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Outline

The Landau-Zener model



A motivating example: Landau-Zener tunnelling
The Hamiltonian case

H(s) :%)? & onC?  (X(s)=(s,0,A))

S . » eigenvalues
ST e+(s) = £|X(s)|/2
T S » eigenprojections
g RN P.(s) — (1+0x)/2, (s — +o0)

- e_(s)

H(s) is general form of single-parameter avoided crossing



Landau-Zener: Hamiltonian case (cont.)

» scaled time s = «t:

or
ey =H(s)y (" =d/ds)
» initial state: spin down
(1¥(s),P+(s)¥(s)) =0 (s — —o0)
» tunnelling probability
(1(s),P(s)u(s)) = T (s — +o0)
» Landau, Zener (1932)

T = e—7rA2/26

(exponentially small in e — 0).



Adiabatic tunnelling: Hamiltonian case
More generally, let o(H(s))

» H(s) smooth : :

» H(s) (or PL(s)) constant :\ﬁ:
near s = +oo, e.g. at : \ﬁ:
S = Sg, S1. J L e(s)

|
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Then:

T(s,s0) =0O(¢?) (s generic)
At intermediate times s, “down” state contains a coherent
admixture O(¢) of the “up” state.

>
T(Sl,So) = O(En) (n =1,2,.. )



Adiabatic tunnelling: Hamiltonian case
More generally, let o(H(s))

» H(s) smooth : :

» H(s) (or PL(s)) constant :\ﬁ:
near s = +oo, e.g. at : \ﬁ:
S = Sg, S1. J L e(s)

|
| |
So S1 S

Then:

T(s,s0) =0O(¢?) (s generic)
At intermediate times s, “down” state contains a coherent
admixture O(¢) of the “up” state.
| 4
T(Sl,So) :O(En) (n = 1,2,...)

Essentially no memory is retained at the end: tunnelling is
reversible.



Lindblad evolution
System coupled to Bath: Evolution of a mixed state p = pg

p— di(p) = tr (Ut(p ® pg)Uy)
with joint unitary evolution U; (Uis = UiUsg)
Properties:

| tr¢t(p) = '[r'p
» ¢; completely positive

> Pris = Pt 0 Ps
» approximately, if time scales of Bath < time scales of
System
» exactly, if bath is white noise
Generator: d
= deo B
dt t=0

Theorem (Lindblad, Sudarshan-Kossakowski-Gorini 1976)
The general form of the generator is

L(p) = ~i[H. pl + 5 > (2Fapl — Talap = pTiTa)

«



Dephasing Lindbladians

L{p) = ~i[H,pl + 5 EO;(ZFapFa — T Fap—plala)
with
M0, P]=0 forH=> &P
i

Then L(P;) = 0, resp. ¢:(P;) = P;: Like in the Hamiltonian
case, eigenstates P; are invariant.
Example: 2-level system

L(p) = —i[H, p] = y(P-pP+ +PpP_) (v =0)

Evolution turns coherent into incoherent superpositions within a
time ~ y~1. Is a model for measurement of H.
Application: Nuclear magnetic resonance



Dephasing 2-level Lindbladian

L(s)(p) = —i[H(s), pl = 7(s)(P-(s)pP+(s) + P+(s)pP_(s))
with

» H(s) =X(s)-d/2

» y(s) >0

> X(s) with X(s) — X(£00), (s — F00).
Lindblad equation for p = p(s)

ep = L(s)(p)
Result

T= s/_oo %(S)Z’YEFS)’Y(S)Ztr(P(s)Z)dstO(sZ)

Tunnelling has memory and is irreversible.



Dephasing Landau-Zener Lindbladian
X(s) = (s,0,A):
. A2
tr(P_(s)?) = o
For ~(s) constant:
T = 75Q(1/A) +0()
T X(2+V1+x?)

