Adiabatic evolution and dephasing

Gian Michele Graf
ETH Zurich

November 30, 2010
Open Quantum Systems
Grenoble

Outline

The Landau-Zener model

An adiabatic theorem

Optimal parametrization

Linear response theory and geometry

Collaborators: Y. Avron, M. Fraas, P. Grech, O.Kenneth

Outline

The Landau-Zener model

An adiabatic theorem

Optimal parametrization

Linear response theory and geometry

A motivating example: Landau-Zener tunnelling

The Hamiltonian case

$$
\begin{aligned}
H(s) & =\frac{1}{2} \vec{x} \cdot \vec{\sigma} \quad \text { on } \mathbb{C}^{2} \quad(\vec{x}(s)=(s, 0, \Delta)) \\
& =\frac{|\vec{x}|}{2} P_{+}-\frac{|\vec{x}|}{2} P_{-}
\end{aligned}
$$

- eigenprojections

$$
P_{ \pm}(s) \rightarrow\left(1 \pm \sigma_{\chi}\right) / 2,(s \rightarrow \pm \infty)
$$

$H(s)$ is general form of single-parameter avoided crossing

Landau-Zener: Hamiltonian case (cont.)

- scaled time $s=\varepsilon t$:

$$
\mathrm{i} \frac{d \psi}{d t}=H(\varepsilon t) \psi
$$

or

$$
\mathrm{i} \varepsilon \dot{\psi}=H(s) \psi \quad(\cdot=d / d s)
$$

- initial state: spin down

$$
\left(\psi(s), P_{+}(s) \psi(s)\right) \rightarrow 0 \quad(s \rightarrow-\infty)
$$

- tunnelling probability

$$
\left(\psi(s), P_{+}(s) \psi(s)\right) \rightarrow T \quad(s \rightarrow+\infty)
$$

- Landau, Zener (1932)

$$
T=\mathrm{e}^{-\pi \Delta^{2} / 2 \varepsilon}
$$

(exponentially small in $\varepsilon \rightarrow 0$).

Adiabatic tunnelling: Hamiltonian case

More generally, let

- $H(s)$ smooth
- $H(s)$ (or $\left.P_{ \pm}(s)\right)$ constant near $s= \pm \infty$, e.g. at $s=s_{0}, s_{1}$.

Adiabatic tunnelling: Hamiltonian case

More generally, let

- $H(s)$ smooth
- $H(s)$ (or $\left.P_{ \pm}(s)\right)$ constant near $s= \pm \infty$, e.g. at $s=s_{0}, s_{1}$.

Then:

$$
T\left(s, s_{0}\right)=O\left(\varepsilon^{2}\right) \quad(s \text { generic })
$$

At intermediate times s, "down" state contains a coherent admixture $O(\varepsilon)$ of the "up" state.

$$
T\left(s_{1}, s_{0}\right)=O\left(\varepsilon^{n}\right) \quad(n=1,2, \ldots)
$$

Adiabatic tunnelling: Hamiltonian case

More generally, let

- $H(s)$ smooth
- $H(s)$ (or $\left.P_{ \pm}(s)\right)$ constant near $s= \pm \infty$, e.g. at $s=s_{0}, s_{1}$.

Then:

$$
T\left(s, s_{0}\right)=O\left(\varepsilon^{2}\right) \quad(s \text { generic })
$$

At intermediate times s, "down" state contains a coherent admixture $O(\varepsilon)$ of the "up" state.

$$
T\left(s_{1}, s_{0}\right)=O\left(\varepsilon^{n}\right) \quad(n=1,2, \ldots)
$$

Essentially no memory is retained at the end: tunnelling is reversible.

