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Introduction

Dynamical vs spectral

In the litterature 2 notions of transport/localization pour H = —-A + V.
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Introduction

Dynamical vs spectral

In the litterature 2 notions of transport/localization pour H = —-A + V.

@ Dynamical: behaviour of (¢¢, (X)"9);) as t — oo and where
Yy = e My and (X) = (1 + X?)1/2.
Localization if sup,(t;, (X)) < C, and transport if
(e, (X)™Mpe) =~ C,t"P(") with B(n) > 0 (transport exponent).
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Dynamical vs spectral

In the litterature 2 notions of transport/localization pour H = —-A + V.
@ Dynamical: behaviour of (¢, (X)":) as t — oo and where
Y = e~ and (X) = (14 X?)/2.
Localization if sup,(t;, (X)) < C, and transport if
(e, (X)™Mpe) =~ C,t"P(") with B(n) > 0 (transport exponent).

@ Spectral: sp,,,(H) is associated to the notion of localization and
SPac(H) to the one of transport.
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Introduction

Dynamical vs spectral

In the litterature 2 notions of transport/localization pour H = —-A + V.
@ Dynamical: behaviour of (¢, (X)":) as t — oo and where
Y = e~ and (X) = (14 X?)/2.
Localization if sup,(t;, (X)) < C, and transport if
(e, (X)™Mpe) =~ C,t"P(") with B(n) > 0 (transport exponent).

@ Spectral: sp,,,(H) is associated to the notion of localization and

SPac(H) to the one of transport.
Between these 2 notions there are links but no equivalence:

o E €sp,,(H) and ¢ an eigenfunction, then (£, (X)"E) = C :
dynamical loc.

o dynamical loc. = pp spectrum (RAGE theorem).

0 € Haet = [i (0, (X)"e)dt > C, T [Guarneri '93).

@ pp spectrum % dynamical loc., see e.g. [GKT,JSS,DJLS].

Huge amount of litterature on the subject.
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Introduction

Approach via quantum statistical mechanics

Consider the case ¢?(Z). We couple a finite sample to 2 reservoirs.

(B, ve) (Br,vR)
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Introduction

Approach via quantum statistical mechanics

Consider the case ¢?(Z). We couple a finite sample to 2 reservoirs.

(B, ve) (Br,vR)

To make things simple let 8, = Og and v > vg. We are interested in
the current (charge flux) in the system:
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Introduction

Approach via quantum statistical mechanics

Consider the case ¢?(Z). We couple a finite sample to 2 reservoirs.

(B, ve) (Br,vR)

To make things simple let 8, = Og and v > vg. We are interested in
the current (charge flux) in the system:

@ We let the system relax to the NESS wy.
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Introduction

Approach via quantum statistical mechanics

Consider the case ¢?(Z). We couple a finite sample to 2 reservoirs.

(B, ve) (Br,vR)

To make things simple let 8, = Og and v > vg. We are interested in
the current (charge flux) in the system:
@ We let the system relax to the NESS wy.
Q If J, is the observable “current out of L", we calculate
wi(J) =: (J)Y (the sample has size N).
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Introduction

Approach via quantum statistical mechanics

Consider the case ¢?(Z). We couple a finite sample to 2 reservoirs.

(B, ve) (Br,vR)

To make things simple let 8, = Og and v > vg. We are interested in
the current (charge flux) in the system:
@ We let the system relax to the NESS wy.
Q If J, is the observable “current out of L", we calculate
wi(J) =: (J)Y (the sample has size N).
© We study the behaviour of (J;)"} as N — oo according to the
properties of V (or of —A + V): does it go to 07 at which rate? is
there a non trivial (positive) limit?
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Current in quasi-free systems

Quasi-free systems

Independent electrons approximation: free fermi gas with a 1 particle
space of the form
b= b @ ([0, N]) © br.
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Current in quasi-free systems

Quasi-free systems

Independent electrons approximation: free fermi gas with a 1 particle
space of the form

b= b & ([0, N]) & br.
1 particle hamiltonian: h = hy + w where

ho = ht®&(=A+V)pDhr, w = [61)(o|+][d0) (0| +|0r) (On]+]dn)(Or].