C2VI2(VI+X2+ 1)

Q) —

Figure: The function Q(x). It has a maximum at x = 1.13693



Dephasing Landau-Zener Lindbladian
X(s) = (s,0,A):

_ 2
tr(P_(s)?) = %
For ~(s) constant:
T = 75Q(1/A) +0()
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Figure: The function Q(x). It has a maximum at x = 1.13693



Dephasing Landau-Zener Lindbladian
X(s) = (s,0,A):

. A2
t Pf 2 = ==
For ~(s) constant:
TE
T = 75Q(/A) +0()
Q(X)—E X(2 4+ v1+x2)
2V14+x2(V14+x2+41)2
linear at small v Zeno effect at large

Figure: The function Q(x). It has a maximum at x = 1.13693
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A guestion

Recall:

» Hamiltonian case — reversible tunnelling, oblivion
» Deph. Lindbladian case — irreversible tunnelling, memory



A guestion

Recall:

» Hamiltonian case — reversible tunnelling, oblivion
» Deph. Lindbladian case — irreversible tunnelling, memory

Question: Is there a common point of view making this evident?



The scheme

Setup:
» V linear space, finite-dimensional.

» L(s):V — V,x — L(s)x linear in x € V, smooth in
0<s<1.
Assumptions:

» 0 is an eigenvalue of L(s), isolated uniformly in s.
» V =kerL @ ranL. In particular:
» Lis invertible on ranL: L=1
» 1 =P + Q (projections), x = a + b (decomposition)
Evolution equation for x = x(s): ex = L(s)x
Parallel transport T (s,s’) : V — V with

(%T(s,s’) = [P(s),P(s)]T(s,s), T(s',s')=1

implying P(s)T(s,s’) = T(s,s’)P(s)



The theorem

i) ex = L(s)x admits solutions of the form

N
X(s) = _c"(@n(s) +bn(s)) + N (e, s)
n=0

with

> an(s) € kerL(s), bn(s) € ranL(s)

» an(0) € kerL(0), ry(e,0) € V arbitrary
i) Coefficients (n =0, 1,...):

> bo(s) =0

> an(s) =T(s,0)an(0) + [; T (s")bn(s’)ds’

> bnya(s) = L(s)H(P(s )an(S)+Q( ) on(s))

i) If L(s) generates a contraction semigroup, then ry(s,s) is
uniformly boundedins andin s, ifsoats =0



A corollary

Recall:

> bo(s) =0
> an(s) =T(s,0)an(0) + 5 T (s")bn(s’)ds’

> bnia(s) = L(s)H(P(s )an(S)+Q(S) on(s))

(Note: bg ~» ag ~ by ~ag...)

Corollary If P(s) is constant near s = sp, then

bn(so) =0, (n=0,1,2,..))
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A corollary

Recall:

> bo(s) =0
> an(s) =T(s,0)an(0) + 5 T (s")bn(s’)ds’

> bnia(s) = L(s)H(P(s )an(S)+Q(S) on(s))

(Note: bg ~» ag ~ by ~ag...)

Corollary If P(s) is constant near s = sp, then

bn(so) =0, (n=0,1,2,..))

Answer: the an’s carry the memory, the by’s don't.
Next: One result, different applications.



Appl. to Quantum Mechanics: Hamiltonian case

V =H, X =1
i) = H(s)y

e(s) : isolated, simple eigenvalue of H(s)
Set )(s) = ¥(s) exp(ie~* [°e(s')ds’) and rewrite

= = —i(H(s) - e(s))d = L(s)

with 0 isolated, simple eigenvalue of L(s).



Appl. to Quantum Mechanics: Hamiltonian case

V =H, X =1
i) = H(s)y

e(s) : isolated, simple eigenvalue of H(s)
Set )(s) = ¥(s) exp(ie~* [°e(s')ds’) and rewrite

et = —i(H(s) — e(s))i = L())

with 0 isolated, simple eigenvalue of L(s).

Tunnelling out of e(s) is motion out of ker L(s). Hence
reversible.



Appl. to QM: Dephasing Lindbladian case

V = {operators on H}, X=p, L(s) = L(s)
For simplicity dimH = 2, hence dimV = 4.

