ(0) ∈ K, ∥ζ(0)∥ = 1

dζ(t) = Kζ(t−)dt+

d′∑
α=1

hα(t)Vαζ(t−)dWα(t) +

d∑
α=d′+1

(
Vα√
λα

− 1

)
ζ(t−)dNα(t)

+

m′∑
β=1

n∑
k=1

hkβ(t)S
k
βζ(t−)dW

k
β (t) +

m∑
β=m′+1

n∑
k=1

 Sk
β√
λkβ

− 1

 ζ(t−)dN
k
β (t),

K = −iH − 1

2

d∑
α=1

Vα
∗Vα − 1

2

m∑
β=1

n∑
k=1

Sk
β

∗
Sk
β +

λ

2
,

λ =
d∑

α=d′+1

λα +
m∑

β=m′+1

n∑
k=1

λkβ , |hα(t)| =
∣∣hkβ(t)∣∣ = 1.

hα(t), h
k
β(t) complex functions, continuous from the left with limits from the right.

Wα, W
k
β : standard Wiener processes; Nα, N

k
β : Poisson processes of intensities

λα, λ
k
β . All the noises are independent and defined in a filtered probability space(

Ω,F, (Ft),Q
)
. The key properties: ηj(t) = EQ[|ζj(t)⟩⟨ζj(t)|], j = 1, . . . , n,

satisfy the Lindblad rate equation and ∥ζ(t)∥2K is a mean-one martingale.
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Change of probability and Girsanov transformation

PT (dω) = ∥ζ(T, ω)∥2K Q(dω), T is a fixed time horizon. Under PT :

1) ψ(t) := ∥ζ(t)∥−1
K ζ(t) satisfies the non-linear SSE, starting point for simulations

(unravelling).

2) Ŵα(t) :=Wα(t)−
∫ t

0
vα(s)ds, Ŵ k

β (t) :=W k
β (t)−

∫ t

0
vkβ(s)ds are independent

standard Wiener processes.

vα(t) := 2Rehα(t)
⟨
ψ(t−)

∣∣∣Vαψ(t−)⟩ ≡ 2

n∑
j=1

Rehα(t)
⟨
ψj(t−)

∣∣∣Lj
αψj(t−)

⟩
vkβ(t) := 2Rehkβ(t)

⟨
ψ(t−)

∣∣∣Sk
βψ(t−)

⟩
≡ 2

n∑
j=1

Rehkβ(t)
⟨
ψj(t−)

∣∣∣Rjk
β ψk(t−)

⟩
3) Nα, N

k
β become counting processes of stochastic intensities, respectively,

Iα(t) := ∥Vαψ(t−)∥2 ≡
n∑

j=1

∥∥Lj
αψj(t−)

∥∥2,
Ikβ(t) :=

∥∥Sk
βψ(t−)

∥∥2 ≡
n∑

j=1

∥∥∥Rjk
β ψk(t−)

∥∥∥2.
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Possible outputs of the measurement: Wα, W
i
β , Nα, N

i
β — From the general theory

(Markov case) it is possible to construct “positive operator valued measures” and

“instruments” with these outputs — Formally, the structure of quantum mechanics

is respected. Physically, no problem with Wα(t) and Nα:

Wα(t) = Ŵα(t) +

∫ t

0

vα(s)ds, EPT
[Wα(t)] = 2

n∑
j=1

Re

∫ t

0

hα(s)Tr
{
Lj
αηj(s−)

}
ds,

Nα has mean intensity EPT
[Iα(t)] =

n∑
j=1

Tr{Lj
α

∗
Lj
αηj(t−)}.

W i
β(t) = Ŵ i

β(t) +

∫ t

0

viβ(s)ds does not respect the superselection rule and it is not a

physical observable: for instance, its mean value is not expressible with η1, . . . , ηn

EPT
[W i

β(t)] = 2
n∑

j=1

Re

∫ t

0

hiβ(s)EPT

[⟨
ψj(s−)

∣∣∣Rji
β ψi(s−)

⟩]
ds.