(bi/r, hiyr): “free” reservoirs with good ergodic properties: we assume
that the spectral measures ji; /g of hy /g for §, /g are purely a.c.
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Current in quasi-free systems

Quasi-free systems

Independent electrons approximation: free fermi gas with a 1 particle
space of the form
b= b @ ([0, N]) © br.

1 particle hamiltonian: h = hy + w where

ho = ht®&(=A+V)pDhr, w = [61)(o|+][d0) (0| +|0r) (On]+]dn)(Or].

(bi/r, hiyr): “free” reservoirs with good ergodic properties: we assume
that the spectral measures ji; /g of hy /g for §, /g are purely a.c.
Without loss of generality we now take

byr = L*(R,dpi/r(E)), hig =mult par E, 6,5 = 1.

Examples: free Laplacian on half-line , full line , Bethe lattice ,
1/2-space, ...
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Current in quasi-free systems

Quasi-free systems

The full Hilbert space is then H = I'_(h), the algebra of observables is
O = CAR(b).
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Current in quasi-free systems

Quasi-free systems

The full Hilbert space is then H = I'_(h), the algebra of observables is
O = CAR(b).

The uncoupled hamiltonian is Hy = dI'(h), and the full one is
H =dlr(h) = Ho+a*(6.)a(do)+a*(d0)a(dL)+a*(0r)a(on)+a* (dn)a(dr)-

For any A € O, 1:(A) := e™Ae~™ In particular, for f € b one has
Te(a? (f)) = a (e f).
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Current in quasi-free systems

Quasi-free systems

The full Hilbert space is then H = I'_(h), the algebra of observables is
O = CAR(b).

The uncoupled hamiltonian is Hy = dI'(h), and the full one is
H =dlr(h) = Ho+a*(6.)a(do)+a*(d0)a(dL)+a*(0r)a(on)+a* (dn)a(dr)-

For any A € O, 1:(A) := e™Ae~™ In particular, for f € b one has
Te(a? (f)) = a (e f).

Initial state of the system: quasi-free state wg associated to the density
matrix
T =1+ N pg @ (1+ e lhrmrr))=1)

i.e. wg is such that

wo(a"(gn) -+~ a"(gr)a(h) - - a(fm)) = dnmdet((; Tgj))i -
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Current in quasi-free systems

The current observable

The number of fermions in reservoir L is N; = dI'(1,) where 1; is the
projection onto h; ~ h; & 0@ 0. The observable which describes the flux
of particles out of L is therefore

o= _&Tt(NL) o —i[H, N.] = a*(id.)a(do) + a*(Jo)a(idL)-
Remark: Jp = dIl(ji) where ji = i|01){do| — i|0) (o] = —i[h, 11].
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Current in quasi-free systems

The current observable

The number of fermions in reservoir L is N; = dI'(1,) where 1; is the
projection onto h; ~ h; & 0@ 0. The observable which describes the flux
of particles out of L is therefore

Jp = —&rt(NL)’ = —i[H, N] = a*(id,)a(00) + a*(60)a(idy).

Remark: J; = dI(ji) where ji = i[61)(0| — i|00) (1| = —i[h, 1].
We are interested in

17
(JQ{X = |lim ?/ wOTt(JL)dthu‘+(JL),
0

T—+o0

where wy = wx —lim + fOT wo o 7t is the NESS of the system (if it
exists), and in particular to the large N behaviour of (J;)".
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Current in quasi-free systems

NESS and 1 paticle scattering

(Hyp)  spg.(h) =0

Theorem (AJPP '07)

1) There is a unique NESS w . -

2) The wave operators Wy := s — lim e~ Mthoeith], . (h) exist and are
—+oco

complete. The restriction of wy to CAR(Hac(h)) is the quasi-free state

with density matrix W* TW_.

