Embedding Discrete Dynamics

Convergence of Dynamics

Continuous Limits of Classical Repeated Interactions Systems

Julien Deschamps

Institut Camille Jordan, Lyon

November 29, 2010

Introduction

- Context : System + Environment
 Ex : Object in contact with some thermal baths, charged particule...
- Quantum Mechanics (Attal, Pautrat) \Rightarrow Repeated Interactions
- Questions : Limit evolution of the system ? - Renormalization in Hamiltonian cases ?

Embedding Discrete Dynamics

Convergence of Dynamics

Plan of the Talk

1 Dynamical Systems - Markov Processes

- Discrete Time
- Continuous Time

2 Embedding Discrete Dynamics

- Environment
- Embedding Discrete Dynamics

3 Convergence of Dynamics

- Convergence of Shift
- Convergence of Processes

Embedding Discrete Dynamics

Convergence of Dynamics

Discrete Time

• Dynamical System \widehat{T} measurable application on $S \times E$ measurable $\Rightarrow T$ on $\mathcal{L}^{\infty}(S \times E)$,

$$Tg(x,y) = g(\widehat{T}(x,y))$$

• Point of view of S

-
$$f \in \mathcal{L}^{\infty}(S) \Rightarrow f \otimes \mathbb{1} \in \mathcal{L}^{\infty}(S \times E)$$
,

$$f\otimes \mathbb{1}(x,y)=f(x)$$

- E is endowed with a probability measure μ

Assumption : What the system S sees from the whole dynamics on $S \times E$ is an average on E along the probability measure μ .

Embedding Discrete Dynamics

Convergence of Dynamics

Discrete Time

•
$$\forall f \in \mathcal{L}^{\infty}(S), \ \forall x \in E$$

$$Lf(x) = \int_{E} T(f \otimes 1)(x, y) \, d\mu(y)$$

Question : What really is the operator L?

Embedding Discrete Dynamics

Convergence of Dynamics

Discrete Time

•
$$\forall f \in \mathcal{L}^{\infty}(S), \ \forall x \in E$$

 $Lf(x) = \int_{E} T(f \otimes 1)(x, y) \, d\mu(y)$

Question : What really is the operator L?

Embedding Discrete Dynamics

Convergence of Dynamics

Discrete Time

Theorem

There exists a Markov transition kernel Π such that L is of the form

$$Lf(x) = \int_{S} f(z) \Pi(x, dz),$$

for all $f \in \mathcal{L}^{\infty}(S)$.

• Conversely, if S is a Lusin space and Π is any Markov transition kernel on S, then there exist a probability space (E, \mathcal{E}, μ) and a dynamical system \widehat{T} on $S \times E$ such that the operator

$$Lf(x) = \int_{S} f(z) \Pi(x, dz) ,$$

is of the form

$$Lf(x) = \int_E T(f \otimes \mathbb{1})(x, y) d\mu(y).$$

Embedding Discrete Dynamics

Convergence of Dynamics

Discrete Time

Theorem

There exists a Markov transition kernel Π such that L is of the form

$$Lf(x) = \int_{S} f(z) \Pi(x, dz),$$

for all $f \in \mathcal{L}^{\infty}(S)$.

• Conversely, if S is a Lusin space and Π is any Markov transition kernel on S, then there exist a probability space (E, \mathcal{E}, μ) and a dynamical system \widehat{T} on $S \times E$ such that the operator

$$Lf(x) = \int_{S} f(z) \Pi(x, dz),$$

is of the form

$$Lf(x) = \int_E T(f \otimes \mathbb{1})(x, y) d\mu(y).$$

Repeated Interactions

• Pb : Not a commuting diagram for all powers.

$$- \widehat{T} : S \times E \longrightarrow S \times E (x, y) \longmapsto (U(x, y), V(x, y))$$

• Scheme of repeated interactions

$$\begin{split} \widetilde{E} &= E^{\mathbb{N}^*}, \ \widetilde{\mathcal{E}} \text{ product } \sigma\text{-algebra}, \ \widetilde{\mu} &= \mu^{\otimes \mathbb{N}^*} \\ \widetilde{T} : S \times \widetilde{E} \longrightarrow S \times \widetilde{E} \\ (x, y &= (y_n)_{n \in \mathbb{N}^*}) \longmapsto (U(x, y_1), \theta(y)) \\ \text{where } \theta(y) &= (y_{n+1})_{n \in \mathbb{N}^*} \text{ is the shift.} \end{split}$$