L(p) = —i[H, p| = v(P-pP4 + P4 pP_)
with v > 0 and H|¢y) = ei[¢), (i = %)
Basis of V:
Eij = [vi) (¢

In particular, P; = E;.



Appl. to QM: Dephasing Lindbladian case

V = {operators on H}, X=p, L(s) = L(s)
For simplicity dimH = 2, hence dimV = 4.

L(p) = —i[H, p| = v(P-pP4 + P4 pP_)
with v > 0 and H|¢y) = ei[¢), (i = %)
Basis of V:
Eij = i) (4]
In particular, P; = E;.
L(P)=0
L(Ei-)=(-i(e+ —e_) —7Ef—=A_Ei, Ay =M

ker £ = span(P,,P_), ranL = span(E;_,E_)

Tunnelling T (s, 0) = tr(P.(s)p(s)) for p(0) = P_(0) is motion
within ker £. Hence irreversible.



Dephasing Lindbladian case: Quantitative result
Recall: In the general scheme, solution of ex = L(s)x of the
form

X(8) = ao(s) + a1(5)+b1())+0(2)
an(s) =T(s,0)an(0) + T(ss )P (s")bn(s)ds’

bn41(s) = L(s) " (P(s)an(s) + Q(s)bn(s))

In the application x = p, ag(0

o

) =P_(0), a;(0) = 0 one obtains
ao(s) =P_(s)
ai(s) = (—P—(s) + PL(s)) ) a(s’)ds’  (loss & gain)
0
)

8) = —(A+—(8) "t + A_1(8) Htr(P1(s)P—(5)°P(8))

as claimed.
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Optimal parametrization: Statement of the problem

Family of 2-level Lindbladians parametrized by 0 < q <1

L£(a)(p) = —i[H(a), p] — v(a)(P-(a)pP+(d) + P+(a)pP-(q))

Allotted time 1/¢ to getfromgq =0to q = 1:

d =dq(s) = q(et)
with q : [0,1] — [0,1],s — q; q(0) = 0,q(1) = 1.

Tunnelling T[q] = tr(P+(s)p(s))s=1 for p(0) = P_(0)
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Question: Given ¢ > 0. Which are the parametrizations g
minimizing T[q]?



Optimal parametrization: Statement of the problem

Family of 2-level Lindbladians parametrized by 0 < q <1

L(a)(p) = —i[H(a), o] =~(a)(P-(a)pP(a) + P+ (a)pP—(a))
Allotted time 1/¢ to getfromgq =0to q = 1:
q =q(s) =q(et)
with q : [0,1] — [0,1],s — @;q(0) = 0,q(1) = 1.

Tunnelling T[q] = tr(P+(s)p(s))s=1 for p(0) = P_(0)

Question: Given ¢ > 0. Which are the parametrizations g
minimizing T[q]?

Aside: In the Hamiltonian case, for small e, minimizers (with
T[q] = 0) are ubiquitous.



Optimal parametrization: The functional

L£(a)(p) = —i[H(a), p] — v(a)(P-(a)pP+(d) + P+(a)pP-(qa))
To leading order in ¢

1 .
T[al =e/0 )z(s)zfzy(s)ztr(P(s)z)ds

with f(s) := f(q(s)) for f = X, and
p_(s)=PLAS)A(S). (= =
Functional of Lagrangian type
Tl - [ "L(a(s). 4(s), s)ds
La.6.5) = e w(P ()2

(@) +7(q)?
(weighted Fubini-Study metric)



Optimal parametrization: Results

1
Tla] = /0 L(q(s). 4(s).s)ds

L(61.6.5) = e e (P (@)

Minimizing parametrization has conserved “energy”

oL .
a—qq—L_L

Theorem The parametrization minimizes tunnelling iff it has
constant tunnelling rate.

