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The diagrammatic method is one of the most powerful and beautiful tools of theoretical

physics. It allows us to organize efficiently perturbative computations in statistical physics,

quantum many-body theory and quantum field theory. It often plays a rather fundamental

role, especially when the non-perturbative theory is unknown. Its formal structure is quite

interesting and complex, and involves some nontrivial combinatorial facts.



Diagrams seem to be often despised by rigorous people. In reality, diagrams are rigorous

themselves. Of course, they are inherently perturbative. But many important physical theories

seem to exist only in the perturbative sense. Diagrams can then be used to define such theories.

The diagramatic method is also useful in suggesting the right physical quantities to look for

and compute.

There exist several kinds of diagrams. We will try to present them in a systematic way. This

corresponds to a division of our presentation in 3 sections:

1. Diagrams and gaussian integration;

2. Friedrichs diagrams and the scattering operator;

3. Feynman diagrams and the scattering operator.



In Sect. 1 we present a diagrammatic formalism whose goal is to organize integration with

respect to a gaussian measure. This formalism is used extensively in classical statistical physics.

It also plays an important role in quantum physics, especially in the euclidean approach, since

many quantum quantities can be expressed in terms of gaussian integrals over classical variables.

We use the term “gaussian integration” in a rather broad sense. Beside commuting,

“bosonic” variables, we also consider anticommuting “fermionic” variables, where we use the

Berezin integral with respect to a gaussian weight.



Various vertices



Connected diagram without self-lines



Even in the case of commuting variables, the “gaussian integral” is not necessarily meant

in the sense of measure theory. It denotes an algebraic operation performed on polynomials

(or formal power series), which in the case of a positive definite covariance coincides with the

usual integral with a gaussian weight. One can allow, however, the covariance to be complex,

or even negative definite. There is no need to insist that the operation has a measure theoretic

meaning.

One can distinguish two kinds of vector spaces, on which one perform gaussian integrals:

real and complex. Of course, the difference between the real (ie. neutral), and the complex

(ie. charged) formalism is mainly that of a different notation. In particular, charged lines are

equipped with an arrow, whereas neutral lines need not.

The terminology used in diagrams is inspired by quantum field theory. Therefore, the vari-

ables that enter the integral are associated to “particles”, they are divided into “bosons” and

“fermions”, each subdivided into “neutral” and “charged” particles.



Various vertices involving charged particles



In Sections 2 and 3 we describe diagrams in the framework of 2nd quantization. They are

used in many-body quantum theory and quantum field theory. The main aim is the computation

of the scattering operator and the energy shift of the ground state.

There are two natural diagrammatic formalisms in this context. Historically the first, and

the most widely used, is that of Feynman diagrams. We start however with the less widely

used, but easier to explain, the formalism of Friedrichs diagrams.

Friedrichs diagrams appear naturally when we want to compute the Wick symbol of a product

of Wick ordered operators. An algorithm for its computation is usually called the Wick theorem.

In the formalism of Friedrichs diagrams, a vertex represents a Wick monomial. It has two

kinds of legs: incoming legs representing annihilation and outgoing legs representing creation

operators. We draw the former on the right of a vertex and the latter on the left.



A typical Hamiltonian in many-body quantum physics and in quantum field theory can be

written as the sum of a quadratic term of the form dΓ(h) for some 1-particle Hamiltonian h and

an interaction given by a Wick polynomial. One can use Friedrichs diagrams to compute the

scattering operator for such Hamiltonians, as we describe in Sect. 2. A characteristic feature

of this formalism is the presence of time labels on all vertices and the fact that diagrams with

different time orderings are considered distinct.

Another application of Friedrichs diagrams is the formula for the energy shift of the ground

state, which is attributed to Goldstone. In its derrivation, it is convenient to use the Sucher

formula involving adiabatic scattering operators and the so-called Gell-Mann and Low Theorem.



time

Various Friedrichs vertices
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Friedrichs diagram



Naively, the formalism of Friedrichs diagrams seems very natural and physically intuitive.

In fact, Friedrichs diagrams would provide natural illustration for typical computations of the

early years of quantum field theory (even though apparently diagrams were not used in that

time). Weinberg calls a formalism essentially equivalent to that of Friedrichs diagrams the

old-fashioned perturbation theory.

Since the late 40’s, a different diagram formalism has been developed and since then it

dominates the calculations of quantum field theory. It originated in the work of Stueckelberg,

and, especially, of Feynman, and therefore is called the formalism of Feynman diagrams. Again,

the main goal is to compute the scattering operator for a Hamiltonian of the form dΓ(h)

perturbed by a quantization of a Wick polynomial.



Feynman diagrams used to compute the vacuum expectation value of the scattering operator

can be essentially interpreted as a special case of the diagrams described in Sect. 1 used to

compute gaussian integrals. In this formalism, the order of times associated to individual

vertices does not play any role. This allows us to cut down on the number of diagrams, as

compared with Friedrichs diagrams. In relativistic theories, each Feynman diagram is manifestly

covariant, which is not the case for Friedrichs diagrams. Therefore, Feynman diagrams are

usually preferred for practical computations over Friedrichs diagrams.

Feynman diagrams used to compute the Wick symbol of a scattering operator have in

addition external lines. These lines are either incoming or outgoing. The former are then

paired with creation and the latter with annihilation operators. Again, the temporal order of

vertices is not relevant.



Feynman diagram without external lines



inout

Scattering type Feynman diagram



Even though Feynman diagrams dominate, especially in relativistic computations, Friedrichs

diagrams are also useful in some situations. In particular, they can be used to compute leading

singularities of certain terms of the perturbation expansion.

The main idea of passing from Friedrichs diagrams to Feynman diagrams consists in combin-

ing the evolution going forwards and backwards in time in a single line. It is done in a different

way for neutral and charged particles. In the case of neutral particles, the lines with both time

directions are combined into one unoriented line. In the case of charged lines, one combines

particles going forwards and antiparticles going backwards in a single line decorated with an

arrow pointing forwards. Similarly, one combines particles going backwards and antiparticles

going forwards in a single line oriented backwards.