N i
β has mean intensity EPT [I

i
β(t)] =

n∑
j=1

Tr{Rji
β

∗
Rji

β ηi(t−)}. The counting process

N i
β gives information on the index i which is assumed to be unobservable.
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Physically possible output: Mβ(t) :=

n∑
i=1

N i
β(t), counting process of stochastic

intensity Jβ(t) =
n∑

i=1

Iiβ(t), whose mean is EPT
[Jβ(t)] =

n∑
i,j=1

Tr{Rji
β

∗
Rji

β ηi(t−)}.

—————————–

Let {Gt, t ≥ 0} be the augmented natural filtration generated by the set of the

observed processes Wα, α = 1, . . . , d′, Nα, α = d′ + 1, . . . , d, Mβ , β = m′ + 1, . . . ,m

A posteriori states: the conditional state having observed the outputs up to time t

ρi(t) = EPT

[
|ψi(t)⟩⟨ψi(t)|

∣∣Gt

]
, ρS(t) =

n∑
i=1

ρi(t)

——————————————–

Conditional intensities:

mα(t) := EPT

[
vα(t)

∣∣Gt

]
= 2Re

∑n
j=1 hα(t)TrHS

{
Lj
αρj(t−)

}
,

J1
α(t) := EPT

[
Iα(t)

∣∣Gt

]
=
∑n

j=1 TrHS

{
Lj
α
∗
Lj
αρj(t−)

}
,

J2
β(t) := EPT

[
Jβ(t)

∣∣Gt

]
=
∑n

i,j=1 TrHS

{
Rji

β

∗
Rji

β ρi(t−)
}
.
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The non linear stochastic master equation (SME). Under the physical probability

PT :

dρi(t) = (Li[ρi(t)] +Di[ρ1(t), . . . , ρn(t)]) dt

+
d′∑

α=1

(
hα(t)L

i
αρi(t−) + hα(t)ρi(t−)L

i
α

∗ −mα(t)ρi(t−)
)
dŴα(t)

+

d∑
α=d′+1

(
Li
αρi(t−)L

i
α
∗

J1
α(t)

− ρi(t−)

)
(dNα(t)− J1

α(t)dt)

+
m∑

β=m′+1

(∑n
j=1R

ij
β ρj(t−)R

ij
β

∗

J2
β(t)

− ρi(t−)

)(
dMβ(t)− J2

β(t)dt
)
.

The outputs are Wα(t) = Ŵα(t) +
∫ t

0
mα(s)ds, Nα(t), Mβ(t).

The mean state ηi(t) = EPT
[ρi(t)], i = 1, . . . , n, satisfies the Lindblad rate equation

by construction.
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A two-level system in a structured bath. A single qubit in a two-band environment

or an optically active molecule, as the fluorophore system, in a local

nanoenvironment. Output: only heterodyne detection of the fluorescence light.

H = C2, n = 2, d = d′ = 1, m′ = m = 2.

Parameters: ωi > 0, i = 1, 2; γi > 0, i = 0, 1, 2; κ > 0; ν ∈ R.

L1
1 = L2

1 =
√
γ0 σ−, h1(t) = e−iνt; R11

1 = R22
1 = R12

1 = 0, R21
1 =

√
γ0κ 1;

R11
2 = R22

2 = 0, R12
2 =

√
γ2 σ+, R21

2 =
√
γ1 σ−; Hi = ωi

2 σz.

dρi(t) =

(
γ0

(
σ−ρi(t)σ+ − 1

2
{σ+σ−, ρi(t)}

)
+Di[ρ1(t), ρ2(t)]

)
dt

− iωi

2
[σz, ρi(t)] dt+

√
γ0
(
eiνtσ−ρi(t) + e−iνtρi(t)σ+ −m(t)ρi(t)

)
dŴ (t),

m(t) = 2Re
(
eiνt TrHS

{
σ−
(
ρ1(t−) + ρ2(t−)

)})
.