3) If c is trace class on V), then w,(dl(c)) = Tr(T;c) where

T, =W'TW_+ > P.TP.
eEsppp(h)
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Current in quasi-free systems

NESS and 1 paticle scattering

(Hyp)  spyc(h) =10
Theorem (AJPP '07)

1) There is a unique NESS w . -
2) The wave operators Wy := s — lim e~ Mthoeith], . (h) exist and are
—+o0

complete. The restriction of wy to CAR(Hac(h)) is the quasi-free state
with density matrix W* TW_.
3) If c is trace class on V), then w,(dl(c)) = Tr(T;c) where

T, =W'TW_+ > P.TP.
eEsppp(h)

Corollary: with ¢ = j; we get

(U = 2Im(W_5,, TW_dq).
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Current in quasi-free systems

Reformulation of the current

1 1 dpr dpr
1+eBE-—w) 14 eBE-wR)| dE dE

()N =2r [ |G(0, N; E+i0)|2{ dE
R
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Current in quasi-free systems

Reformulation of the current

1 1 dp dpr

1+ eB(E—w) 14 eBE—wr)| dE dE dE

()N =2r [ |G(0, N; E+i0)|2{
R

Remark 1: Only the energies in sp(h;) Nsp(hg) contribute to
transport.

Remark 2: If v, > vg we indeed have (J;)V > 0.

Remark 3: In G(0, N; z) = (do, (h — z)"16n), h depends on N as well.
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Current in quasi-free systems

Reformulation of the current

1 1 dp dpr

1+ eB(E—w) 14 eBE—wr)| dE dE dE

()N =2r [ |G(0, N; E+i0)|2{
R

Remark 1: Only the energies in sp(h;) Nsp(hg) contribute to
transport.

Remark 2: If v, > vg we indeed have (J;)V > 0.

Remark 3: In G(0, N; z) = (do, (h — z)"16n), h depends on N as well.

Proof:
1) Explicit calculation of the wave operators: if f = f| @ fs @ fg one has

W_f=f"@0&fy, fr(E)="fi/r(E)~ (do/n:(h—E+i0)"'f).
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Current in quasi-free systems

Reformulation of the current

2) Insert this in (J)Y = 2Im(W_§,, TW_Jo):

U = ZIm/(G(L,O;E+/’O)G(0,0;E—i0)— G(0,L; E—i0))

1

X 1+ eB(E—w1) d;U'L(E)

. . 1
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Current in quasi-free systems

Reformulation of the current

2) Insert this in (J)Y = 2Im(W_§,, TW_Jo):

U = ZIm/(G(L,O;E+/’O)G(0,0;E—i0)— G(0,L; E—i0))

1
T enE—w W (E)

Tt es
. . 1
3) At equilibrium, i.e. v = vg, (J)¥ =0.

= () = 2Im/G(L,N;E+i0)G(N,o;E—i0)

1 1
8 {1+e5(EVR) 14 eBE-w) dur(E).
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Current in quasi-free systems

Reformulation of the current

2) Insert this in (J)Y = 2Im(W_§,, TW_Jo):

U = ZIm/(G(L,O;E+/’O)G(0,0;E—i0)— G(0,L; E—i0))

1
E—v) d;U'L(E)

“TroPE)
. . 1
3) At equilibrium, i.e. v = vg, (J)¥ =0.

= () = 2Im/G(L,N;E+i0)G(N,o;E—i0)

x L T eﬁl(EfuR) 1 +eﬁl(EfuL) dyr(E).
4) Resolvent identity gives
G(L, N; E+i0) = —(8,, (ho — E—i0)16,) x G(0, N; E+i0),
and one uses Im(d;, (hg — E—i0)"16,) = 3.
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Transport vs Spectrum of —A + V

Notions of transport

We assume v, > vg and denote h,, = —A + V on (?(Z.) with Dirichlet
boundary condition.
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Transport vs Spectrum of —A + V

Notions of transport

We assume v, > vg and denote h,, = —A + V on (?(Z.) with Dirichlet
boundary condition.

Definition

1) There is transport if Ijvm inf(JLw > 0.
— 00
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Transport vs Spectrum of —A + V

Notions of transport

We assume v, > vg and denote h,, = —A + V on (?(Z.) with Dirichlet
boundary condition.