In particular: velocity q is
» large, where gap |X(q)| is large
» small, where projection P_(q) changes rapidly
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A particular Lindbladian

A dephasing Lindbladian determined by the Hamiltonian:

| 2
oa=I, Fi*l‘i =P fOfH:ZGiPi
i

» No energy scale beyond the spectrumO=¢ey <e; < ...:

% =ei, (y =2 0)
Resulting in:

L(p) = —i[H, o] +VZei(PipPi —Pip—pPi)



Adiabatic evolution (recall)

with

ao(s) = Po(s)
ai(s) = — ) _Tj(s)(Po(s) — Pi(s))
j#0
(loss & gain; cumulated tunneling T;(s) o )
bi(s) = Z )\j_Ole po + h.c.
j#0
(Ao = —&j(i +7)



Linear response (setting)

Family of Hamiltonians H(y) with control parameters
o=(¢...,oMeM

Geometric data associated to ground state projection
P(¢) = Po(v)
» adiabatic curvature 2-form w

wu = —itr(P[0,P,0,P])

(satisfies dw = 0, hence a symplectic form if
non-degenerate)

» Fubini-Study metric g
9w = tr(0,P)(0,P)

with 9, = 9 - /Op"



Linear response (results)

Observables F, = 9,H, conjugate to ¢*. (Examples: force and
displacement, torque and angle, current and flux.)

For slowly time-dependent controls ¢(<t)

(Fpu) = tr(p(s)9,H)

=e1 7 0 Ti)e Teg ZZ s +7Gu)$" +O(%)
j#0

Remarks: No contribution from Py(s):
<Fu>0 = tr(Po(‘)uH) = (‘)u tr(PoH) = aueO =0

Similarly 9,e; = 0 if g; independent of ¢.



Generalized conductances

6 (Fu) = (Fu) — <Fu>o = fw/@zay
Hence:
f=(1+7%) (09 +)

Decomposition into dissipative (symmetric) and reactive
(antisymmetric) parts

fuw = f(uw) + f[uw]

Hence

0% 1
f(“v”) = 1 + ,72 g/“’ f[ﬂvy] = 1 _|_,72 w.U'V

both affected by dephasing.



Kahler structure

A manifold M with metric g and symplectic form w is almost
Kahler if J := g~1w (mapping vectors to vectors) is an almost
complex structure:

J2=-1

Equivalently,
wlg=-g"tw *)
M is Kahler if, in addition, M is a complex manifold w.r.t. J.

Examples: 1) CP"~1 (the rays of an n-dimensional Hilbert
space) is Kahler.

2) Manifold M > ¢ of controls: g, w are pull-backs by way of
P:M — CP"L Iff (*) holds, M is K&hler.



Generalized resistances

¢ = (f1)"s (F)
If M is Kahler, then
fl=qgt+ut
and the reactive resistance is immune to dephasing .

Indeed
f=07+1)7 00 +w)

and

(O o g +rw) =y +1+y(g wrwlg) =42 +1



Examples

The Hamiltonians of these examples have spectrum
independent of controls.
1) Harmonic oscillator

H(C ) = 5((p =P+ (x = O =1)

with ground states P (¢, ) (coherent states): M =C > ( +iu
2) Spin 1/2

HEé)=é-7+1 (écS?
with ground state P (&) (spin down | — é)): M =S2 3 é
(Riemann sphere)
3) Let 7 = 71 + it» € C define the torus T = R?/(Z + 7).
Landau Hamiltonian H(y1, ¢2) on T with boundary conditions
01, 02 and flux 2zr. Then M = R? > (1, 2) with complex
structure 7. Reactive resistance is Hall resistance.



Summary

>

Dephasing Lindbladians describe open systems with
several invariant states.

Tunnelling between them if Lindbladian is changed
adiabatically.

» Tunnelling has memory, unlike for Hamiltonian dynamics

Analog of Landau-Zener formula for Hamiltonian 2-level
systems

General adiabatic theorem encompassing Lindbladian and
Hamiltonian dynamics

Optimal parametrization: No unique minimizers in
Hamiltonian case. Unique minimizers in Lindbladian case,
characterized by constant tunnelling rate.

Linear response theory for single-scale Lindbladians.
Reactive resistance immune to dephasing if ground states
define a Kéhler geometry
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