Repeated Interactions

• Pb : Not a commuting diagram for all powers.

$$\begin{array}{c} - \ \widehat{T} : S \times E \longrightarrow S \times E \\ (x, y) \longmapsto (U(x, y), V(x, y)) \end{array}$$

• Scheme of repeated interactions $\widetilde{E} = E^{\mathbb{N}^*}, \widetilde{\mathcal{E}} \text{ product } \sigma\text{-algebra}, \widetilde{\mu} = \mu^{\otimes \mathbb{N}^*}$ $\widetilde{T}: S \times \widetilde{E} \longrightarrow S \times \widetilde{E}$ $(x, y = (y_n)_{n \in \mathbb{N}^*}) \longmapsto (U(x, y_1), \theta(y))$ where $\theta(y) = (y_{n+1})_{n \in \mathbb{N}^*}$ is the shift.

Repeated Interactions

• Pb : Not a commuting diagram for all powers.

$$\begin{array}{c} - \ \widehat{T} : S \times E \longrightarrow S \times E \\ (x, y) \longmapsto (U(x, y), V(x, y)) \end{array}$$

• Scheme of repeated interactions

$$\begin{split} \widetilde{E} &= E^{\mathbb{N}^*}, \, \widetilde{\mathcal{E}} \text{ product } \sigma\text{-algebra, } \widetilde{\mu} = \mu^{\otimes \mathbb{N}^*} \\ \widetilde{T} : S \times \widetilde{E} \longrightarrow S \times \widetilde{E} \\ (x, y = (y_n)_{n \in \mathbb{N}^*}) \longmapsto (U(x, y_1), \theta(y)) \\ \text{where } \theta(y) = (y_{n+1})_{n \in \mathbb{N}^*} \text{ is the shift.} \end{split}$$

Repeated Interactions

•
$$T$$
 induced by \widetilde{T} on applications

Theorem

For all *m* in \mathbb{N}^* , all *x* in *S*, and all *f* in $\mathcal{L}^{\infty}(S)$,

$$(L^m f)(x) = \int_{\widetilde{E}} T^m (f \otimes \mathbb{1})(x, y) d\widetilde{\mu}(y) \,.$$

- Initial state $X_0 = x$ of the system
 - State of the environment $y \Rightarrow X_{n+1}(y) = U(X_n(y), y_{n+1})$
 - State of the environment unknown $\Rightarrow (X_n)_{n \in \mathbb{N}}$ Markov chain

Embedding Discrete Dynamics

Convergence of Dynamics

Repeated Interactions

For all k,

$$\widetilde{T}^k(x,y) = (X_k(y), heta^k(y)), ext{ with } X_0 = x$$

Introduction of the time step h, $U \to U^{(h)}, (X_n)_{n \in \mathbb{N}} \to (X^{(h)}_{nh})_{n \in \mathbb{N}}$

$$(\widetilde{T}^{(h)})^k(x,y) = (X^{(h)}_{kh}(y), (\theta^{(h)})^k(y)),$$

where $X_0^{(h)} = x$ et $\theta^{(h)}(y_{nh}) = (y_{(n+1)h})$.

Embedding Discrete Dynamics

Convergence of Dynamics

Repeated Interactions

For all k,

$$\widetilde{\mathcal{T}}^k(x,y) = (X_k(y), \theta^k(y)), \text{ with } X_0 = x$$

Introduction of the time step *h*, $U \rightarrow U^{(h)}, (X_n)_{n \in \mathbb{N}} \rightarrow (X^{(h)}_{nh})_{n \in \mathbb{N}}$ $(\widetilde{T}^{(h)})^k(x, y) = (X^{(h)}_{kh}(y), (\theta^{(h)})^k(y)),$ where $X^{(h)}_0 = x$ et $\theta^{(h)}(y_{nh}) = (y_{(n+1)h}).$

Embedding Discrete Dynamics

Convergence of Dynamics

Harmonic Interaction

- Particule of mass 1 interacting with an other one according to a harmonic interaction
- Hamiltonian for the whole system

$$H\left[\left(\begin{array}{c}Q_{1}\\P_{1}\end{array}\right),\left(\begin{array}{c}Q_{2}\\P_{2}\end{array}\right)\right]=\underbrace{\frac{P_{1}^{2}}{2}+\frac{Q_{1}^{2}}{2}}_{H_{1}}+\underbrace{\frac{P_{2}^{2}}{2}+\frac{Q_{2}^{2}}{2}}_{H_{2}}\underbrace{-Q_{2}Q_{1}}_{Interaction}$$

