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Introduction

Context : System + Environment
Ex : Object in contact with some thermal baths, charged
particule...

Quantum Mechanics (Attal, Pautrat)⇒ Repeated Interactions

Questions : - Limit evolution of the system ?
- Renormalization in Hamiltonian cases ?
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Discrete Time

Dynamical System T̂ measurable application on S × E

measurable ⇒ T on L∞(S × E ),

Tg(x , y) = g(T̂ (x , y))

Point of view of S

- f ∈ L∞(S)⇒ f ⊗ 1 ∈ L∞(S × E ),

f ⊗ 1(x , y) = f (x)

- E is endowed with a probability measure µ

Assumption : What the system S sees from the whole
dynamics on S × E is an average on E along the probability
measure µ.
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Discrete Time

∀f ∈ L∞(S), ∀x ∈ E

Lf (x) =

∫
E

T (f ⊗ 1)(x , y) dµ(y)

Question : What really is the operator L ?



Dynamical Systems - Markov Processes Embedding Discrete Dynamics Convergence of Dynamics

Discrete Time

∀f ∈ L∞(S), ∀x ∈ E

Lf (x) =

∫
E

T (f ⊗ 1)(x , y) dµ(y)

Question : What really is the operator L ?



Dynamical Systems - Markov Processes Embedding Discrete Dynamics Convergence of Dynamics

Discrete Time

Theorem
There exists a Markov transition kernel Π such that L is of the
form

Lf (x) =

∫
S

f (z) Π(x , dz) ,

for all f ∈ L∞(S).
Conversely, if S is a Lusin space and Π is any Markov transition
kernel on S , then there exist a probability space (E , E , µ) and
a dynamical system T̂ on S × E such that the operator

Lf (x) =

∫
S

f (z) Π(x , dz) ,

is of the form

Lf (x) =

∫
E

T (f ⊗ 1)(x , y) dµ(y) .



Dynamical Systems - Markov Processes Embedding Discrete Dynamics Convergence of Dynamics

Discrete Time

Theorem
There exists a Markov transition kernel Π such that L is of the
form

Lf (x) =

∫
S

f (z) Π(x , dz) ,

for all f ∈ L∞(S).
Conversely, if S is a Lusin space and Π is any Markov transition
kernel on S , then there exist a probability space (E , E , µ) and
a dynamical system T̂ on S × E such that the operator

Lf (x) =

∫
S

f (z) Π(x , dz) ,

is of the form

Lf (x) =

∫
E

T (f ⊗ 1)(x , y) dµ(y) .



Dynamical Systems - Markov Processes Embedding Discrete Dynamics Convergence of Dynamics

Repeated Interactions

Pb : Not a commuting diagram for all powers.

- T̂ : S × E −→ S × E
(x , y) 7−→ (U(x , y),V (x , y))

Scheme of repeated interactions

Ẽ = EN∗
, Ẽ product σ-algebra, µ̃ = µ⊗N

∗

T̃ : S × Ẽ −→ S × Ẽ
(x , y = (yn)n∈N∗) 7−→ (U(x , y1), θ(y))

where θ(y) = (yn+1)n∈N∗ is the shift.
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Repeated Interactions

T induced by T̃ on applications

Theorem
For all m in N∗, all x in S , and all f in L∞(S),

(Lmf )(x) =

∫
Ẽ

Tm(f ⊗ 1)(x , y)d µ̃(y) .

Initial state X0 = x of the system
- State of the environment y ⇒ Xn+1(y) = U(Xn(y), yn+1)

- State of the environment unknown ⇒ (Xn)n∈N Markov chain
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Repeated Interactions

For all k ,

T̃ k(x , y) = (Xk(y), θk(y)) , with X0 = x

Introduction of the time step h,
U → U(h), (Xn)n∈N → (X (h)

nh )n∈N

(T̃ (h))k(x , y) = (X (h)
kh (y), (θ(h))k(y)) ,

where X (h)
0 = x et θ(h)(ynh) = (y(n+1)h).
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Harmonic Interaction

Particule of mass 1 interacting with an other one according to
a harmonic interaction
Hamiltonian for the whole system

H
[(

Q1
P1

)
,

(
Q2
P2

)]
=

P2
1
2

+
Q2

1
2︸ ︷︷ ︸

H1

+
P2

2
2

+
Q2

2
2︸ ︷︷ ︸

H2

−Q2Q1︸ ︷︷ ︸
Interaction

Evolution of the particule 1
Q1(t) = P1(0)+P2(0)