Lindblad evolution

System coupled to Bath: Evolution of a mixed state $\rho=\rho_{S}$

$$
\rho \mapsto \phi_{t}(\rho)=\operatorname{tr}_{B}\left(U_{t}\left(\rho \otimes \rho_{B}\right) U_{t}^{*}\right)
$$

with joint unitary evolution $U_{t}\left(U_{t+s}=U_{t} U_{s}\right)$
Properties:

- $\operatorname{tr} \phi_{t}(\rho)=\operatorname{tr} \rho$
- ϕ_{t} completely positive
- $\phi_{t+s}=\phi_{t} \circ \phi_{s}$
- approximately, if time scales of Bath \ll time scales of System
- exactly, if bath is white noise

Generator:

$$
\mathcal{L}:=\left.\frac{d \phi_{t}}{d t}\right|_{t=0}
$$

Theorem (Lindblad, Sudarshan-Kossakowski-Gorini 1976) The general form of the generator is

$$
\mathcal{L}(\rho)=-\mathrm{i}[H, \rho]+\frac{1}{2} \sum_{\alpha}\left(2 \Gamma_{\alpha} \rho \Gamma_{\alpha}^{*}-\Gamma_{\alpha}^{*} \Gamma_{\alpha} \rho-\rho \Gamma_{\alpha}^{*} \Gamma_{\alpha}\right)
$$

Dephasing Lindbladians

$$
\mathcal{L}(\rho)=-\mathrm{i}[H, \rho]+\frac{1}{2} \sum_{\alpha}\left(2 \Gamma_{\alpha} \rho \Gamma_{\alpha}^{*}-\Gamma_{\alpha}^{*} \Gamma_{\alpha} \rho-\rho \Gamma_{\alpha}^{*} \Gamma_{\alpha}\right)
$$

with

$$
\left[\Gamma_{\alpha}, P_{i}\right]=0 \quad \text { for } H=\sum_{i} e_{i} P_{i}
$$

Then $\mathcal{L}\left(P_{i}\right)=0$, resp. $\phi_{t}\left(P_{i}\right)=P_{i}$: Like in the Hamiltonian case, eigenstates P_{i} are invariant.
Example: 2-level system

$$
\mathcal{L}(\rho)=-\mathrm{i}[H, \rho]-\gamma\left(P_{-} \rho P_{+}+P_{+} \rho P_{-}\right) \quad(\gamma \geq 0)
$$

Evolution turns coherent into incoherent superpositions within a time $\sim \gamma^{-1}$. Is a model for measurement of H. Application: Nuclear magnetic resonance

Dephasing 2-level Lindbladian

$$
\mathcal{L}(s)(\rho)=-\mathrm{i}[H(s), \rho]-\gamma(s)\left(P_{-}(s) \rho P_{+}(s)+P_{+}(s) \rho P_{-}(s)\right)
$$

with

- $H(s)=\vec{x}(s) \cdot \vec{\sigma} / 2$
- $\gamma(s) \geq 0$
- $\vec{x}(s)$ with $\dot{\vec{x}}(s) \rightarrow \dot{\vec{x}}(\pm \infty),(s \rightarrow \pm \infty)$.

Lindblad equation for $\rho=\rho(s)$

$$
\varepsilon \dot{\rho}=\mathcal{L}(s)(\rho)
$$

Result

$$
T=\varepsilon \int_{-\infty}^{\infty} \frac{\gamma(s)}{\vec{x}(s)^{2}+\gamma(s)^{2}} \operatorname{tr}\left(\dot{P}_{-}(s)^{2}\right) d s+O\left(\varepsilon^{2}\right)
$$

Tunnelling has memory and is irreversible.

Dephasing Landau-Zener Lindbladian

$$
\vec{x}(s)=(s, 0, \Delta):
$$

$$
\operatorname{tr}\left(\dot{P}_{-}(s)^{2}\right)=\frac{\Delta^{2}}{2 \vec{x}^{4}}
$$

For $\gamma(\boldsymbol{s})$ constant:

$$
\begin{aligned}
T & =\frac{\pi \varepsilon}{4 \Delta^{2}} Q(\gamma / \Delta)+O\left(\varepsilon^{2}\right) \\
Q(x) & =\frac{\pi}{2} \frac{x\left(2+\sqrt{1+x^{2}}\right)}{\sqrt{1+x^{2}}\left(\sqrt{1+x^{2}}+1\right)^{2}}
\end{aligned}
$$

Figure: The function $Q(x)$. It has a maximum at $x=1.13693$

Dephasing Landau-Zener Lindbladian

$$
\vec{x}(s)=(s, 0, \Delta):
$$

$$
\operatorname{tr}\left(\dot{P}_{-}(s)^{2}\right)=\frac{\Delta^{2}}{2 \vec{x}^{4}}
$$