• Evolution of the particule 1

$$\begin{cases} Q_{1}(t) = & \frac{P_{1}(0) + P_{2}(0)}{2}t + \frac{Q_{1}(0) + Q_{2}(0)}{2} \\ & + \frac{Q_{1}(0) - Q_{2}(0)}{2}\cos(\sqrt{2}t) + \frac{P_{1}(0) - P_{2}(0)}{2\sqrt{2}}\sin(\sqrt{2}t) \\ P_{1}(t) = & \frac{P_{1}(0) + P_{2}(0)}{2} - \frac{Q_{1}(0) - Q_{2}(0)}{\sqrt{2}}\sin(\sqrt{2}t) \\ & + \frac{P_{1}(0) - P_{2}(0)}{2}\cos(\sqrt{2}t) \end{cases}$$

Embedding Discrete Dynamics

Convergence of Dynamics

Harmonic Interaction - Repeated Interactions

- System $S = \mathbb{R}^2$, Environment $\widetilde{E}^{(h)} = (\mathbb{R}^2)^{h\mathbb{N}^*}$
- Evolution of the system

$$egin{aligned} Q_1((n+1)h) &= & Q_1(nh) + hP_1(nh) \ &+ h^2 rac{Q_2((n+1)h) - Q_1(nh)}{2} \ &- h^3 rac{(P_1(nh) - P_2((n+1)h))}{6} + \circ(h^3) \end{aligned}$$

$$P_1((n+1)h) = P_1(nh) + h(Q_2((n+1)h) - Q_1(nh)) \\ + h^2 \frac{P_2((n+1)h) - P_1(nh)}{2} \\ + h^3 \frac{Q_1(nh) - Q_2((n+1)h)}{3} + \circ(h^3)$$

Embedding Discrete Dynamics

Convergence of Dynamics

Continuous Time

Let x be in ℝ^m, (X^x_t) the solution of the stochastic differential equation (SDE)

$$dX_t = b(X_t) \, dt + \sigma(X_t) \, dW_t$$

where $X_0 = x$, (W_t) a *d*-dimensional Brownian Motion, $b: \mathbb{R}^m \longrightarrow \mathbb{R}^m$ and $\sigma: \mathbb{R}^m \longrightarrow \mathcal{M}_{m,d}(\mathbb{R})$ measurable

- Uniqueness and existence :
 - b, σ Lipschitz functions
 - b, σ linear growth condition

 $\exists K > 0 / \forall X \in \mathbb{R}^m$,

 $|b(X)| \leq K(1+|X|), \quad \|\sigma(X)\| \leq K(1+|X|)$

- Aim : Find an environment and a dynamical system (a semigroup) which allow to « dilate »the solution of the SDE
- Environment : $(\Omega, \mathcal{F}, \mathbb{P})$ Wiener space associated to (W_t) ,

 $\Omega = \left\{ \omega \text{ continuous function from } \mathbb{R}_+ \text{ to } \mathbb{R}^d \text{ such that } \omega(0) = 0 \right\}$

- For all t, for all ω , $W_t(\omega) = \omega(t)$
- Shift θ_t on Ω ,

$$\theta_t(\omega)(s) = \omega(t+s) - \omega(t)$$

Theorem

The family $(\mathcal{T}_t)_{t\in\mathbb{R}_+}$ of applications from $\mathbb{R}^m \times \Omega$ to $\mathbb{R}^m \times \Omega$ defined by

$$T_t(x,\omega) = (X_t^{\times}(\omega), \theta_t(\omega))$$

is a continuous time dynamical system.

Question : Can we obtain a continuous time dynamical system as limit of discrete dynamics?

Problems : - Dynamical systems defined on different spaces

- Dynamics in discrete and continuous time
- Convergence?

Theorem

The family $(\mathcal{T}_t)_{t\in\mathbb{R}_+}$ of applications from $\mathbb{R}^m \times \Omega$ to $\mathbb{R}^m \times \Omega$ defined by

$$T_t(x,\omega) = (X_t^{\times}(\omega), \theta_t(\omega))$$

is a continuous time dynamical system.