0.1 Gaussian integrals and diagrams

Let V be a real vector space. We will often represent an element ζ of V as a function on Ξ,

that is Ξ 3 ξ 7→ ζ(ξ) ∈ R. It is convenient to introduce functionals on V by

〈φ(ξ)|ζ〉 := ζ(ξ).

Clearly, a polynomial on V can be written as∑
n

∫
· · ·
∫
vn(ξn, . . . , ξ1)φ(ξn) · · ·φ(ξ1)dξ1 · · · dξn, (0.1)

where vn are symmetric functions on Ξn. Clearly, v(0) = v0.

Sometimes we will consider infinite polynomials, that is formal infinite sums of nth degree

homogeneous polynomials.



Polynomials can be differentiated:

∇φ(ξ)

∫
· · ·
∫
vn(ξn, . . . , ξ1)φ(ξn) · · ·φ(ξ1)dξ1 · · · dξj

= n

∫
. . .

∫
vn(ξ, ξn−1 . . . , ξ1)φ(ξn−1) · · ·φ1(ξ1)dξ1 · · · dξn−1.

Note that

∇φ(ξ) ∇φ(ξ′) = ∇φ(ξ′) ∇φ(ξ).

We often smear the derivative with a ζ ∈ V . The derivative in the direction of ζ equals

ζ∇φ =

∫
ζ(ξ)∇φ(ξ)dξ.



We fix σ, a symmetric form on the dual of V , whose integral kernel is the symmetric function

σ(·, ·). The form σ can be complex valued. We will need the following differential operator

∇φσ∇φ =

∫ ∫
∇φ(ξ)σ(ξ, ξ′)∇φ(ξ′)dξdξ

′,

If v(φ) is a polynomial, its integral with covariance σ is defined as∫
v(φ) := exp

(1

2
∇φσ∇φ

)
v(0).



Note that if V = Rd and Reσ is strictly positive, then
∫
v(φ) can be interpreted as the

usual integral with the probabilistic gaussian weight. In fact,∫
v(φ) = (2π)−d/2(detσ)−1/2

∫
e−

1
2φσ

−1φv(φ)dφ, (0.2)

where dφ is the usual Lebesgue measure on Rd and the integral has the usual meaning.

If V is infinite dimensional and Reσ is strictly positive, then (0.2) can still be interpreted in

the sense of measure theory, although one needs a more sophisticated formalism.



With every homogeneous polynomial of degree m we associate a vertex, that is a graphical

symbol consisting of the proper vertex, usually a dot, and m legs (prongs).

To specify a diagram we need

1. a sequence of vertices (the order in the sequence does not play a role);

2. a family of internal lines.

An internal line is a pair of legs, each belonging to one of the vertices, joined with a line.

Each leg belongs to at most one internal line.

All legs that are not a part of an internal line are called external lines. Lines joining two legs

of the same vertex are called self-lines.



Various vertices



Connected diagram without self-lines



Let δ be a diagram with vertices corresponding to vn(φ), . . . , v1(φ). First assume it has no

external legs. Its evaluation is the number

zδ :=

∫
. . .

∫ n∏
j=1

vj(ξj,mj
, . . . , ξj,1)

∏
l∈int. lines

σ(ξ1,l, ξ2,l)dξ1,ldξ2,l.

If δ is an arbitrary diagram, its evaluation is the monomial

zδ(φ) :=

∫
. . .

∫ n∏
j=1

vj(ξj,mj
, . . . , ξj,1)

∏
l∈int. lines

σ(ξ1,l, ξ2,l)dξ1,ldξ2,l
∏

k∈ ext. lines

φ(ξk)dξk.

Diagrams can be multiplied – they are just juxtaposed. We can also consider formal sums

of diagrams. Obviously, the evaluation of the product of two diagrams is the product of their

evaluations. Likewise, the evaluation of the sum of diagrams is the sum of evaluations.

Later on we will need the exponential of a diagram, defined as the obvious power series.



If v(φ) is a polynomial, define

:v(φ): := e
1
2∇φσ∇φv(φ).

We will call :v(φ): the Wick transformation of v(φ). Note that
∫

:v(φ): = v(0).

The Wick transformation is a bijection. If g(φ) is a polynomial, we can write it as

g(φ) = :v(φ):.

We will say that g(φ) is represented in the Wick form.

If σ is strictly positive, then the Wick tranformation can be interpreted in terms of the

Gram-Schmidt orthogonalization. In fact, let Pn be the orthogonal projection onto the space

of at most nthe degree polynomials in L2(V , e−φσ−1φ). If v(φ) is homogeneous of degree n, we

have

:v(φ): = v(φ)− Pn−1v(φ).

In particular, in the case of a single variable, :φn: is the nth Hermite polynomial.



Let vn(φ), . . . , v1(φ) be homogeneous polynomials. To each of them we associate a vertex

denoted by the same symbol. Diagrams with vertices vn, . . . , v1 can be used to compute various

quantities.

First of all, we have the identity∫
vn(φ) · · · v1(φ) =

∑
δ

zδ

where we sum over all diagrams with no external lines. More generally,

vn(φ) · · · v1(φ) = :
∑
δ

zδ(φ):. (0.3)

where we sum over all diagrams.



In practice, one often prefers polynomials in the Wick form. We have then the identity∫
:vn(φ): · · · :v1(φ): =

∑
δ

zδ

where we sum over all diagrams without external legs and without self-lines. More generally,

:vn(φ): · · · :v1(φ): = :
∑
δ

zδ(φ):. (0.4)

where we sum over all diagrams without self-lines.

From now on, we will consider only diagrams without self-lines.



1

72

96

24

4

:φ4: :φ4: = :φ8: + 4:φ6: + 72:φ4: + 96:φ2: + 24, (2π)−1/2
∫

:φ4: :φ4:dφ = 24.



Suppose that have a (classical) Hamiltonian given by

H =
1

2
φσ−1φ− :vn(φ):− · · · − :v1(φ):, (0.5)

where vi(φ), i = 1, . . . , n, are homogeneous polynomials. We would like to compute various

quantities motivated by statistical physics related to this Hamiltonian. To this end we will need

diagrams with vertices of type vn(φ), . . . , v1(φ), with possible repetitions.
∫

will denote the

integral with covariance σ.



