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Transport vs Spectrum of −∆ + V

Dynamical vs spectral

In the litterature 2 notions of transport/localization pour H = −∆ + V .

Dynamical: behaviour of 〈ψt , 〈X 〉nψt〉 as t → ∞ and where
ψt = e−itHψ and 〈X 〉 = (1 + X 2)1/2.
Localization if supt〈ψt , 〈X 〉nψt〉 ≤ Cn and transport if
〈ψt , 〈X 〉nψt〉 ≃ Cnt

nβ(n) with β(n) > 0 (transport exponent).
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〈ψt , 〈X 〉nψt〉 ≃ Cnt

nβ(n) with β(n) > 0 (transport exponent).

Spectral: sppp(H) is associated to the notion of localization and
spac(H) to the one of transport.
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Dynamical vs spectral

In the litterature 2 notions of transport/localization pour H = −∆ + V .

Dynamical: behaviour of 〈ψt , 〈X 〉nψt〉 as t → ∞ and where
ψt = e−itHψ and 〈X 〉 = (1 + X 2)1/2.
Localization if supt〈ψt , 〈X 〉nψt〉 ≤ Cn and transport if
〈ψt , 〈X 〉nψt〉 ≃ Cnt

nβ(n) with β(n) > 0 (transport exponent).

Spectral: sppp(H) is associated to the notion of localization and
spac(H) to the one of transport.

Between these 2 notions there are links but no equivalence:

E ∈ sppp(H) and ψE an eigenfunction, then 〈ψE
t , 〈X 〉nψE

t 〉 = C :
dynamical loc.

dynamical loc. ⇒ pp spectrum (RAGE theorem).

ψ ∈ Hac:
1
T

∫ T

0
〈ψt , 〈X 〉nψt〉dt ≥ CnT

n/d [Guarneri ’93].

pp spectrum 6⇒ dynamical loc., see e.g. [GKT,JSS,DJLS].

Huge amount of litterature on the subject.
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Approach via quantum statistical mechanics

Consider the case ℓ2(Z). We couple a finite sample to 2 reservoirs.
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To make things simple let βL = βR and νL ≥ νR . We are interested in
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To make things simple let βL = βR and νL ≥ νR . We are interested in
the current (charge flux) in the system:

1 We let the system relax to the NESS ω+.
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Approach via quantum statistical mechanics

Consider the case ℓ2(Z). We couple a finite sample to 2 reservoirs.

L

(βL, νL)

R

(βR , νR)

0 1 N

To make things simple let βL = βR and νL ≥ νR . We are interested in
the current (charge flux) in the system:

1 We let the system relax to the NESS ω+.
2 If JL is the observable “current out of L”, we calculate
ω+(JL) =: 〈JL〉

N
+ (the sample has size N).
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Approach via quantum statistical mechanics

Consider the case ℓ2(Z). We couple a finite sample to 2 reservoirs.

L

(βL, νL)

R

(βR , νR)

0 1 N

To make things simple let βL = βR and νL ≥ νR . We are interested in
the current (charge flux) in the system:

1 We let the system relax to the NESS ω+.
2 If JL is the observable “current out of L”, we calculate
ω+(JL) =: 〈JL〉

N
+ (the sample has size N).

3 We study the behaviour of 〈JL〉
N
+ as N → ∞ according to the

properties of V (or of −∆ + V ): does it go to 0? at which rate? is
there a non trivial (positive) limit?
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Quasi-free systems

Independent electrons approximation: free fermi gas with a 1 particle
space of the form

h = hL ⊕ ℓ2([0,N]) ⊕ hR .
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Quasi-free systems

Independent electrons approximation: free fermi gas with a 1 particle
space of the form

h = hL ⊕ ℓ2([0,N]) ⊕ hR .

1 particle hamiltonian: h = h0 + w where

h0 = hL⊕(−∆+V )D⊕hR , w = |δL〉〈δ0|+|δ0〉〈δL|+|δR〉〈δN |+|δN〉〈δR |.

(hL/R , hL/R): “free” reservoirs with good ergodic properties: we assume
that the spectral measures µL/R of hL/R for δL/R are purely a.c.
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Quasi-free systems

Independent electrons approximation: free fermi gas with a 1 particle
space of the form

h = hL ⊕ ℓ2([0,N]) ⊕ hR .

1 particle hamiltonian: h = h0 + w where

h0 = hL⊕(−∆+V )D⊕hR , w = |δL〉〈δ0|+|δ0〉〈δL|+|δR〉〈δN |+|δN〉〈δR |.