Question : Can we obtain a continuous time dynamical system as limit of discrete dynamics?

Problems : - Dynamical systems defined on different spaces - Dynamics in discrete and continuous time - Convergence ?

Theorem

The family $(\mathcal{T}_t)_{t\in\mathbb{R}_+}$ of applications from $\mathbb{R}^m \times \Omega$ to $\mathbb{R}^m \times \Omega$ defined by

$$T_t(x,\omega) = (X_t^{\times}(\omega), \theta_t(\omega))$$

is a continuous time dynamical system.

Question : Can we obtain a continuous time dynamical system as limit of discrete dynamics?

Problems : - Dynamical systems defined on different spaces

- Dynamics in discrete and continuous time
- Convergence?

Embedding Discrete Dynamics

Convergence of Dynamics

Environment

- $S = \mathbb{R}^m$
- $E^{h\mathbb{N}^*} = (\mathbb{R}^d)^{h\mathbb{N}^*}$,
 - « Injection » :
- $\varphi_l^{(h)}: (\mathbb{R}^d)^{h\mathbb{N}^*} \longrightarrow \Omega$

$$arphi_{I}^{(h)}(y)(t) = \sum_{n=0}^{\lfloor t/h
floor} y_{nh} + rac{t - \lfloor t/h
floor h}{h} y_{(\lfloor t/h
floor + 1)h}$$

- « Projection » : $\varphi_P^{(h)}: \Omega \longrightarrow (\mathbb{R}^d)^{h\mathbb{N}^*}$

 $\varphi_P^{(h)}(\omega) = (W_{nh}(\omega) - W_{(n-1)h}(\omega))_{n \in \mathbb{N}^*}$

TT

Embedding Discrete Dynamics •**0**000

Environment

_

•
$$S = \mathbb{R}^{m}$$

• $E^{h\mathbb{N}^{*}} = (\mathbb{R}^{d})^{h\mathbb{N}^{*}},$
- « Injection » : $\varphi_{I}^{(h)} : (\mathbb{R}^{d})^{h\mathbb{N}^{*}} \longrightarrow \Omega$
 $\varphi_{I}^{(h)}(y)(t) = \sum_{n=0}^{\lfloor t/h \rfloor} y_{nh} + \frac{t - \lfloor t/h \rfloor h}{h} y_{(\lfloor t/h \rfloor + 1)h}$

- « Projection » : $\varphi_P^{(h)}: \Omega \longrightarrow (\mathbb{R}^d)^{h\mathbb{N}^*}$

$$\varphi_P^{(h)}(\omega) = (W_{nh}(\omega) - W_{(n-1)h}(\omega))_{n \in \mathbb{N}^*}$$

Embedding Discrete Dynamics

Convergence of Dynamics

Environment

• Rem :
$$\varphi_P^{(h)} \circ \varphi_I^{(h)} = Id \Rightarrow \Omega^{(h)} = \varphi_I^{(h)}((\mathbb{R}^d)^{h\mathbb{N}^*}) \cong (\mathbb{R}^d)^{h\mathbb{N}^*}$$

• Is the space $\Omega^{(h)}$ suitable?

 Ω is endowed with its canonical metric D defined by

$$D(\omega, \omega') = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\sup_{0 \le t \le n} |\omega(t) - \omega'(t)|}{1 + \sup_{0 \le t \le n} |\omega(t) - \omega'(t)|}$$

_emma

For all ω in Ω ,

$$\lim_{h\to 0} D(\omega, \varphi_I^{(h)} \circ \varphi_P^{(h)}(\omega)) = 0.$$

Embedding Discrete Dynamics

Convergence of Dynamics

Environment

- Rem : $\varphi_P^{(h)} \circ \varphi_I^{(h)} = Id \Rightarrow \Omega^{(h)} = \varphi_I^{(h)}((\mathbb{R}^d)^{h\mathbb{N}^*}) \cong (\mathbb{R}^d)^{h\mathbb{N}^*}$
- Is the space $\Omega^{(h)}$ suitable?