The partition function is given by the formula∫
e−Hdφ =

∫
exp(:vn(φ): + :v1(φ):) =

∑
δ

zδ,

where we sum over all diagrams with with no external lines.

A combinatorial miracle happens if we consider the logarithm of the partition function.

log

∫
exp(:Vn: + :V1:) =

∑
δ

zδ, (0.6)

where we sum over all connected diagrams without external lines. This is a part of the famous

Linked Cluster Theorem.



Suppose we are interested in the Gibbs state e−H/
∫

e−Hdφ. We would like to represent it

in the Wick form. This can be also expressed in terms of diagrams.

In fact, first note that

exp(:vn(φ): + :v1(φ):) =
∑
δ

:zδ(φ):, (0.7)

where we sum over all diagrams, including those with external legs.



This can be simplified.

exp(:vn(φ): + :v1(φ):) = :

(
exp

∑
δ

zδ(φ)

)
:, (0.8)

where we sum over all connected diagrams. This is one of versions of the Linked Cluster

Theorem.

A linked diagram is a diagram whose all connected parts have at least one external line.

Another version of the Linked Cluster Theorem says that

exp(:vn(φ): + :v1(φ):)∫
exp(:vn(φ): + :v1(φ):)

= :
∑
δ

zδ(φ):, (0.9)

where we sum over all linked diagrams.



An element of the dual of V can be written as

φ(f) =

∫
f(ξ)φ(ξ)dξ.

The generating function is defined as

Z(f) :=

∫
exp (:vn(φ): + :v1(φ): + φ(f))∫

exp(:vn(φ): + :v1(φ):)

To obtain diagrams for the generating function one uses diagrams with vertices vn(φ), . . . , v1(φ)

and an additional 1-legged vertex for the insertion f . (Vertices can be repeated).

We have

Z(f) =
∑

zδ,

where we sum over all diagrams without external lines with at least one insertion vertex.



f

f

f

f

A diagram for the generating function of the :φ4: theory



From the generating function we can compute N -point correlation functions

G(fN , . . . , f1) = fN∇f · · · f1∇fZ(f)
∣∣∣
f=0

=

∫
exp(:vn(φ): + :v1(φ):)φ(fN) · · ·φ(f1)∫

exp(:vn(φ): + :v1(φ):)

We have

G(fN , . . . , f1) =
∑

zδ,

where we sum over all diagrams without external lines with precisely one insertion vertex for

each fj.

(Usually, the lines ending with fj are called external lines).



f f

f
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f
2
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A diagram for the 4-point function of the :φ4: theory



The formalism that we described above is used in the case of neutral particles. In the case

of charged particles, real variables are replaced with complex variables. Let us describe the

complex (charged) formalism.

Consider a complex vector space W . As usual, we will assume that elements of W can be

represented as a functions on a certain set Ξ, that is Ξ 3 ξ 7→ ζ(ξ) ∈ C.

We will use the complex linear functional on W denoted by ψ(ξ) given by

〈ψ(ξ)|ζ〉 := ζ(ξ).

We also have its complex conjugation

〈ψ(ξ)|ζ〉 := ζ(ξ).



Polynomials on W can be expressed in ψ and ψ:

w(ψ, ψ) =
∑
p,q

∫
· · ·
∫
wp,q(ξ

′
1, . . . , ξ

′
p, ξq, . . . , ξ1)

ψ(ξ′1) · · ·ψ(ξ′p)ψ(ξ′q) · · ·ψ(ξ′1)dξ
′
1 · · · dξ′pdξq · · · dξ1,

where wn are functions separately symmetric on Ξp and Ξq.



We fix η, a sesquilinear form on the dual of V , whose integral kernel is the function η(·, ·).

We will need the differential operator

∇ψη∇ψ =

∫ ∫
∇ψ(ξ)η(ξ, ξ′)∇ψ(ξ′)dξdξ

′,

If w(ψ, ψ) is a polynomial, its integral with covariance η is defined as∫
w(ψ, ψ) := exp

(
∇ψ η∇ψ

)
w(0, 0).

If w is a polynomial, define its Wick transformation as

:w(ψ, ψ): := exp(∇ψ η∇ψ)w(ψ, ψ).

Note that the above definitions are consistent with the treatment of W as a real space

equipped with the symmetric form

f1σf2 = f 1ηf2 + f 2ηf1.



In the charged formalism, every vertex has two kinds of legs: charge creating with arrows

pointing outward and charge annihilating with arrows pointing inward. Each internal line joins

a charge creating and a charge annihilating leg. We can consistently decorate the lines with

arrows.

In most applications the vertices preserve the charge – the same number of legs create and

annihilate the charge.

The generating function is defined using a pair of test functions

G(g, g′) :=

∫
exp(:Wn: + :W1: + ψ(g) + ψ(g′))∫

exp(:wn(ψ, ψ): + :w1(ψ, ψ):)

Here

ψ(g) =

∫
ψ(ξ)g(ξ)dξ, ψ(g′) =

∫
ψ(ξ)g′(ξ)dξ.



Various vertices involving charged particles



The diagrammatic method can be used for the evaluation of antisymmetric gaussian integrals.

We first describe its neutral version.

Again we consider a real vector space V . Elements of the antisymmetric tensor algebra over

the dual of V will be called antisymmetric polynomials. Every antisymmetric polynomial can

be written as

v(φ) =
n∑
j=0

∫
· · ·
∫
vj(ξj, . . . , ξ1)φ(ξj) · · ·φ(ξ1)dξ1 · · · dξj,

where vj(· · · ) is an antisymmetric function on Ξj.

If v(φ) =
∑∞

n=0 vn(φ) is an antisymmetric polynomial decomposed into its homogeneous

components, then by definition v(0) := v0.



We can apply to antisymmetric polynomials the left derivative:

∇φ(ξ)

∫
· · ·
∫
vn(ξn, . . . , ξ1)φ(ξn) · · ·φ(ξ1)dξ1 · · · dξj

= n

∫
. . .

∫
vn(ξ, ξn−1 . . . , ξ1)φ(ξn−1) · · ·φ1(ξ1)dξ1 · · · dξn−1.