(hL/R , hL/R): “free” reservoirs with good ergodic properties: we assume
that the spectral measures µL/R of hL/R for δL/R are purely a.c.
Without loss of generality we now take

hL/R = L2(R,dµL/R(E )), hL/R = mult par E , δL/R = 1.

Examples: free Laplacian on half-line , full line , Bethe lattice ,
1/2-space,...
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Quasi-free systems

The full Hilbert space is then H = Γ−(h), the algebra of observables is
O = CAR(h).
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Quasi-free systems

The full Hilbert space is then H = Γ−(h), the algebra of observables is
O = CAR(h).

The uncoupled hamiltonian is H0 = dΓ(h0), and the full one is

H = dΓ(h) = H0+a∗(δL)a(δ0)+a∗(δ0)a(δL)+a∗(δR)a(δN)+a∗(δN)a(δR).

For any A ∈ O, τt(A) := eitHAe−itH . In particular, for f ∈ h one has
τt(a

#(f )) = a#(eithf ).
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Quasi-free systems

The full Hilbert space is then H = Γ−(h), the algebra of observables is
O = CAR(h).

The uncoupled hamiltonian is H0 = dΓ(h0), and the full one is

H = dΓ(h) = H0+a∗(δL)a(δ0)+a∗(δ0)a(δL)+a∗(δR)a(δN)+a∗(δN)a(δR).

For any A ∈ O, τt(A) := eitHAe−itH . In particular, for f ∈ h one has
τt(a

#(f )) = a#(eithf ).

Initial state of the system: quasi-free state ω0 associated to the density
matrix

T = (1 + eβ(hL−νL))−1 ⊕ ρS ⊕ (1 + eβ(hR−νR ))−1,

i.e. ω0 is such that

ω0(a
∗(gn) · · · a

∗(g1)a(f1) · · · a(fm)) = δnmdet(〈fi ,Tgj〉)i,j .
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The current observable

The number of fermions in reservoir L is NL = dΓ(1lL) where 1lL is the
projection onto hL ≃ hL ⊕ 0 ⊕ 0. The observable which describes the flux
of particles out of L is therefore

JL := −
d

dt
τt(NL)

∣

∣

∣

t=0
= −i [H,NL] = a∗(iδL)a(δ0) + a∗(δ0)a(iδL).

Remark: JL = dΓ(jL) where jL = i |δL〉〈δ0| − i |δ0〉〈δL| = −i [h, 1lL].
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The current observable

The number of fermions in reservoir L is NL = dΓ(1lL) where 1lL is the
projection onto hL ≃ hL ⊕ 0 ⊕ 0. The observable which describes the flux
of particles out of L is therefore

JL := −
d

dt
τt(NL)

∣

∣

∣

t=0
= −i [H,NL] = a∗(iδL)a(δ0) + a∗(δ0)a(iδL).

Remark: JL = dΓ(jL) where jL = i |δL〉〈δ0| − i |δ0〉〈δL| = −i [h, 1lL].

We are interested in

〈JL〉
N
+ := lim

T→+∞

1

T

∫ T

0

ω ◦ τt(JL)dt = ω+(JL),

where ω+ = w ∗ − lim 1
T

∫ T

0
ω0 ◦ τ

t is the NESS of the system (if it

exists), and in particular to the large N behaviour of 〈JL〉
N
+.
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NESS and 1 paticle scattering

(Hyp) spsc(h) = ∅

Theorem (AJPP ’07)

1) There is a unique NESS ω+.
2) The wave operators W± := s − lim

t→±∞
e−ith0eith1lac(h) exist and are

complete. The restriction of ω+ to CAR(hac(h)) is the quasi-free state
with density matrix W ∗

−TW−.
3) If c is trace class on h, then ω+(dΓ(c)) = Tr(T+c) where

T+ = W ∗
−TW− +

∑

ǫ∈sp
pp

(h)

PǫTPǫ.
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NESS and 1 paticle scattering

(Hyp) spsc(h) = ∅

Theorem (AJPP ’07)

1) There is a unique NESS ω+.
2) The wave operators W± := s − lim

t→±∞
e−ith0eith1lac(h) exist and are

complete. The restriction of ω+ to CAR(hac(h)) is the quasi-free state
with density matrix W ∗

−TW−.
3) If c is trace class on h, then ω+(dΓ(c)) = Tr(T+c) where

T+ = W ∗
−TW− +

∑

ǫ∈sp
pp

(h)

PǫTPǫ.