 Ω is endowed with its canonical metric D defined by

$$D(\omega,\omega') = \sum_{n=1}^{\infty} \frac{1}{2^n} \quad \frac{\sup_{0 \le t \le n} |\omega(t) - \omega'(t)|}{1 + \sup_{0 \le t \le n} |\omega(t) - \omega'(t)|}$$

_emma

For all ω in Ω ,

$$\lim_{h\to 0} D(\omega, \varphi_I^{(h)} \circ \varphi_P^{(h)}(\omega)) = 0.$$

Embedding Discrete Dynamics

Convergence of Dynamics

Environment

- Rem : $\varphi_P^{(h)} \circ \varphi_I^{(h)} = Id \Rightarrow \Omega^{(h)} = \varphi_I^{(h)}((\mathbb{R}^d)^{h\mathbb{N}^*}) \cong (\mathbb{R}^d)^{h\mathbb{N}^*}$
- Is the space $\Omega^{(h)}$ suitable?

 Ω is endowed with its canonical metric D defined by

$$D(\omega,\omega') = \sum_{n=1}^{\infty} rac{1}{2^n} \quad rac{\sup\limits_{0 \le t \le n} |\omega(t) - \omega'(t)|}{1 + \sup\limits_{0 \le t \le n} |\omega(t) - \omega'(t)|}$$

Lemma

For all ω in Ω ,

$$\lim_{h\to 0} D(\omega, \varphi_I^{(h)} \circ \varphi_P^{(h)}(\omega)) = 0.$$

Embedding Discrete Dynamics

Convergence of Dynamics

Construction of Continuous Dynamics on the same space

• Construction of dynamical system on $\mathbb{R}^m imes \Omega$

$$\Phi_I^{(h)} = (Id, \varphi_I^{(h)}) \text{ et } \Phi_P^{(h)} = (Id, \varphi_P^{(h)})$$
$$\overline{T}^{(h)} = \Phi_I^{(h)} \circ \widetilde{T}^{(h)} \circ \Phi_P^{(h)}$$

• Continuity of dynamics

$$\bar{T}_t^{(h)} = (\bar{T}^{(h)})^{\lfloor t/h \rfloor} + \frac{t - \lfloor t/h \rfloor h}{h} \left\{ (\bar{T}^{(h)})^{(\lfloor t/h \rfloor + 1)} - (\bar{T}^{(h)})^{\lfloor t/h \rfloor} \right\}$$

• For all initial state x, $\overline{T}_t^{(h)}(x,\omega) = (\overline{X}_t^{(h)}(\varphi_P^{(h)}(\omega)), \overline{\theta}_t^{(h)}(\omega)),$ where $\overline{X}_0^{(h)} = x$

Embedding Discrete Dynamics

Convergence of Dynamics

Construction of Continuous Dynamics on the same space

• Construction of dynamical system on $\mathbb{R}^m imes \Omega$

$$\Phi_I^{(h)} = (Id, \varphi_I^{(h)}) \text{ et } \Phi_P^{(h)} = (Id, \varphi_P^{(h)})$$
$$\overline{T}^{(h)} = \Phi_I^{(h)} \circ \widetilde{T}^{(h)} \circ \Phi_P^{(h)}$$

• Continuity of dynamics

$$\bar{\mathcal{T}}_t^{(h)} = (\bar{\mathcal{T}}^{(h)})^{\lfloor t/h \rfloor} + \frac{t - \lfloor t/h \rfloor h}{h} \left\{ (\bar{\mathcal{T}}^{(h)})^{(\lfloor t/h \rfloor + 1)} - (\bar{\mathcal{T}}^{(h)})^{\lfloor t/h \rfloor} \right\}$$

• For all initial state x, $\overline{T}_t^{(h)}(x,\omega) = (\overline{X}_t^{(h)}(\varphi_P^{(h)}(\omega)), \overline{\theta}_t^{(h)}(\omega)),$ where $\overline{X}_0^{(h)} = x$

Embedding Discrete Dynamics

Convergence of Dynamics

Construction of Continuous Dynamics on the same space

• Construction of dynamical system on $\mathbb{R}^m imes \Omega$

$$\Phi_I^{(h)} = (Id, \varphi_I^{(h)}) \text{ et } \Phi_P^{(h)} = (Id, \varphi_P^{(h)})$$
$$\overline{T}^{(h)} = \Phi_I^{(h)} \circ \widetilde{T}^{(h)} \circ \Phi_P^{(h)}$$