Note that

∇φ(ξ) ∇φ(ξ′) = −∇φ(ξ′) ∇φ(ξ).

We often smear the derivative with a ζ ∈ V . The antisymmetric left derivative in the

direction of ζ equals

ζ∇φ =

∫
ζ(ξ)∇φ(ξ)dξ.



If V is finite dimensional and its dimension equals n, then we define the Berezin integral

over V as follows. We fix a basis e1, . . . , en of V . Then the Berezin integral of v(φ) equals∫
v(φ)dφ := e1∇φ · · · en∇φv(φ).

Equivalently, we decompose v(φ) into the sum of homogeneous elements. The highest order

element has the form vnφn · · ·φ1. We set∫
v(φ)dφ = vn.



We fix σ, an antisymmetric form on the dual of V , whose integral kernel is the antisymmetric

function σ(·, ·). We will need the following differential operator

∇φσ∇φ =

∫ ∫
∇φ(ξ)σ(ξ, ξ′)∇φ(ξ′)dξdξ

′,

If v(φ) is a polynomial, its integral with covariance σ is defined as∫
v(φ) := exp

(1

2
∇φσ∇φ

)
v(0).

Equivalently, in terms of the Berezin integral,∫
v(φ) = Pf(σ)

∫
exp

(
1

2
φσ−1φ

)
v(φ)dφ.



If v(φ) is a polynomial, define

:v(φ): := e
1
2∇φσ∇φv(φ).

We will call :v(φ): the Wick transformation of v(φ).

All the diagrammatic methods that we described in the symmetric case remain valid, with

obvious modifications, if we restrict ourselves to even antisymmetric polynomials.



Actually, in the antisymmetric case the neutral formalism is rarely used. One prefers the

charged formalism. Its starting point is a complex vector spaceW equipped with a sesquilinear

form η. To go back to the neutral formalism one considers W as a real space equipped with

the antisymmetric form

f1σf2 = f 1ηf2 − f 2ηf1.



0.2 Scattering operator and Friedrichs diagrams

Let Z be a Hilbert space. We will assume that it can be identified with L2(Ξ). We are

interested in operators on Γs/a(Z), treating in paralel the bosonic and fermionic case.

We introduce notation for the following linear functionals (= homogeneous 1st order poly-

nomials) on Z:

〈a(ξ)|ζ〉 := ζ(ξ),

〈a(ξ)|ζ〉 := ζ(ξ). (0.10)



A multilinear function of the form

v(a, a) =

∫
· · ·
∫
v(ξ1, · · · ξm+

, ξ′m−, · · · , ξ
′
1)

a(ξ1) · · · a(ξm+
)a(ξ′m−) · · · a(ξ′1)dξ1 · · · dξm+

dξ′m− · · · dξ
′
1

symmetric/antisymmetric wrt the variables a and a separately, will be called a Wick monomial

of degree (m+,m−). Recall that v(ξ1, · · · ξm+
, ξ′m−, · · · , ξ

′
1) can be interpreted as the integral

kernel of an operator from Γ
m−
s/a (Z) to Γ

m+

s/a (Z). The Wick quantization of v is denoted by

v(â∗, â) =

∫
v(ξ1, · · · ξm+

, ξ′m−, · · · , ξ
′
1)

â∗(ξ1) · · · â∗(ξm+
)â(ξ′m−) · · · â(ξ′1)dξ1, · · · ξm+

dξ′m− · · · dξ
′
1.

It is an operator on Γs/a(Z).



Graphically, to each Wick monomial of order (m−,m+) we associate a Friedrichs vertex with

m− incoming legs (on the right) and m+ outgoing legs (on the left). To a leg with label l we

associate a variable ξl ∈ Ξ.

An nth order Friedrichs diagram is determined if we specify

1. vn, . . . , v1, a sequence of vertices (the order in the sequence plays a role);

2. a family of internal lines.

An internal line is a pair of legs belonging to vn, . . . , v1 joined by a line. They should belong

to two distinct vertices vj+ and vj−, where j+ > j−. The leg belonging to vj− should be

outgoing and the leg belonging to vj+ should be incoming. Each leg belongs to at most one

internal line. We do not put arrows on the lines – they have a natural direction from the right

to the left, obvious from the picture.

All outgoing/incoming legs that are not a part of an internal line are called external outgo-

ing/incoming lines.



time

Various Friedrichs vertices
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Friedrichs diagram



Friedrichs diagrams will be used to compute perturbatively a number of various quantities.

To a Friedrichs diagram δ with m+(δ) outgoing and m−(δ) incoming legs we will associate a

Wick monomial of order (m−,m+) according to various rules.

The first quantity that we consider will be Wick ordered products of quantized Wick mono-

mials vn(â
∗, â), . . . , v1(â

∗, â).



Rules for evaluating a Friedrichs diagram to compute the product

1. Write the product
n∏
j=1

vj(ξ
+
j,1, . . . , ξ

+
j,m+(j); ξ

−
j,m−(j), . . . , ξ

−
j,1).

2. For each internal line joining the vertices j− and j+ with the variables ξ− and ξ+ integrate∫ ∫
δ(ξ+, ξ−)dξ+dξ−.

3. For each incoming external line with label ξ− write
∫
â(ξ−)dξ−.

4. For each outgoing external line with label ξ+ write
∫
â∗(ξ+)dξ+.



5. Multiply by (−1)p where p is the number of crossings of fermionic lines.

The resulting quantized Wick monomial is denoted pδ(â
∗, â).

Now,

(Ω|vn(â∗, â) · · · v1(â
∗, â)Ω) =

∑
pδ,

where we sum over all Friedrichs diagrams without external lines. Moreover,

vn(â
∗, â) · · · v1(â

∗, â) =
∑

pδ(â
∗, â),

where we sum over all Friedrichs diagrams.

The above statements often go under the name of the Wick Theorem.