2 t + Q1(0)+Q2(0)
2

+Q1(0)−Q2(0)
2 cos(

√
2t) + P1(0)−P2(0)

2
√

2
sin(
√
2t)

P1(t) = P1(0)+P2(0)
2 − Q1(0)−Q2(0)√

2
sin(
√
2t)

+P1(0)−P2(0)
2 cos(

√
2t)
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Harmonic Interaction - Repeated Interactions

System S = R2, Environment Ẽ (h) = (R2)hN∗

Evolution of the system

Q1((n + 1)h) = Q1(nh) + hP1(nh)

+h2 Q2((n + 1)h)− Q1(nh)

2
−h3 (P1(nh)− P2((n + 1)h))

6
+ ◦(h3)

P1((n + 1)h) = P1(nh) + h(Q2((n + 1)h)− Q1(nh))

+h2 P2((n + 1)h)− P1(nh)

2
+h3 Q1(nh)− Q2((n + 1)h)

3
+ ◦(h3)
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Continuous Time

Let x be in Rm, (X x
t ) the solution of the stochastic differential

equation (SDE)

dXt = b(Xt) dt + σ(Xt) dWt

where X0 = x , (Wt) a d -dimensional Brownian Motion,
b : Rm −→ Rm and σ : Rm −→Mm,d (R) measurable
Uniqueness and existence :
- b, σ Lipschitz functions
- b, σ linear growth condition

∃K > 0/∀X ∈ Rm,

|b(X )| ≤ K (1 + |X |), ‖σ(X )‖ ≤ K (1 + |X |)
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Continuous Time

Aim : Find an environment and a dynamical system (a
semigroup) which allow to « dilate »the solution of the SDE
Environment : (Ω,F ,P) Wiener space associated to (Wt),

Ω =
{
ω continuous function from R+ to Rd such that ω(0) = 0

}
For all t, for all ω, Wt(ω) = ω(t)

Shift θt on Ω,

θt(ω)(s) = ω(t + s)− ω(t)



Dynamical Systems - Markov Processes Embedding Discrete Dynamics Convergence of Dynamics

Continuous Time

Theorem
The family (Tt)t∈R+ of applications from Rm × Ω to Rm × Ω
defined by

Tt(x , ω) = (X x
t (ω), θt(ω))

is a continuous time dynamical system.

Question : Can we obtain a continuous time dynamical system as
limit of discrete dynamics ?

Problems : - Dynamical systems defined on different spaces
- Dynamics in discrete and continuous time
- Convergence ?
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Environment

S = Rm

EhN∗
= (Rd )hN∗

,
- « Injection » : ϕ

(h)
I : (Rd )hN∗ −→ Ω

ϕ
(h)
I (y)(t) =

bt/hc∑
n=0

ynh +
t − bt/hch

h
y(bt/hc+1)h

- « Projection » : ϕ
(h)
P : Ω −→ (Rd )hN∗

ϕ
(h)
P (ω) = (Wnh(ω)−W(n−1)h(ω))n∈N∗
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Environment

Rem : ϕ(h)
P ◦ ϕ

(h)
I = Id ⇒ Ω(h) = ϕ

(h)
I ((Rd )hN∗

) ∼= (Rd )hN∗

Is the space Ω(h) suitable ?

Ω is endowed with its canonical metric D defined by

D(ω, ω′) =
∞∑

n=1

1
2n

sup
0≤t≤n

|ω(t)− ω′(t)|

1 + sup
0≤t≤n

|ω(t)− ω′(t)|

Lemma
For all ω in Ω,

lim
h→0

D(ω, ϕ
(h)
I ◦ ϕ

(h)
P (ω)) = 0 .
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Construction of Continuous Dynamics on the same space

Construction of dynamical system on Rm × Ω

Φ
(h)
I = (Id , ϕ(h)

I ) et Φ
(h)
P = (Id , ϕ(h)

P )

T̄ (h) = Φ
(h)
I ◦ T̃ (h) ◦ Φ

(h)
P

Continuity of dynamics

T̄ (h)
t = (T̄ (h))bt/hc+

t − bt/hch
h

{
(T̄ (h))(bt/hc+1)−(T̄ (h))bt/hc

}

For all initial state x , T̄ (h)
t (x , ω) = (X̄ (h)

t (ϕ
(h)
P (ω)), θ̄

(h)
t (ω)),

where X̄ (h)
0 = x
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Harmonic Interaction

State of environment are sampled from (Wnh −W(n−1)h),
where (Wt) is a 2-dimensional Brownian motion.