• Continuity of dynamics

$$\bar{T}_t^{(h)} = (\bar{T}^{(h)})^{\lfloor t/h \rfloor} + \frac{t - \lfloor t/h \rfloor h}{h} \left\{ (\bar{T}^{(h)})^{(\lfloor t/h \rfloor + 1)} - (\bar{T}^{(h)})^{\lfloor t/h \rfloor} \right\}$$

• For all initial state x, $\overline{T}_t^{(h)}(x,\omega) = (\overline{X}_t^{(h)}(\varphi_P^{(h)}(\omega)), \overline{\theta}_t^{(h)}(\omega))$, where $\overline{X}_0^{(h)} = x$

Embedding Discrete Dynamics

Convergence of Dynamics

Harmonic Interaction

- State of environment are sampled from $(W_{nh} W_{(n-1)h})$, where (W_t) is a 2-dimensional Brownian motion.
- Reinforcement of interactions • Understanding of this factor $\frac{1}{h}$: * $\frac{1}{\sqrt{h}}$ to obtain state of the environment independent of h * $\frac{1}{\sqrt{h}}$ real renormalization of interactions

Embedding Discrete Dynamics

Convergence of Dynamics

Harmonic Interaction

- State of environment are sampled from $(W_{nh} W_{(n-1)h})$, where (W_t) is a 2-dimensional Brownian motion.
- Reinforcement of interactions Values of $\begin{pmatrix} Q_2 \\ P_2 \end{pmatrix}$ sampled from $\frac{1}{h}(W_{nh} - W_{(n-1)h})$. • Understanding of this factor $\frac{1}{h}$: * $\frac{1}{\sqrt{h}}$ to obtain state of the environment independent of h (physically, sampled from $\frac{e^{-H_2}}{7}$) * $\frac{1}{\sqrt{h}}$ real renormalization of interactions

Embedding Discrete Dynamics

Convergence of Dynamics

Harmonic Interaction

Evolution of the system given by the Markov chain (X_{nh}) defined by

$$X(nh) = U^{(h)}(X((n-1)h), Y(nh))$$

where

$$U^{(h)}(X,Y) = X + \sigma(X)Y + hb(X) + h\eta^{(h)}(X,Y)$$

with

$$b\left(\begin{array}{c}Q_1\\P_1\end{array}\right)=\left(\begin{array}{c}P_1\\-Q_1\end{array}\right),\quad \sigma\left(\begin{array}{c}Q_1\\P_1\end{array}\right)=\left(\begin{array}{c}0&0\\1&0\end{array}\right)$$

et

$$\eta^{(h)}\left[\left(\begin{array}{c}Q_1\\P_1\end{array}\right),\left(\begin{array}{c}Q_2\\P_2\end{array}\right)\right]=\frac{1}{2}\left(\begin{array}{c}Q_2\\P_2\end{array}\right)-\frac{h}{2}\left(\begin{array}{c}Q_1-P_2/3\\P_1+2Q_2/3\end{array}\right)+\circ(h)$$

Embedding Discrete Dynamics

Convergence of Dynamics

Convergence of Shift

• D metric on Ω

$$D(\omega,\omega') = \sum_{n=1}^{\infty} \frac{1}{2^n} \quad \frac{\sup_{0 \le t \le n} |\omega(t) - \omega'(t)|}{1 + \sup_{0 \le t \le n} |\omega(t) - \omega'(t)|}$$

Theorem (*J. D.*)

Let ω be a function in Ω . For all $t \in \mathbb{R}_+$,

h

$$\lim_{t\to 0} \quad D\left(\theta_t(\omega), \bar{\theta}_t^{(h)}(\omega)\right) = 0.$$

Convergence of Processes

Theorem (J. D.)

Suppose that there exist :

- b, σ Lipschitz and linearly bounded applications

- $\eta^{(h)}$ where, for a $lpha \in [0, +\infty]$, $\left|\eta^{(h)}(x, y)\right| \le K(h^{lpha} |x| + |y|)$ such that,

$$U^{(h)}(x,y) = x + \sigma(x)y + hb(x) + h\eta^{(h)}(x,y).$$

Then, for all x_0 in \mathbb{R}^m , and all $\tau > 0$, the process (\bar{X}_t^h) , starting in x_0 , converges to $(X_t^{x_0})$ when h tends to 0 in L^{2p} , for all $p \ge 1$, and almost surely on $[0, \tau]$, where $(X_t^{x_0})$ is the solution of the SDE

$$dX_t^{x_0} = b(X_t^{x_0}) dt + \sigma(X_t^{x_0}) dW_t,$$

starting in $X_t^{x_0} = x_0$.