We will describe now a more interesting application of Friedrichs diagrams. Consider a free

Hamiltonian

H0 :=

∫
ω(ξ)â∗(ξ)â(ξ)dξ,

perturbed by a sum of quantized Wick monomials

V (t) :=
∑
α

vα(t; â∗, â),

where vα(t; â∗, â) is a quantized Wick monomial of degree (m+(α),m−(α)). The corresponding

vertex will be called α. If we want, we can assume that V (t) is (formally) hermitian. We do

not insist that H0 + V (t) is selfadjoint, nor that the dynamics is well-defined.



We would like to compute the scattering operator

S = lim
t+,−t−→∞

eit+H0Texp

(
−i

∫ t+

t−

V (t)dt

)
e−it−H0

= Texp

(
−i

∫ ∞
−∞

eitH0V (t)e−itH0dt

)
,

as a formal infinite expansion, possibly divergent.



Let δ be a Friedrichs diagram with vertices αn, . . . , α1.

Rules for evaluating a Friedrichs diagram to compute the scattering operator

1. Write the product

(−i)n
n∏
j=1

vαj(tj; ξ
+
j,1, . . . , ξ

+
j,m+(αj)

; ξ−j,m−(αj)
, . . . , ξ−j,1).

2. For each external incoming line attached to the vertex αj and with the variable ξ− put∫
e−iω(ξ−)tj â(ξ−)dξ−.

3. For each external outgoing line attached to the vertex αj and with the variable ξ put∫
eiω(ξ+)tj â∗(ξ+)dξ+.



4. For each internal line joining the vertices αj− and αj+ with the variables ξ− and ξ+ integrate∫ ∫
eiω(ξ+)(tj+−tj−)δ(ξ+, ξ−)dξ+dξ−.

5. Integrate with respect to time ∫
· · ·
∫

tn≥···≥t1

dtn · · · dt1.

6. Multiply by (−1)p where p is the number of crossings of fermionic lines.

The resulting quantized Wick monomial is denoted sδ(â
∗, â).



The scattering operator equals

S =
∑
δ

sδ(â
∗, â), (0.11)

where we sum over all Friedrichs diagrams.

To prove (0.11), we compute

S =
∞∑
n=0

∫
· · ·
∫

tn≥···≥t1

dtn · · · dt1(−i)ne−itnH0V ei(tn−tn−1)H0 · · · ei(t2−t1)H0V eit1H0.

We use the Wick Theorem and

eitH0â∗(ξ)e−itH0 = eitω(ξ)â∗(ξ), eitH0â(ξ)e−itH0 = e−itω(ξ)â(ξ).



The vacuum expectation value of the scattering operator equals

(Ω|SΩ) =
∑
δ

sδ. (0.12)

where we sum over all Friedrichs diagrams without external lines.

The Linked Cluster Theorem allows to simplify (0.12):

log(Ω|SΩ) =
∑
δ

sδ

where we sum over all connected Friedrichs diagrams without external lines.



We can multiply Friedrichs polynomials. It involves the juxtaposition of diagrams, preserving

however the order of times. Similarly, we can define v(a, a)n and

exp v(a, a) :=
∞∑
n=1

1

n!
v(a, a)n.

One of versions of the Linked Cluster Theorem says that

S = exp

(∑
δ

sδ

)
(â∗, â).

where we sum over all connected Friedrichs diagrams.



Therefore,

S

(Ω|SΩ)
= exp

(∑
δ

sδ

)
(â∗, â),

where we sum over all connected Friedrichs diagrams with at least one external line. Equiva-

lently,

S

(Ω|SΩ)
=
∑
δ

sδ(â
∗, â),

where we sum over all linked Friedrichs diagrams, that is, Friedrichs diagrams whose each

connected part has at least one external line.



Assume now that vα are time independent. In this case, it is convenient to use the adiabatic

switching of the dynamics, by setting for ε > 0

Vε(t) := e−ε|t|V.

We introduce the adiabatic scattering operator

Sε := Texp

(
−i

∫ ∞
−∞

eitH0Vε(t)e
−itH0dt

)
.

and the Gell-Mann and Low scattering operator

SGL := w− lim
ε↘0

Sε
(Ω|SεΩ)

.



First note that SGL commutes with H0. Therefore, it can be decomposed in the energy,

yielding SGL =
∫ ⊕

SGL(E)dE.

Rules for evaluating a Friedrichs diagram to compute Gell-Mann and Low scattering operator

1. Write the product

(−i)n
n∏
j=1

vαj(tj; ξ
+
j,1, . . . , ξ

+
j,p+(αj)

; ξ−j,p−(αj)
, . . . , ξ−j,1).

2. Suppose that between the vertex tj and tj+1 there are the lines with the variables ξ1,. . . ,ξj.

Then put

(ω(ξ1) + · · ·+ ω(ξj)− E + i0)−1.

3. If ξ−m−, . . . , ξ
−
1 are incoming momenta, put∫
· · ·
∫
δ(ω(ξ−m−) + · · ·+ ω(ξ−1 )− E)â(ξ−m−) · · · â(ξ−1 )dξ−m− · · · dξ

−
1 .



4. If ξ+
m+
, . . . , ξ+

1 are outgoing momenta, put∫
· · ·
∫
δ(ω(ξ+

m+
) + · · ·+ ω(ξ+

1 )− E)â∗(ξ+
m+

) · · · a∗(ξ+
1 )dξ+

m+
· · · dξ+

1 .

5. For each internal line joining the vertices αj− and αj+ with the variables ξ− and ξ+ integrate∫
δ(ξ+, ξ−)dξ+dξ−.

6. Multiply by (−1)p where p is the number of crossings of fermionic lines.

The resulting quantized Wick monomial is denoted sδ(E, â
∗, a∗).

Using the Linked Cluster Theorem we obtain a formula

SGL(E) =
∑
δ

sδ(E, â
∗, â),

where we sum over all linked Friedrichs diagrams.



We still assume that vα are time independent. There exists a diagrammatic formula that

allows us to compute the energy of the ground state. This formula goes under the name of the

Goldstone Theorem. Friedrichs diagrams in this context are often called Goldstone diagrams.

A convenient starting point for calculation of the energy shift is the Sucher formula.

E = lim
ε↘0

iελ

2
∂λ log(Ω|SεΩ). (0.13)

Under rather general conditions one can show that the Sucher formula gives the correct ground

state energy (noting that the unperturbed ground state energy is 0).