Corollary: with c = jL we get

〈JL〉
N
+ = 2Im〈W−δL,TW−δ0〉.
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Reformulation of the current

Lemma

〈JL〉
N
+ = 2π

∫

R

|G (0,N;E+i0)|2
[

1

1 + eβ(E−νL)
−

1

1 + eβ(E−νR )

]

dµL

dE

dµR

dE
dE .
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Reformulation of the current

Lemma

〈JL〉
N
+ = 2π

∫

R

|G (0,N;E+i0)|2
[

1

1 + eβ(E−νL)
−

1

1 + eβ(E−νR )

]

dµL

dE

dµR

dE
dE .

Remark 1: Only the energies in sp(hL) ∩ sp(hR) contribute to
transport.

Remark 2: If νL ≥ νR we indeed have 〈JL〉
N
+ ≥ 0.

Remark 3: In G (0,N; z) = 〈δ0, (h − z)−1δN〉, h depends on N as well.

L. Bruneau Transport for the 1D Schrödinger equation via quasi-free systems



Introduction
Current in quasi-free systems

Transport vs Spectrum of −∆ + V

Reformulation of the current

Lemma

〈JL〉
N
+ = 2π

∫

R

|G (0,N;E+i0)|2
[

1

1 + eβ(E−νL)
−

1

1 + eβ(E−νR )

]

dµL

dE

dµR

dE
dE .

Remark 1: Only the energies in sp(hL) ∩ sp(hR) contribute to
transport.

Remark 2: If νL ≥ νR we indeed have 〈JL〉
N
+ ≥ 0.

Remark 3: In G (0,N; z) = 〈δ0, (h − z)−1δN〉, h depends on N as well.

Proof:
1) Explicit calculation of the wave operators: if f = fL ⊕ fS ⊕ fR one has

W−f = f −
L ⊕ 0 ⊕ f −

R , f −
L/R

(E ) = fL/R(E ) − 〈δ0/N , (h − E + i0)−1f 〉.

L. Bruneau Transport for the 1D Schrödinger equation via quasi-free systems



Introduction
Current in quasi-free systems

Transport vs Spectrum of −∆ + V

Reformulation of the current

2) Insert this in 〈JL〉
N
+ = 2Im〈W−δL,TW−δ0〉:

〈JL〉
N
+ = 2Im

∫

(

G (L, 0;E +i0)G (0, 0;E−i0) − G (0, L;E−i0)
)

×
1

1 + eβ(E−νL)
dµL(E )

+2Im

∫

G (L,N;E +i0)G (N, 0;E−i0)
1

1 + eβ(E−νR )
dµR(E ).
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Reformulation of the current

2) Insert this in 〈JL〉
N
+ = 2Im〈W−δL,TW−δ0〉:

〈JL〉
N
+ = 2Im

∫

(

G (L, 0;E +i0)G (0, 0;E−i0) − G (0, L;E−i0)
)

×
1

1 + eβ(E−νL)
dµL(E )

+2Im

∫

G (L,N;E +i0)G (N, 0;E−i0)
1

1 + eβ(E−νR )
dµR(E ).

3) At equilibrium, i.e. νL = νR , 〈JL〉
N
+ = 0.

⇒ 〈JL〉
N
+ = 2Im

∫

G (L,N;E +i0)G (N, 0;E−i0)

×

[

1

1 + eβ(E−νR )
−

1

1 + eβ(E−νL)

]

dµR(E ).
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Reformulation of the current

2) Insert this in 〈JL〉
N
+ = 2Im〈W−δL,TW−δ0〉:

〈JL〉
N
+ = 2Im

∫

(

G (L, 0;E +i0)G (0, 0;E−i0) − G (0, L;E−i0)
)

×
1

1 + eβ(E−νL)
dµL(E )

+2Im

∫

G (L,N;E +i0)G (N, 0;E−i0)
1

1 + eβ(E−νR )
dµR(E ).

3) At equilibrium, i.e. νL = νR , 〈JL〉
N
+ = 0.

⇒ 〈JL〉
N
+ = 2Im

∫

G (L,N;E +i0)G (N, 0;E−i0)

×

[

1

1 + eβ(E−νR )
−

1

1 + eβ(E−νL)

]

dµR(E ).

4) Resolvent identity gives

G (L,N;E +i0) = −〈δL, (h0 − E−i0)−1δL〉 × G (0,N;E +i0),

and one uses Im〈δL, (h0 − E−i0)−1δL〉 = π dµL

dE
.
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Notions of transport

We assume νL > νR and denote h∞ = −∆ + V on ℓ2(Z+) with Dirichlet
boundary condition.
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Notions of transport

We assume νL > νR and denote h∞ = −∆ + V on ℓ2(Z+) with Dirichlet
boundary condition.