Embedding Discrete Dynamics

Convergence of Dynamics

Harmonic Interaction

Evolution of the system given by the Markov chain (X_{nh}) defined by

$$X(nh) = U^{(h)}(X((n-1)h), Y(nh))$$

where

$$U^{(h)}(X,Y) = X + \sigma(X)Y + hb(X) + h\eta^{(h)}(X,Y)$$

with

$$b\left(\begin{array}{c}Q_1\\P_1\end{array}\right)=\left(\begin{array}{c}P_1\\-Q_1\end{array}\right),\quad \sigma\left(\begin{array}{c}Q_1\\P_1\end{array}\right)=\left(\begin{array}{c}0&0\\1&0\end{array}\right)$$

et

$$\eta^{(h)}\left[\left(\begin{array}{c}Q_1\\P_1\end{array}\right),\left(\begin{array}{c}Q_2\\P_2\end{array}\right)\right]=\frac{1}{2}\left(\begin{array}{c}Q_2\\P_2\end{array}\right)-\frac{h}{2}\left(\begin{array}{c}Q_1-P_2/3\\P_1+2Q_2/3\end{array}\right)+\circ(h)$$

Embedding Discrete Dynamics

Convergence of Dynamics

Harmonic Interaction

• Theorem, with $\alpha = 1 \Rightarrow$ For all initial conditions Q_0 , P_0 and for all $\tau > 0$, the limit evolution on $[0, \tau]$ is given by the solution of the SDE

$$dX_t = \begin{pmatrix} X_t^2 \\ -X_t^1 \end{pmatrix} dt + \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} dW_t,$$

with the notation $X_t = \begin{pmatrix} X_t^1 \\ X_t^2 \end{pmatrix}$ and the initial condition
 $X_0 = \begin{pmatrix} Q_0 \\ P_0 \end{pmatrix}.$

Embedding Discrete Dynamics

Convergence of Dynamics

Sketch of Proof

- Stochastic numerical analysis
 - Markov chain $(X^h_{nh})_{n\in\mathbb{N}}$ defined by

$$\begin{aligned} X^{h}_{(n+1)h} &= X^{h}_{nh} + hb(X^{h}_{nh}) + \sigma(X^{h}_{nh})(W_{(n+1)h} - W_{nh}) \\ &+ h\eta^{(h)}(X^{h}_{nh}, W_{(n+1)h} - W_{nh}) \,, \end{aligned}$$

with $X_0^h = X_0$.

- Linear Interpolation

$$X_{t}^{h} = X_{\lfloor t/h \rfloor h}^{h} + \frac{t - \lfloor t/h \rfloor h}{h} \Big\{ X_{(\lfloor t/h \rfloor + 1)h}^{h} - X_{\lfloor t/h \rfloor h}^{h} \Big\}$$

Embedding Discrete Dynamics

Convergence of Dynamics

Sketch of Proof

• If
$$p\geq 1$$
, $\mathbb{E}(|X_0|^{2p})<\infty$,

Lemma

For all $t \in [0, \tau]$, the solution X_t of the SDE verifies the inequality

$$\mathbb{E}(|X_t|^{2p}) \leq (1 + \mathbb{E}(|X_0|^{2p}))e^{Ct}$$
.

Lemma

For all $t \in [0, \tau]$, the process X_t^h verifies the inequality

$$\mathbb{E}(\left|X_t^h\right|^{2p}) \leq C_0(1 + \mathbb{E}(\left|X_0^h\right|^{2p}))e^{C_1t}$$

Embedding Discrete Dynamics

Convergence of Dynamics

Sketch of Proof

- Upper bound on $\epsilon_t = X_t X_t^h$ for all t:
 - Control over ϵ_t according to $\epsilon_{\mid t/h \mid h}$
 - Bound the evolution of the sequence $(\epsilon_{nh})_{n\in\mathbb{N}}$

Theorem (J. D.)

Under the previous conditions,

$$\mathbb{E}(\sup_{t\in[0,\tau]}\left|X_t-X_t^h\right|^{2p})\leq C(h^{2p\alpha}+h^p(-\log h)^p)$$

• If p > 1 and $2p\alpha > 1 \Rightarrow$ almost sure convergence.