For $\gamma(\boldsymbol{s})$ constant:

$$
\begin{aligned}
T & =\frac{\pi \varepsilon}{4 \Delta^{2}} Q(\gamma / \Delta)+O\left(\varepsilon^{2}\right) \\
Q(x) & =\frac{\pi}{2} \frac{x\left(2+\sqrt{1+x^{2}}\right)}{\sqrt{1+x^{2}}\left(\sqrt{1+x^{2}}+1\right)^{2}}
\end{aligned}
$$

linear at small γ

Figure: The function $Q(x)$. It has a maximum at $x=1.13693$

Dephasing Landau-Zener Lindbladian

$$
\vec{x}(s)=(s, 0, \Delta):
$$

$$
\operatorname{tr}\left(\dot{P}_{-}(s)^{2}\right)=\frac{\Delta^{2}}{2 \vec{x}^{4}}
$$

For $\gamma(\boldsymbol{s})$ constant:

$$
\begin{aligned}
T & =\frac{\pi \varepsilon}{4 \Delta^{2}} Q(\gamma / \Delta)+O\left(\varepsilon^{2}\right) \\
Q(x) & =\frac{\pi}{2} \frac{x\left(2+\sqrt{1+x^{2}}\right)}{\sqrt{1+x^{2}}\left(\sqrt{1+x^{2}}+1\right)^{2}}
\end{aligned}
$$

linear at small γ

Figure: The function $Q(x)$. It has a maximum at $x=1.13693$

Outline

The Landau-Zener model

An adiabatic theorem

Optimal parametrization

Linear response theory and geometry

A question

Recall:

- Hamiltonian case \rightarrow reversible tunnelling, oblivion
- Deph. Lindbladian case \rightarrow irreversible tunnelling, memory

A question

Recall:

- Hamiltonian case \rightarrow reversible tunnelling, oblivion
- Deph. Lindbladian case \rightarrow irreversible tunnelling, memory

Question: Is there a common point of view making this evident?

The scheme

Setup:

- V linear space, finite-dimensional.
- $L(s): V \rightarrow V, x \mapsto L(s) x$ linear in $x \in V$, smooth in $0 \leq s \leq 1$.
Assumptions:
- 0 is an eigenvalue of $L(s)$, isolated uniformly in s.
- $V=\operatorname{ker} L \oplus \operatorname{ran} L$. In particular:
- L is invertible on $\operatorname{ran} L: L^{-1}$
- $1=P+Q$ (projections), $x=a+b$ (decomposition)

Evolution equation for $x=x(s): \varepsilon \dot{x}=L(s) x$
Parallel transport $T\left(s, s^{\prime}\right): V \rightarrow V$ with

$$
\frac{\partial}{\partial s} T\left(s, s^{\prime}\right)=[\dot{P}(s), P(s)] T\left(s, s^{\prime}\right), \quad T\left(s^{\prime}, s^{\prime}\right)=1
$$

implying $P(s) T\left(s, s^{\prime}\right)=T\left(s, s^{\prime}\right) P\left(s^{\prime}\right)$

The theorem

i) $\varepsilon \dot{X}=L(s) x$ admits solutions of the form

$$
x(s)=\sum_{n=0}^{N} \varepsilon^{n}\left(a_{n}(s)+b_{n}(s)\right)+\varepsilon^{N+1} r_{N}(\varepsilon, s)
$$

with

- $a_{n}(s) \in \operatorname{ker} L(s), b_{n}(s) \in \operatorname{ran} L(s)$
- $a_{n}(0) \in \operatorname{ker} L(0), r_{N}(\varepsilon, 0) \in V$ arbitrary
ii) Coefficients $(n=0,1, \ldots)$:
- $b_{0}(s)=0$
- $a_{n}(s)=T(s, 0) a_{n}(0)+\int_{0}^{s} T\left(s, s^{\prime}\right) \dot{P}\left(s^{\prime}\right) b_{n}\left(s^{\prime}\right) d s^{\prime}$
- $b_{n+1}(s)=L(s)^{-1}\left(\dot{P}(s) a_{n}(s)+Q(s) \dot{b}_{n}(s)\right)$
iii) If $L(s)$ generates a contraction semigroup, then $r_{N}(\varepsilon, s)$ is uniformly bounded in ε and in s, if so at $s=0$