Reinforcement of interactions

Values of
(

Q2
P2

)
sampled from

1
h

(Wnh −W(n−1)h).

Understanding of this factor
1
h
:

*
1√
h
to obtain state of the environment independent of h

(physically, sampled from
e−H2

Z
)

*
1√
h
real renormalization of interactions
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Harmonic Interaction

Evolution of the system given by the Markov chain (Xnh) defined by

X (nh) = U(h)(X ((n − 1)h),Y (nh))

where

U(h)(X ,Y ) = X + σ(X )Y + hb(X ) + hη(h)(X ,Y )

with

b
(

Q1
P1

)
=

(
P1
−Q1

)
, σ

(
Q1
P1

)
=

(
0 0
1 0

)
et

η(h)
[(

Q1
P1

)
,

(
Q2
P2

)]
=

1
2

(
Q2
P2

)
−h
2

(
Q1 − P2/3
P1 + 2Q2/3

)
+◦(h)
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Convergence of Shift

D metric on Ω

D(ω, ω′) =
∞∑

n=1

1
2n

sup
0≤t≤n

|ω(t)− ω′(t)|

1 + sup
0≤t≤n

|ω(t)− ω′(t)|

Theorem (J. D.)

Let ω be a function in Ω. For all t ∈ R+,

lim
h→0

D (θt(ω), θ̄
(h)
t (ω)) = 0 .
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Convergence of Processes

Theorem (J. D.)

Suppose that there exist :
- b, σ Lipschitz and linearly bounded applications
- η(h) where, for a α ∈ [0,+∞],

∣∣η(h)(x , y)
∣∣ ≤ K (hα |x |+ |y |)

such that,

U(h)(x , y) = x + σ(x)y + hb(x) + hη(h)(x , y) .

Then,for all x0 in Rm, and all τ > 0, the process (X̄ h
t ), starting in

x0, converges to (X x0
t ) when h tends to 0 in L2p, for all p ≥ 1, and

almost surely on [0, τ ], where (X x0
t ) is the solution of the SDE

dX x0
t = b(X x0

t ) dt + σ(X x0
t ) dWt ,

starting in X x0
t = x0.
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Harmonic Interaction
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Harmonic Interaction

Theorem, with α = 1 ⇒ For all initial conditions Q0, P0 and
for all τ > 0, the limit evolution on [0, τ ] is given by the
solution of the SDE

dXt =

(
X 2

t
−X 1

t

)
dt +

(
0 0
1 0

)
dWt ,

with the notation Xt =

(
X 1

t
X 2

t

)
and the initial condition

X0 =

(
Q0
P0

)
.
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Sketch of Proof

Stochastic numerical analysis

- Markov chain (X h
nh)n∈N defined by

X h
(n+1)h = X h

nh + hb(X h
nh)+σ(X h

nh)(W(n+1)h −Wnh)

+hη(h)(X h
nh,W(n+1)h −Wnh) ,

with X h
0 = X0.

- Linear Interpolation

X h
t = X h

bt/hch +
t − bt/hch

h

{
X h
(bt/hc+1)h − X h

bt/hch

}
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Sketch of Proof

If p ≥ 1, E(|X0|2p) <∞,

Lemma
For all t ∈ [0, τ ], the solution Xt of the SDE verifies the inequality

E(|Xt |2p) ≤ (1 + E(|X0|2p))eCt .

Lemma

For all t ∈ [0, τ ], the process X h
t verifies the inequality

E(
∣∣∣X h

t

∣∣∣2p
) ≤ C0(1 + E(

∣∣∣X h
0

∣∣∣2p
))eC1t .
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Sketch of Proof

Upper bound on εt = Xt − X h
t for all t :

- Control over εt according to εbt/hch

- Bound the evolution of the sequence (εnh)n∈N

Theorem (J. D.)

Under the previous conditions,

E( sup
t∈[0,τ ]

∣∣∣Xt − X h
t

∣∣∣2p
) ≤ C (h2pα + hp(− log h)p)

If p > 1 and 2pα > 1 ⇒ almost sure convergence.
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