Let δ be a Goldstone diagram without external lines.

Rules for evaluating a Goldstone diagram to compute the ground state energy.

1. Write the product

(−i)n
n∏
j=1

vαj(ξ
+
j,1, . . . , ξ

+
j,m+(αj)

; ξ−j,m−(αj)
, . . . , ξ−j,1).

2. Suppose that between the vertex αj and αj+1 there are lines with the variables ξ1, . . . , ξj.

Then put

(ω(ξ1) + · · ·+ ω(ξj))
−1. (0.14)

3. For each internal line joining the vertices αj− and αj+ with the variables ξ− and ξ+ we

integrate ∫ ∫
δ(ξ+, ξ−)dξ+dξ−.

4. Multiply by (−1)p where p is the number of crossings of fermionic lines.

As a result we obtain a number denoted Eδ.



Now the Goldstone Theorem says that

E =
∑
δ

Eδ,

where we sum over all connected Goldstone diagrams with no external lines.

This formula is used also even if some 1-particle energies are not positive. In this case we

additionally put +i0 in the denominators (0.14). We obtain in general a complex number with

a negative imaginary part, which describes an excited metastable state.



Goldstone diagram



0.3 Scattering operator and Feynman diagrams

We begin with the neutral bosonic formalism. We consider the one-particle space Z =

L2(K, dk) The corresponding classical functionals are introduced as in (0.10) and are denoted

a(k)/a(k). The variable k will have the interpretation of the 1-particle momentum, supple-

mented perhaps with inner degrees of freedom such as the species of a particle and the spin.

Thus we will use consistently the so-called momentum space formalism.

We also consider the corresponding bosonic Fock space Γs(Z). The creation/annihilation

operators are denoted â∗(k)/â(k).

We fix a free Hamiltonian

H0 =

∫
ω(k)â∗(k)â(k)dk



We consider the operator valued measure, called a quantum field

K 3 k 7→ φ̂(k) :=
1√

2ω(k)
(â(k) + â∗(k)),

and the corresponding classical field

K 3 k 7→ φ(k) :=
1√

2ω(k)
(a(k) + a(k)),

These fields are neutral: quantum fields are self-adjoint and classical are real.



A polynomial in the (classical) real variables φ(k)

v(φ) =

∫
· · ·
∫
v(k1, . . . , km)φ(k1) · · ·φ(km)dk1 · · · dkm (0.15)

will be called a Feynman monomial. It can be written as a Wick monomial:∫
· · ·
∫
v(k1, . . . , km)

1√
2ω(k1)

(a(k1) + a(k1)) · · ·

1√
2ω(km)

(a(km) + a(km))dk1 · · · dkm.



The Wick quantization of the above monomial will be denoted by

:v(φ̂): ; =

∫
· · ·
∫
v(k1, . . . , km) :φ̂(k1) · · · φ̂(km): dk1 · · · dkm (0.16)

and is an operator on the Hilbert space Γs(Z).

To an operator of this form we associate a Feynman vertex, which has m legs.

Suppose that vα(t;φ) are time-dependent Feynman monomials. Consider H0 perturbed by

a sum of Wick quantized Feynman monomials

V (t) :=
∑
α

:vα(t; φ̂):.

We would like to compute the scattering operator

S = Texp

(
−i

∫ ∞
−∞

eitH0V (t)e−itH0dt

)
.



An nth order Feynman diagram δ is determined if we specify

1. αn, . . . , α1 – an n-element combination with repetitions of vertices (we represent it by a

sequence, but its order is not important);

2. a family of internal lines.

An internal line is a pair of legs belonging to two vertices αi, αj for distinct i and j joined

by a line. Each leg belongs to at most one internal line.

All legs that are not a part of an internal line are called external lines.



The propagator is defined as

D(t; k) :=
(

Ω|T(φ̂(t, k), φ̂(0, k))Ω
)

= θ(t)
(

Ω|φ̂(t, k)φ̂(0, k)Ω
)

+ θ(−t)
(

Ω|φ̂(0, k)φ(̂t, k)Ω
)

=
1

2ω(k)

(
θ(t)eiω(k)t + θ(−t)e−iω(k)t

)
.

Note that the propagator is a Green’s function or a fundamental solution of the “wave

equation”: (
∂2
t + ω(k)2)D(t, k) = iδ(t).



Rules for evaluating Feynman diagrams without external lines.

1. Write the product

(−i)n
n∏
j=1

vαj(tj; k1, . . . , km(αj))

2. For each internal line joining the vertices αj and αj′ with the variables k and k′, integrate∫ ∫
D(tj − tj′, k)δ(k, k′)dkdk′.

3. Integrate the expression with respect to time∫
dtn · · ·

∫
dt1.



The vacuum expectation value of the scattering operator can be computed as

(Ω|SΩ) =
∑
β

sβ.

where we sum over all Feynman diagrams without external lines. The Linked Cluster Theorem

says that

log(Ω|SΩ) =
∑
β

sβ.

where we sum over all connected Feynman diagrams without external lines



Feynman diagram without external lines



Suppose that we are given an nth order Feynman diagram with m external lines. Before

evaluating the diagram, we divide the set of its external lines in two subsets: m− incoming

external lines, pointing to the right, and m+ outgoing external lines, pointing to the left. Clearly,

m = m+ +m−. Diagrams with legs divided into two such subset will be called scattering type

Feynman diagrams. We will associate to them Wick monomials of order (m+(δ),m−(δ)).

We have the expansion

S =
∑
β

sβ(â∗, â),

where we sum over all scattering type Feynman diagrams.



Rules for evaluating a scattering type Feynman diagram

Let β be a a scattering type Feynman diagram. We proceed as for Feynman diagrams

without external lines. In addition,

1. for each external incoming line attached to the vertex αj, with the variable k−, put∫
1√

2ω(k)
eiω(k−)tj â(k−)dk−.

2. for each external outgoing line attached to the vertex αj, with the variable k+ we put∫
1√

2ω(k)
e−iω(k+)tj â∗(k+)dk+.