Definition

1) There is transport if Ijvm inf(JLw > 0.
— 00

2) There is transport at energy E ifI;Vm inf(J.)¥(E) > 0, where

. 1 1 dug dpgr
N _ . 2 _ SIS IR
<JL>+(E) = 27T|G(0, N, E+IO)| |:1 + eﬁ(E_yL) 1 _|_ eﬂ(E_VR):| dE dE

is the “density” of current at energy E.
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Transport vs Spectrum of —A + V

Notions of transport

We assume v, > vg and denote h,, = —A + V on (?(Z.) with Dirichlet
boundary condition.

Definition

1) There is transport if Ijvm inf(J)Y > 0.
—00

2) There is transport at energy E ifI;Vm inf(J.)¥(E) > 0, where

. 1 1 dug dpgr
N _ . 2 _ SIS IR
<JL>+(E) = 27T|G(0, N, E+IO)| |:1 + eﬁ(E_yL) 1 _|_ eﬂ(E_VR):| dE dE

is the “density” of current at energy E.

Idea: L very large, i.e. sp(h) ~ R, and R only has energies close to E,
i.e. sp(hr) ~ [E — €, E + €], then (J )V ~ 2e(J )V (E).

L. Bruneau Transport for the 1D Schrddinger equation via quasi-free systems



Transport vs Spectrum of —A + V

Boundary condition

Let hS, denote the operator —A + V' with boundary condition
u(—1) = a (o = 0 is Dirichlet).
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Transport vs Spectrum of —A + V

Boundary condition

Let hS, denote the operator —A + V' with boundary condition
u(—1) = a (o = 0 is Dirichlet).

It amounts to replace V by V + «|dg)(dp| but keeping a Dirichlet
boundary condition.
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Transport vs Spectrum of —A + V

Boundary condition

Let hS, denote the operator —A + V' with boundary condition

u(—1) = a (o = 0 is Dirichlet).

It amounts to replace V by V + «|dg)(dp| but keeping a Dirichlet
boundary condition.

In the same way, we replace (—A + V)p by (=A + V + «|do){do|)p in
the study of quasi-free systems.

L. Bruneau Transport for the 1D Schrddinger equation via quasi-free systems



Transport vs Spectrum of —A + V

Boundary condition

Let h% denote the operator —A + V with boundary condition

u(—1) = a (o = 0 is Dirichlet).

It amounts to replace V by V + «|dg)(dp| but keeping a Dirichlet
boundary condition.

In the same way, we replace (—A + V)p by (=A + V + «|do){do|)p in
the study of quasi-free systems.

Proposition

Whether there is transport or no at energy E does not depend on the

boundary condition.

If moreover Nlim (JL)Y(E) = 0, then the convergence speed does not
— 00

depend on the boundary condition.

Proof: repeated use of the resolvent identity.
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Transport vs Spectrum of —A + V

A.c. Spectrum = Transport

1) For Lebesgue almost all E € sp, (hs) Nsp(hr) Nsp(hr) there is
transport at energy E.
2) If XA (spac(hoo) Nsp(he) Nsp(hgr)) > O there is transport.
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Transport vs Spectrum of —A + V

A.c. Spectrum = Transport

Theorem

1) For Lebesgue almost all E € sp, (hs) Nsp(hr) Nsp(hr) there is
transport at energy E.
2) If XA (spac(hoo) Nsp(he) Nsp(hgr)) > O there is transport.

Theorem

Let | be an interval s.t. | Nsp,.(hoo) = 0. For Lebesgue almost all E € |
there is no transport at energy E.
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Transport vs Spectrum of —A + V

A.c. Spectrum = Transport

Theorem

1) For Lebesgue almost all E € sp, (hs) Nsp(hr) Nsp(hr) there is
transport at energy E.
2) If XA (spac(hoo) Nsp(he) Nsp(hgr)) > O there is transport.

Theorem

Let | be an interval s.t. | Nsp,.(hoo) = 0. For Lebesgue almost all E € |
there is no transport at energy E.