Definition

1) There is transport if lim inf
N→∞

〈JL〉
N
+ > 0.
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Notions of transport

We assume νL > νR and denote h∞ = −∆ + V on ℓ2(Z+) with Dirichlet
boundary condition.

Definition

1) There is transport if lim inf
N→∞

〈JL〉
N
+ > 0.

2) There is transport at energy E if lim inf
N→∞

〈JL〉
N
+(E ) > 0, where

〈JL〉
N
+(E ) = 2π|G (0,N;E +i0)|2

[

1

1 + eβ(E−νL)
−

1

1 + eβ(E−νR )

]

dµL

dE

dµR

dE

is the “density” of current at energy E.
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Notions of transport

We assume νL > νR and denote h∞ = −∆ + V on ℓ2(Z+) with Dirichlet
boundary condition.

Definition

1) There is transport if lim inf
N→∞

〈JL〉
N
+ > 0.

2) There is transport at energy E if lim inf
N→∞

〈JL〉
N
+(E ) > 0, where

〈JL〉
N
+(E ) = 2π|G (0,N;E +i0)|2

[

1

1 + eβ(E−νL)
−

1

1 + eβ(E−νR )

]

dµL

dE

dµR

dE

is the “density” of current at energy E.

Idea: L very large, i.e. sp(hL) ≃ R, and R only has energies close to E ,
i.e. sp(hR) ≃ [E − ǫ,E + ǫ], then 〈JL〉

N
+ ≃ 2ǫ〈JL〉

N
+(E ).
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Boundary condition

Let hα
∞ denote the operator −∆ + V with boundary condition

u(−1) = α (α = 0 is Dirichlet).
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Transport vs Spectrum of −∆ + V

Boundary condition

Let hα
∞ denote the operator −∆ + V with boundary condition

u(−1) = α (α = 0 is Dirichlet).
It amounts to replace V by V + α|δ0〉〈δ0| but keeping a Dirichlet
boundary condition.
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Boundary condition

Let hα
∞ denote the operator −∆ + V with boundary condition

u(−1) = α (α = 0 is Dirichlet).
It amounts to replace V by V + α|δ0〉〈δ0| but keeping a Dirichlet
boundary condition.
In the same way, we replace (−∆ + V )D by (−∆ + V + α|δ0〉〈δ0|)D in
the study of quasi-free systems.
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Boundary condition

Let hα
∞ denote the operator −∆ + V with boundary condition

u(−1) = α (α = 0 is Dirichlet).
It amounts to replace V by V + α|δ0〉〈δ0| but keeping a Dirichlet
boundary condition.
In the same way, we replace (−∆ + V )D by (−∆ + V + α|δ0〉〈δ0|)D in
the study of quasi-free systems.

Proposition

Whether there is transport or no at energy E does not depend on the
boundary condition.
If moreover lim

N→∞
〈JL〉

N
+(E ) = 0, then the convergence speed does not

depend on the boundary condition.

Proof: repeated use of the resolvent identity.
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A.c. Spectrum = Transport

Theorem

1) For Lebesgue almost all E ∈ spac(h∞) ∩ sp(hL) ∩ sp(hR) there is
transport at energy E.
2) If λ (spac(h∞) ∩ sp(hL) ∩ sp(hR)) > 0 there is transport.
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Transport vs Spectrum of −∆ + V

A.c. Spectrum = Transport

Theorem

1) For Lebesgue almost all E ∈ spac(h∞) ∩ sp(hL) ∩ sp(hR) there is
transport at energy E.
2) If λ (spac(h∞) ∩ sp(hL) ∩ sp(hR)) > 0 there is transport.

Theorem

Let I be an interval s.t. I ∩ spac(h∞) = ∅. For Lebesgue almost all E ∈ I
there is no transport at energy E.
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A.c. Spectrum = Transport

Theorem

1) For Lebesgue almost all E ∈ spac(h∞) ∩ sp(hL) ∩ sp(hR) there is
transport at energy E.
2) If λ (spac(h∞) ∩ sp(hL) ∩ sp(hR)) > 0 there is transport.

Theorem

Let I be an interval s.t. I ∩ spac(h∞) = ∅. For Lebesgue almost all E ∈ I
there is no transport at energy E.