The resulting quantized Wick monomial is denoted sβ(â∗, â).



inout

Scattering type Feynman diagram



The formalism of Feynman diagrams can be considered as a special case of the formalism

of diagrams for the gaussian integration. In fact, one needs to consider the space of functions

on R × K, the first variable having the interpretation of the time. Elements of this space are

called paths. Then φ(t, k) has the interpretation of a linear functional on this space. To each

time-dependent polyomial v(t;φ) we can associate a function on the path space:∫
v(t;φ)dt =

∑
α

∫
dt

∫
dkα,m(α) · · ·

∫
dkα,1

vα
(
t; kα,m(α), . . . , kα,1

)
φ(t, kα,m(α)) · · ·φ(t, kα,1).

We consider the differential operator∫
∇φ(t,k)D(t− s, k)δ(k− k′)∇φ(s,k′).

This operator defines a Wick operation and a gaussian integral on the space of paths.



We then have the identity(
Ω|Texp

(
−i

∫
:v(t; φ̂):dt

)
Ω

)
=

∫
exp

(
−i :

∫
v(t;φ)dt:

)
. (0.17)

On the left we use the operator language, whereas on the right we use the language of the

gaussian integrals on the space of paths.

Identity (0.17) is the essence of the path integral approach to QFT. In this approach one

tries to give a method to compute scattering amplitudes without speaking about operators.



The perturbations considered so far are restrited to a commutative algebra generated by φ̂(k).

Sometimes more general perturbations arise. To treat them one introduces the conjugate fields

K 3 k 7→ π̂(k) := ∂tφ̂(t, k)
∣∣∣
t=0

=
ω(k)√

2
(iâ(k)− iâ∗(k)).

We have the canonical commutation relations

[φ̂(k), φ̂(k′)] = [π̂(k), π̂(k′)] = 0,

[φ̂(k), φ̂(k′)] = δ(k, k′).



In the case of π-dependent perturbations, one needs to modify the path integration formal-

ism. Instead of paths in the configuration space, given just by t 7→ φ(t, k) one needs paths in

the phase space, involving t 7→ φ(t, k), π(t, k). One also needs additional propagators:

∂tD(t, k) =
(

Ω|T(π̂(t, k), φ̂(0, k))Ω
)

=
i

2

(
θ(t)eiω(k)t − θ(−t)e−iω(k)t

)
,

−∂2
tD(t, k) = (Ω|T(π̂(t, k), π̂(0, k))Ω)

=
ω(k)

2

(
θ(t)eiω(k)t + θ(−t)e−iω(k)t

)
+ iδ(t).



In the case of charged particles one uses a slightly different formalism. To describe it we will

assume that the free system is charge reversal invariant.

Let the one-particle space be Z(+)⊕Z(−) = L2(P, dp)⊕L2(P, dp). The first copy L2(P, dp)

is called the particle space and the second the antiparticle space. The creation operators for

particles are denoted â∗(p) and for antiparticles b̂∗(p).

Consider a free Hamiltonian

Ĥ0 =

∫
E(p)â∗(p)â(p)dp +

∫
E(p)b̂∗(p)b̂(p)dp



We consider operator valued measures, called quantum fields

P 3 p 7→ ψ̂(p) =
1√

2E(p)
â(p) +

1√
2E(p)

b̂∗(p),

P 3 p 7→ ψ̂∗(p) =
1√

2E(p)
â∗(p) +

1√
2E(p)

b̂(p).

and the corresponding classical fields

P 3 p 7→ ψ(p) =
1√

2E(p)
a(p) +

1√
2E(p)

b(p),

P 3 p 7→ ψ(p) =
1√

2E(p)
a(p) +

1√
2E(p)

b(p).

These fields are charged: quantum fields are non-self-adjoint and classical are complex.



A polynomial in the (classical) complex variables ψ(p), ψ(p) of the form

w(ψ, ψ) =

∫
· · ·
∫
w(p+

1 , . . . , p
(+)
m(+)

; p(−)
m(−)

, . . . , p
(−)
1 ) (0.18)

×ψ(p
(+)
1 ) · · ·ψ(p(+)

m(+)
)ψ(p(−)

m(+)
) · · ·ψ(p

(−)
1 )

×dp+
1 · · · dp(+)

m(+)
dp(−)

m(−)
· · · dp

(−)
1 .

will be called a Feynman monomial.



It corresponds to a Wick monomial given by∫
· · ·
∫
w(p

(+)
1 , . . . , p(+)

m(+)
; p(−)

m(−)
, . . . , p

(−)
1 )

(
1√

2E(p1)
a(p

(+)
1 ) +

1√
2E(p1)

b(p
(+)
1 )

)
· · · 1√

2E(pm(+)
)
a(p(+)

m(+)
) +

1√
2E(pm(+)

)
b(p(+)

m(+)
)


×

 1√
2E(pm(+)

)
a(p(+)

m(+)
) +

1√
2E(pm(+)

)
b(p(+)

m(+)
)

 · · ·
(

1√
2E(p1)

a(p
(+)
1 ) +

1√
2E(p1)

b(p
(+)
1 )

)
dp

(+)
1 · · · dp(+)

m(+)
dp(−)

m(−)
· · · dp

(−)
1 .



The Wick quantization of the above monomial will be denoted by

:w(ψ̂∗, ψ̂): =

∫
· · ·
∫
w(p

(+)
1 , . . . , p(+)

m(+)
; p(−)

m(−)
, . . . , p

(−)
1 ) (0.19)

× :ψ̂∗(p
(+)
1 ) · · · ψ̂∗(p(+)

m(+)
)ψ̂(p(−)

m(−)
) · · · ψ̂(p

(−)
1 ):

×dp
(+)
1 · · · dp(+)

m(+)
dp(−)

m(−)
· · · dp

(−)
1 ,

and is an operator on the Hilbert space Γs(Z(+) ⊕Z(−)).

To an operator of this form we associate a Feynman vertex, to which we attach m(−) charge

annihilating legs and m(+) charge creating legs. On charge annihilating/creating legs we put

arrows pointing towards/away from the vertex.