D1[ρ1(t), ρ2(t)] = γ2σ+ρ2(t)σ− − γ1
2
{σ+σ−, ρ1(t)} − γ0κρ1(t)

D2[ρ1(t), ρ2(t)] = γ1σ−ρ1(t)σ+ − γ2
2
{σ−σ+, ρ2(t)}+ γ0κρ1(t).
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Output current: J(t) =
√
k
∫ t

0
e−k(t−s)/2 dW (s), k >0.

The power of the output current produced by the detector is proportional to J(t)2

and the mean power at large times is proportional to

P (ν) = lim
t→+∞

EPt [J(t)
2] = 1 + 4πΣ(ν): white noise (shot noise) + spectrum

Heterodyne spectrum, for k ↓ 0:

Σ(ν) = Dγ0κ

{
γ0(1 + κ) + γ1

4 (ν − ω1)
2
+ Γ 2

1

+
κγ2

4 (ν − ω2)
2
+ Γ 2

2

+
γ0κ (Γ1 + Γ2)

2[
4 (ν − ω1)

2
+ Γ 2

1

] [
4 (ν − ω2)

2
+ Γ 2

2

]},
Γ1 := γ0 + γ1 + 2γ0κ, Γ2 := γ0 + γ2,

D =
2/π

1 + κγ1/γ2 + κ(1 + κ)(1 + γ0/γ2)
.

A structured spectrum is a signature of the non-Markovian dynamics.
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Coloured noises & feedback The linear stochastic Schrödinger equation (lSSE). For

simplicity, only diffusive contributions

dψ(t) = K(t)ψ(t)dt+
d∑

j=1

Rj(t)ψ(t)dWj(t), K(t) = −iH(t)− 1

2

d∑
j=1

Rj(t)
∗Rj(t),

ψ(0) = ψ0 ∈ H (Hilbert space of the system), ∥ψ0∥ = 1

H(t), Ll(t), Rj(t) are random bounded operators with H(t) = H(t)∗, say

predictable càglàd processes in
(
Ω,F, (Ft),Q

)
; ∀T > 0,

sup
ω∈Ω

sup
t∈[0,T ]

∥∥∥∥∥∥
d∑

j=1

R∗
j (t, ω)Rj(t, ω)

∥∥∥∥∥∥ ≤ L(T ) <∞, sup
ω∈Ω

sup
t∈[0,T ]

∥H(t, ω)∥ ≤M(T ) <∞

The key property: ∥ψ(t)∥2 is a mean-one martingale. This allows for a change of

probability and a Girsanov transformation; under the new probability ψ(t)/ ∥ψ(t)∥
satisfies the “non-linear SSE”.

Call A(t, s) the fundamental solution of the lSSE (= the propagator):

A(t, s)ψ(s) = ψ(t)
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The linear stochastic master equation (LSME).

σ(t) = A(t, 0)ϱ0A(t, 0)
∗ Initial condition: σ(0) = ϱ0 ∈ S(H)

dσ(t) = L(t)[σ(t)]dt+
d∑

j=1

Rj(t)[σ(t)]dWj(t), Rj(t)[ρ] := Rj(t)ρ+ρRj(t)
∗ random

The random Liouville operator:

L(t)[ρ] = −i[H(t), ρ] +

d∑
j=1

(
Rj(t)ρRj(t)

∗ − 1

2
{Rj(t)

∗Rj(t), ρ}
)

Key properties.

Trσ(t) is a mean-one martingale.

The propagator of the lSME A(t, s)[ρ] = A(t, s)ρA(t, s)∗ is CP
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Instruments, POV measures, probabilities.

The output is the set of the first m (1 ≤ m ≤ d) components of W , or, better, the

set of its increments. The space of the observed events from s to t: the σ-algebra

generated by the increments and the null sets

Gs
t = σ{Wj(u)−Wj(s), u ∈ [s, t], j = 1, . . . ,m} ∨N N = {A ∈ F : Q(A) = 0}

A(t, s): propagator (the fundamental solution of the LSME) σ(t) = A(t, s)[σ(s)]

It(G)[ρ] := EQ
[
1GA(t, 0)[ρ]

]
, G ∈ G0

t

This equation defines an instrument It on the value space (Ω,G0
t ). It(•)∗[1] is a

Positive Operator Valued measure on (Ω,G0
t ).