Remark 1: Changing the boundary condition induces a rank 1
perturbation on h∞ and hence does not change its a.c. spectrum.
Remark 2: In the 2nd theorem, the nature of the singular spectrum does
not matter.
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P.p. Spectrum (I)

If the spectrum of h∞ is pure point one expects a better localization, e.g.
lim〈JL〉

N
+(E ) = 0 instead of lim inf〈JL〉

N
+(E ) = 0.
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P.p. Spectrum (I)

If the spectrum of h∞ is pure point one expects a better localization, e.g.
lim〈JL〉

N
+(E ) = 0 instead of lim inf〈JL〉

N
+(E ) = 0.

Problem: sp(h∞) = sppp(h∞) is not sufficient!
Why?: boundary condition has no influence on transport but the singular
spectrum is very sensitive even to rank 1 perturbations.
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P.p. Spectrum (I)

If the spectrum of h∞ is pure point one expects a better localization, e.g.
lim〈JL〉

N
+(E ) = 0 instead of lim inf〈JL〉

N
+(E ) = 0.

Problem: sp(h∞) = sppp(h∞) is not sufficient!
Why?: boundary condition has no influence on transport but the singular
spectrum is very sensitive even to rank 1 perturbations.

Examples where the spectrum of h0
∞ is pure point but that of hα

∞ is
purely s.c. for α 6= 0, e.g. [Simon-Wolff ’86].
[Gordon ’94]: one can not have p.p. spectrum for all α’s.
[delRio-Makarov-Simon ’94]: {α | hα

∞ has no e.v. in sp(h0
∞)} is a dense

Gδ set.
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P.p. Spectrum (I)

If the spectrum of h∞ is pure point one expects a better localization, e.g.
lim〈JL〉

N
+(E ) = 0 instead of lim inf〈JL〉

N
+(E ) = 0.

Problem: sp(h∞) = sppp(h∞) is not sufficient!
Why?: boundary condition has no influence on transport but the singular
spectrum is very sensitive even to rank 1 perturbations.

Examples where the spectrum of h0
∞ is pure point but that of hα

∞ is
purely s.c. for α 6= 0, e.g. [Simon-Wolff ’86].
[Gordon ’94]: one can not have p.p. spectrum for all α’s.
[delRio-Makarov-Simon ’94]: {α | hα

∞ has no e.v. in sp(h0
∞)} is a dense

Gδ set.

Conclusion: one has to rule out s.c. spectrum for almost-all α.
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Rank 1 perturbations

Let Fα(z) := 〈δ0, (h
α
∞ − z)−1δ0〉, G (x) := lim

y↓0

1

y
ImF0(x + iy).
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Rank 1 perturbations

Let Fα(z) := 〈δ0, (h
α
∞ − z)−1δ0〉, G (x) := lim

y↓0

1

y
ImF0(x + iy).

Facts: 1) Fα(x) = lim
y↓0

Fα(x + iy) exists, is finite and non-zero for

Lebesgue almost all x .
2) G (x) = ∞ for µ0 almost all x where µ0 is the spectral measure

of h0
∞ for δ0, i.e. s.t. F0(z) =

∫

dµ0(t)
t−z

.
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Rank 1 perturbations

Let Fα(z) := 〈δ0, (h
α
∞ − z)−1δ0〉, G (x) := lim

y↓0

1

y
ImF0(x + iy).

Facts: 1) Fα(x) = lim
y↓0

Fα(x + iy) exists, is finite and non-zero for

Lebesgue almost all x .
2) G (x) = ∞ for µ0 almost all x where µ0 is the spectral measure

of h0
∞ for δ0, i.e. s.t. F0(z) =

∫

dµ0(t)
t−z

.

For α 6= 0, let

Tα = {x ∈ R : F0(x) = −α−1, G (x) <∞},

Sα = {x ∈ R : F0(x) = −α−1, G (x) = ∞},

L = {x ∈ R : ImF0(x) > 0}.
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Rank 1 perturbations and p.p. spectrum (II)

Theorem (Aronszajn-Donoghue)

1) Tα is the set of e.v. of hα
∞.

2) µα
sc is concentrated on Sα.

3) For all α, L is the essential support of the a.c. spectrum of hα
∞.
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Rank 1 perturbations and p.p. spectrum (II)

Theorem (Aronszajn-Donoghue)

1) Tα is the set of e.v. of hα
∞.

2) µα
sc is concentrated on Sα.

3) For all α, L is the essential support of the a.c. spectrum of hα
∞.