We consider H0 perturbed by a sum of Wick quantizations of Feynman monomials

V (t) =
∑
α

:wα(t; ψ̂∗, ψ̂):,

We would like to compute the scattering operator S.

An nth order Feynman diagram δ for the scattering operator is determined similarly as for

neutral particles. We need to remember that a charge creating leg should be connected to

a charge annihilating leg, forming a charged line. Charged lines are decorated with an arrow

pointing in the direction of the flow of the charge.



The propagator in the charged case is

D(t, p) :=
(

Ω|T(ψ̂(t, p), ψ̂∗(0, p))Ω
)

= θ(t)
(

Ω|ψ̂(t, p)ψ̂∗(0, p)Ω
)

+ θ(−t)
(

Ω|ψ̂∗(0, p)ψ̂(t, p)Ω
)

=
1

2E(p)
θ(t)eiE(p)t +

1

2E(p)
θ(−t)e−iE(p)t.

The propagator is the Green’s function of the “wave equation”:(
∂2
t − E(p)2)D(t, p) = iδ(t).



Rules for evaluating Feynman diagrams without external lines are the same as in the neutral

case, except for obvious modifications:

1. Write the product

(−i)n
n∏
j=1

wαj(tj; p
(+)
1 , . . . , p

(+)
m(+)(αj)

; p
(−)
m(−)(αj)

, . . . , p
(−)
1 )

2. For each internal line joining the vertices αj− and αj+ with the variables p− and p+ integrate∫ ∫
D(tj+ − tj−, p+)δ(p+, p−)dp+dp−.

3. Integrate with respect to time ∫
dtn · · ·

∫
dt1.



For the nth order Feynman diagram with m external lines, as in the neutral case, we divide

the set of its external lines in two subsets: m− incoming external lines, pointing to the right,

and m+ outgoing external lines, pointing to the left. Clearly, m = m+ + m−. Note that now

external lines are divided into 4 categories:

1. incoming particle lines,

2. incoming antiparticle lines,

3. outgoing particle lines,

4. outgoing antiparticle lines.

A Feynman diagram together with the asignement of incoming and outgoing lines will be called

a scattering type Feynman diagram.



Rules for evaluating scattering type Feynman diagrams

Let β be a scattering type Feynman diagram. We follow the rules we specified for diagrams

without external lines, supplemented by the following rules:

1. (i) For each external incoming charge annihilating line attached to the vertex αj, with

the variable p−, put ∫
1√

2E(p−)
eiE(p−)tj â(p−)dp−.

(ii) For each external incoming charge creating line attached to the vertex αj, with the

variable p−, put ∫
1√

2E(p−)
eiE(p−)tj b̂(p−)dp−.



2. (i) For each external outgoing charge annihilating line attached to the vertex αj, with

the variable p+, put ∫
1√

2E(p+)
e−iE(p+)tj â∗(p+)dp+.

(ii) For each external outgoing charge creating line attached to the vertex αj, with the

variable p+, put ∫
1√

2E(p+)
e−iE(p+)tj b̂∗(p+)dp+.

The resulting quantized Wick polynomial is denoted sβ(â∗, b̂∗, â, b̂). Now

S =
∑
β

sβ(â∗, b̂∗, â, b̂),

where we sum over all scattering type Feynman diagrams.



Let us now discuss the fermionic case.

We begin with the neutral formalism. We assume that Z = L2(K, dk). The creation

operators on L2(K, dk) are denoted â∗(k).

Consider a free Hamiltonian

H0 =

∫
ω(k)â∗(k)â(k)dk

We consider the pair of neutral fields

K 3 k 7→ φ̂0(k) := â(k) + â∗(k),

K 3 k 7→ φ̂1(k) := iâ(k)− iâ∗(k).

Note that all operators can be expressed in terms of φi(k), i = 1, 2. We have the relations

[φ̂i(k), φ̂i′(k
′)]+ = 2δ(k, k′)δi,i′.



Set φ̂(t, k) := eitH φ̂(k)e−itH . The propagator is defined as

S(t, k) :=
(

Ω|T(φ̂(t, k), φ̂(0, k))Ω
)

= θ(t)
(

Ω|φ̂(t, k)φ̂(0, k)Ω
)
− θ(−t)

(
Ω|φ̂(0, k)φ̂(t, k)Ω

)
= θ(t)

[
1 i

−i 1

]
eitω(k) − θ(−t)

[
1 −i

i 1

]
e−itω(k).

The propagator is the Green’s function of the “Dirac equation”:

(−i∂t +H)S(t, k) = δ(t).

where

H =

[
0 −iω(k)

iω(k) 0

]
.



Fermions are usually described in the charged formalism. We will describe it assuming

the charge reversal invariance of the free Hamiltonian. The one-particle space is Z(+) ⊕
Z(−) = L2(P, dp)⊕L2(P, dp). The creation operators for particles are denoted â∗(k) and for

antiparticles b̂∗(p). Consider a free Hamiltonian

Ĥ0 =

∫
E(p)â∗(p)â(p)dp +

∫
E(p)b̂∗(p)b̂(p)dp

Consider a pair of charged fields.

P 3 p 7→ ψ̂(p) = â(p) + b̂∗(p),

P 3 p 7→ ψ̂(p) = iâ(p)− ib̂∗(p).

They satisfy the anticommutation relations

[ψ̂i(p), ψ̂i′(p
′)]+ = 0,

[ψ̂i(p), ψ̂∗i′(p
′)]+ = δ(p, p′)δi,i′.



Set ψ̂(t, p) := eitHψ̂(p)e−itH . The propagator in the charged case is

S(t, p) :=
(

Ω|T(ψ̂(t, p), ψ̂∗(0, p))Ω
)

= θ(t)
(

Ω|ψ̂(t, p)ψ̂∗(0, p)Ω
)
− θ(−t)

(
Ω|ψ̂∗(0, p)ψ̂(t, p)Ω

)
= θ(t)

[
1 i

−i 1

]
eiE(p)t − θ(−t)

[
1 −i

i 1

]
e−iE(p)t.

The propagator is the Green’s function of a “Dirac equation”:

(−i∂t +H)S(t, p) = δ(t).

where

H =

[
0 iE(p)

−iE(p) 0

]
.