For t > s > r ≥ 0, we have time ordering, but not a simple composition law:

∀G1 ∈ Gr
s , ∀G2 ∈ Gs

t

It(G1 ∩G2) = EQ

[
EQ
[
EQ [1G2

A(t, s)|Fs]1G1
A(s, r)

∣∣Fr

]
A(r, 0)

]
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Probability of observing the result G ∈ G0
t in the time interval [0, t]:

Pt[G] = Tr{It(G)∗[1]ϱ0} = Tr{It(G)[ϱ0]} = EQ[1G Tr{σ(t)}]

σ̃(t) = E
[
σ(t)

∣∣G0
t

]
does not satisfy a closed SDE

pt := Tr{σ̃(t)}, t ≥ 0, is a mean one martingale (from the linear SME)

Pt(dω) = pt(ω)Q(dω)
∣∣∣
G0

t

is the physical probability on
(
Ω,G0

t

)
.

Consistency property: G ∈ G0
t , t ≤ T ⇒ PT [G] = Pt[G].

A posteriori states: ρ(t) :=
1

pt
σ̃(t) It(G)[ϱ0] =

∫
G

ρ(t;ω)Pt(dω), G ∈ G0
t

A priori states: η(t) := EQ[σ(t)] = EPt [ρ(t)]

No closed equation for a posteriori and a priori states. For instance,
dη(t)

dt
= EQ

[
L(t)[σ(t)]

]
, but both L(t) and σ(t) are random

Better: at least heuristically some kind of generalised master equations can be

obtained by using the Nakajima-Zwanzig projection technique
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Output

vj(t) :=
Tr {Rj(t)[σ(t)]}

Tr {σ(t)}
= 2Re

Tr {Rj(t)σ(t)}
Tr {σ(t)}

Bj(t) :=Wj(t)−
∫ t

0

vj(s)ds

By Girsanov theorem, it is possible to prove that under the physical probability the

output B(t) is a Wiener process, so that we have dWj(t)︸ ︷︷ ︸
output

= dBj(t)︸ ︷︷ ︸
noise

+ vj(t)dt︸ ︷︷ ︸
signal

In general noise and signal are correlated. Explicit expression for the moments of

the output have been obtained by using characteristic functionals.

d

dt
EPT

[Wj(t)] = EPt [vj(t)] = EQ
[
Tr {Rj(t)[σ(t)]}

]
d2

dtds
EPT

[Wj(t)Wi(s)] = δijδ(t− s) + zji(t, s) + zij(s, t)

zji(t, s) = 1(0,+∞)(t− s)EQ
[
Tr {Rj(t) ◦ A(t, s) ◦ Ri(s)[σ(s)]}

]
where A(t, s) is the propagator associated with the lSME (the SDE for σ(t))
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The heterodyne spectrum of a single mode damped cavity driven by a coloured

noisy coherent field. The lSSE

dψt = Gψtdt− iLψtdX(t) +R0(t)ψtdW0(t) +R1ψtdW1(t),

Emission of the light and heterodyne detection: R0(t) = α0 e
iνt a, α0 ∈ C, ν > 0

Losses and incoherent dissipation: R1 = α1 a, α1 ∈ C

H = ω0a
†a, ω0 > 0, cavity mode frequency

L = βa+ βa†, β ∈ C: −iLψtdX(t) noisy input field, X O-U process

G = −
(
iω0 +

Γ
2

)
a†a− 1

2 L
2, Γ = |α0|2 + |α1|2 .

As before we compute the heterodyne power spectrum. Final result

Phet(ν)
∣∣∣
κ=0

= 1 +
2 |α0|2 |β|2 ν2[

(ν − ω0)
2
+ Γ2

4

] [
ν2 + γ2

4

]
The spectrum is the product of a Lorentzian term due to the intrinsic dynamics

and of the spectrum of the noise
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