Remark 1: Changing the boundary condition induces a rank 1
perturbation on h., and hence does not change its a.c. spectrum.
Remark 2: In the 2nd theorem, the nature of the singular spectrum does
not matter.
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Transport vs Spectrum of —A + V

P.p. Spectrum (1)

If the spectrum of h, is pure point one expects a better localization, e.g.
lim(J.)Y(E) = 0 instead of liminf(J;)¥(E) = 0.
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Transport vs Spectrum of —A + V

P.p. Spectrum (1)

If the spectrum of h, is pure point one expects a better localization, e.g.
lim(J.)Y(E) = 0 instead of liminf(J;)¥(E) = 0.

Problem: sp(huo) = sp,,,(heo) is not sufficient!
Why?: boundary condition has no influence on transport but the singular
spectrum is very sensitive even to rank 1 perturbations.
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Transport vs Spectrum of —A + V

P.p. Spectrum (1)

If the spectrum of h, is pure point one expects a better localization, e.g.
lim(J.)Y(E) = 0 instead of liminf(J;)¥(E) = 0.

Problem: sp(huo) = sp,,,(heo) is not sufficient!

Why?: boundary condition has no influence on transport but the singular
spectrum is very sensitive even to rank 1 perturbations.

Examples where the spectrum of h%, is pure point but that of h% is
purely s.c. for a # 0, e.g. [Simon-Wolff '86].

[Gordon '94]: one can not have p.p. spectrum for all a's.
[delRio-Makarov-Simon '94]: {« | h%, has no e.v. in sp(h%,)} is a dense
Gs set.
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Transport vs Spectrum of —A + V

P.p. Spectrum (1)

If the spectrum of h, is pure point one expects a better localization, e.g.
lim(J.)Y(E) = 0 instead of liminf(J;)¥(E) = 0.

Problem: sp(huo) = sp,,,(heo) is not sufficient!

Why?: boundary condition has no influence on transport but the singular
spectrum is very sensitive even to rank 1 perturbations.

Examples where the spectrum of h%, is pure point but that of h% is
purely s.c. for a # 0, e.g. [Simon-Wolff '86].

[Gordon '94]: one can not have p.p. spectrum for all a's.
[delRio-Makarov-Simon '94]: {« | h%, has no e.v. in sp(h%,)} is a dense
Gs set.

Conclusion: one has to rule out s.c. spectrum for almost-all «.
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Transport vs Spectrum of —A + V

Rank 1 perturbations

Let Fo(2) := {(do, (S, — z)—1(50>7 G(x) = Ii??) )%ImFo(X +iy).
y
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Transport vs Spectrum of —A + V

Rank 1 perturbations

Let Fo(2) := {(do, (S, — z)—1(50>7 G(x) = Ii??) )%ImFo(X +iy).
y

Facts: 1) Fo(x) = Ii?a Fo(x + iy) exists, is finite and non-zero for
y

Lebesgue almost all x.
2) G(x) = oo for g almost all x where py is the spectral measure

of h2, for &g, i.e. s.t. Fo(z) = IM

t—z
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Transport vs Spectrum of —A + V

Rank 1 perturbations

Let Fo(2) := {(do, (S, — z)—1(50>7 G(x) = Ii??) )%ImFo(X +iy).
y

Facts: 1) Fo(x) = Ii?a Fo(x + iy) exists, is finite and non-zero for
y

Lebesgue almost all x.
2) G(x) = oo for g almost all x where py is the spectral measure

of h2, for &g, i.e. s.t. Fo(z) = IM

t—z
For a £ 0, let
To = {x€R : FR(x)=—-a™t, G(x)< oo},
Se = {x€R : F(x)=—-a"t, G(x)= o0},
L = {xeR : ImFy(x) > 0}.

L. Bruneau Transport for the 1D Schrddinger equation via quasi-free systems



Transport vs Spectrum of —A + V

Rank 1 perturbations and p.p. spectrum (II)

Theorem (Aronszajn-Donoghue)

1) T, is the set of e.v. of h.
2) u& is concentrated on S,.
3) For all «, L is the essential support of the a.c. spectrum of h%. .
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Transport vs Spectrum of —A + V

Rank 1 perturbations and p.p. spectrum (II)

Theorem (Aronszajn-Donoghue)

1) T, is the set of e.v. of h.
2) u& is concentrated on S,.
3) For all «, L is the essential support of the a.c. spectrum of h%. .