Theorem (Simon-Wolff)

Let B ⊂ R be a borel set. The following are equivalent
(1) G (x) <∞ for Lebesgue almost all x ∈ B,
(2) µα

cont(B) = 0 for Lebesgue almost all α ∈ R.
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Rank 1 perturbations and p.p. spectrum (II)

Theorem (Aronszajn-Donoghue)

1) Tα is the set of e.v. of hα
∞.

2) µα
sc is concentrated on Sα.

3) For all α, L is the essential support of the a.c. spectrum of hα
∞.

Theorem (Simon-Wolff)

Let B ⊂ R be a borel set. The following are equivalent
(1) G (x) <∞ for Lebesgue almost all x ∈ B,
(2) µα

cont(B) = 0 for Lebesgue almost all α ∈ R.

Theorem

Let I ⊂ R s.t. G (E ) <∞ for E ∈ I , then lim
N→∞

〈JL〉
N
+(E ) = 0.
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Lyapunov exponents

Let TE (n) denote the transfer matrix at energy E , i.e.

Tn(E ) =

(

E − V (n − 1) −1
1 0

)

× · · · ×

(

E − V (0) −1
1 0

)

.
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Lyapunov exponents

Let TE (n) denote the transfer matrix at energy E , i.e.

Tn(E ) =

(

E − V (n − 1) −1
1 0

)

× · · · ×

(

E − V (0) −1
1 0

)

.

The Lyapunov exponent is defined, when it exists, by

γ(E ) = lim
n→∞

1

n
log ‖TE (n)‖.

Remark: γ(E ) ≥ 0 when it exists.

L. Bruneau Transport for the 1D Schrödinger equation via quasi-free systems



Introduction
Current in quasi-free systems

Transport vs Spectrum of −∆ + V

Lyapunov exponents

Let TE (n) denote the transfer matrix at energy E , i.e.

Tn(E ) =

(

E − V (n − 1) −1
1 0

)

× · · · ×

(

E − V (0) −1
1 0

)

.

The Lyapunov exponent is defined, when it exists, by

γ(E ) = lim
n→∞

1

n
log ‖TE (n)‖.

Remark: γ(E ) ≥ 0 when it exists.

Theorem

Let E such that γ(E ) > 0, then

lim
N→∞

1

N
log(〈JL〉

N
+(E ) + 〈JL〉

N+1
+ (E )) = −2γ(E ).
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Main arguments of the proof

1 Rewrite G (x , y ; z) = 〈δx , (h − z)−1δy 〉 for x , y = 0,N in terms of
GS(x , y ; z) = 〈δx , (hS − z)−1δy 〉 where hS = −∆ + V sur ℓ2([0,N]).
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Main arguments of the proof

1 Rewrite G (x , y ; z) = 〈δx , (h − z)−1δy 〉 for x , y = 0,N in terms of
GS(x , y ; z) = 〈δx , (hS − z)−1δy 〉 where hS = −∆ + V sur ℓ2([0,N]).

2 Express GS(x , y ;E ) in terms of generalized eigenfunctions of h∞
(and hence in terms of TE (N)) and study their behaviour.
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Main arguments of the proof

1 Rewrite G (x , y ; z) = 〈δx , (h − z)−1δy 〉 for x , y = 0,N in terms of
GS(x , y ; z) = 〈δx , (hS − z)−1δy 〉 where hS = −∆ + V sur ℓ2([0,N]).

2 Express GS(x , y ;E ) in terms of generalized eigenfunctions of h∞
(and hence in terms of TE (N)) and study their behaviour.

3 Use the independence w.r.t. the boundary condition.
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Main arguments of the proof

1 Rewrite G (x , y ; z) = 〈δx , (h − z)−1δy 〉 for x , y = 0,N in terms of
GS(x , y ; z) = 〈δx , (hS − z)−1δy 〉 where hS = −∆ + V sur ℓ2([0,N]).

2 Express GS(x , y ;E ) in terms of generalized eigenfunctions of h∞
(and hence in terms of TE (N)) and study their behaviour.

3 Use the independence w.r.t. the boundary condition.
4 Use results of [Last-Simon ’99] which relate the nature of the

spectrum to the behaviour of TE (n):

S = {E , lim inf ‖TE (n, 0)‖ < ∞} supports the a.c. spectrum of h∞,
S
′ = {E , lim inf 1

N

PN

n=1 ‖TE (n, 0)‖2
< ∞} is an essential support of

the a.c. spectrum of h∞ and has zero measure with repsect to the
singular part part of the spectral measure.
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