Theorem (Simon-Wolff)

Let B C R be a borel set. The following are equivalent
(1) G(x) < oo for Lebesgue almost all x € B,
(2) u%,..(B) = 0 for Lebesgue almost all o € R.
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Transport vs Spectrum of —A + V

Rank 1 perturbations and p.p. spectrum (II)

Theorem (Aronszajn-Donoghue)

1) T, is the set of e.v. of h.
2) u& is concentrated on S,.
3) For all «, L is the essential support of the a.c. spectrum of h%. .

Theorem (Simon-Wolff)

Let B C R be a borel set. The following are equivalent
(1) G(x) < oo for Lebesgue almost all x € B,
(2) u%,..(B) = 0 for Lebesgue almost all o € R.

Let | CR st G(E) < oo for E €, then lim (Jy¥(E)=o.
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Transport vs Spectrum of —A + V

Lyapunov exponents

Let Te(n) denote the transfer matrix at energy E, i.e.

T.(E) = ( E—Vl(n—l) —01 ) S < E—1V(0) —01 )
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Transport vs Spectrum of —A + V

Lyapunov exponents

Let Te(n) denote the transfer matrix at energy E, i.e.

T.(E) = ( E—Vl(n—l) —01 ) S < E—1V(0) —01 )

The Lyapunov exponent is defined, when it exists, by
o1
Y(E) = lim —log | Te(n)]-

n—oo

Remark: «v(E) > 0 when it exists.
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Transport vs Spectrum of —A + V

Lyapunov exponents

Let Te(n) denote the transfer matrix at energy E, i.e.

T.(E) = ( E—Vl(n—l) —01 ) S < E—1V(0) —01 )

The Lyapunov exponent is defined, when it exists, by

o1
AE) = tim Llog | Te(n)].

n—oo

Remark: «v(E) > 0 when it exists.

Let E such that y(E) > 0, then

Jim < log(J)Y(E) + () (E)) = ~21(E).

— 00
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Transport vs Spectrum of —A + V

Main arguments of the proof

Q Rewrite G(x,y;z) = (6x, (h— z)74,) for x,y = 0, N in terms of
Gs(x,y;z) = (0x, (hs — 2)716,) where hs = —A + V sur ¢2([0, N]).
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Transport vs Spectrum of —A + V

Main arguments of the proof
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Gs(x,y;z) = (0x, (hs — 2)716,) where hs = —A + V sur ¢2([0, N]).
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(and hence in terms of Tg(N)) and study their behaviour.
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Transport vs Spectrum of —A + V

Main arguments of the proof

Q Rewrite G(x,y;z) = (6x, (h— z)74,) for x,y = 0, N in terms of
Gs(x,y;z) = <5x, (hs — z)714,) where hs = —A + V sur £2([0, N]).

Q Express Gs(x,y; E) in terms of generalized eigenfunctions of ho,
(and hence in terms of Tg(N)) and study their behaviour.

© Use the independence w.r.t. the boundary condition.
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Transport vs Spectrum of —A + V

Main arguments of the proof

Q Rewrite G(x,y;z) = (6x, (h— z)74,) for x,y = 0, N in terms of
Gs(x,y;z) = (0x, (hs — 2)716,) where hs = —A + V sur ¢2([0, N]).

Q Express Gs(x,y; E) in terms of generalized eigenfunctions of ho,
(and hence in terms of Tg(N)) and study their behaviour.

© Use the independence w.r.t. the boundary condition.

@ Use results of [Last-Simon '99] which relate the nature of the
spectrum to the behaviour of Tg(n):
o S={E, liminf || Tg(n,0)|| < oo} supports the a.c. spectrum of ho,
o S"={E, liminf 5 SV I Te(n,0)]|? < oo} is an essential support of
the a.c. spectrum of ho, and has zero measure with repsect to the
singular part part of the spectral measure.
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