A corollary

Recall:

- $b_{0}(s)=0$
- $a_{n}(s)=T(s, 0) a_{n}(0)+\int_{0}^{s} T\left(s, s^{\prime}\right) \dot{P}\left(s^{\prime}\right) b_{n}\left(s^{\prime}\right) d s^{\prime}$
- $b_{n+1}(s)=L(s)^{-1}\left(\dot{P}(s) a_{n}(s)+Q(s) \dot{b}_{n}(s)\right)$
(Note: $b_{0} \rightsquigarrow a_{0} \rightsquigarrow b_{1} \rightsquigarrow a_{1} \ldots$)

Corollary If $P(s)$ is constant near $s=s_{0}$, then

$$
b_{n}\left(s_{0}\right)=0, \quad(n=0,1,2, \ldots)
$$

A corollary

Recall:

- $b_{0}(s)=0$
- $a_{n}(s)=T(s, 0) a_{n}(0)+\int_{0}^{s} T\left(s, s^{\prime}\right) \dot{P}\left(s^{\prime}\right) b_{n}\left(s^{\prime}\right) d s^{\prime}$
- $b_{n+1}(s)=L(s)^{-1}\left(\dot{P}(s) a_{n}(s)+Q(s) \dot{b}_{n}(s)\right)$
(Note: $b_{0} \rightsquigarrow a_{0} \rightsquigarrow b_{1} \rightsquigarrow a_{1} \ldots$)

Corollary If $P(s)$ is constant near $s=s_{0}$, then

$$
b_{n}\left(s_{0}\right)=0, \quad(n=0,1,2, \ldots)
$$

Answer: the a_{n} 's carry the memory, the b_{n} 's don't.

A corollary

Recall:

- $b_{0}(s)=0$
- $a_{n}(s)=T(s, 0) a_{n}(0)+\int_{0}^{s} T\left(s, s^{\prime}\right) \dot{P}\left(s^{\prime}\right) b_{n}\left(s^{\prime}\right) d s^{\prime}$
- $b_{n+1}(s)=L(s)^{-1}\left(\dot{P}(s) a_{n}(s)+Q(s) \dot{b}_{n}(s)\right)$
(Note: $b_{0} \rightsquigarrow a_{0} \rightsquigarrow b_{1} \rightsquigarrow a_{1} \ldots$)

Corollary If $P(s)$ is constant near $s=s_{0}$, then

$$
b_{n}\left(s_{0}\right)=0, \quad(n=0,1,2, \ldots)
$$

Answer: the a_{n} 's carry the memory, the b_{n} 's don't. Next: One result, different applications.

Appl. to Quantum Mechanics: Hamiltonian case

$$
\begin{gathered}
V=\mathcal{H}, \quad x=\psi \\
\text { i } \varepsilon \dot{\psi}=H(s) \psi \\
e(s): \text { isolated, simple eigenvalue of } H(s)
\end{gathered}
$$

Set $\tilde{\psi}(s)=\psi(s) \exp \left(\mathrm{i}^{-1} \int^{s} e\left(s^{\prime}\right) d s^{\prime}\right)$ and rewrite

$$
\varepsilon \dot{\tilde{\psi}}=-\mathrm{i}(H(s)-e(s)) \tilde{\psi} \equiv L(s) \tilde{\psi}
$$

with 0 isolated, simple eigenvalue of $L(s)$.

Appl. to Quantum Mechanics: Hamiltonian case

$$
\begin{gathered}
V=\mathcal{H}, \quad x=\psi \\
\mathrm{i} \varepsilon \dot{\psi}=H(s) \psi
\end{gathered}
$$

$e(s)$: isolated, simple eigenvalue of $H(s)$
Set $\tilde{\psi}(s)=\psi(s) \exp \left(\mathrm{i} \varepsilon^{-1} \int^{s} e\left(s^{\prime}\right) d s^{\prime}\right)$ and rewrite

$$
\varepsilon \dot{\tilde{\psi}}=-\mathrm{i}(H(s)-e(s)) \tilde{\psi} \equiv L(s) \tilde{\psi}
$$

with 0 isolated, simple eigenvalue of $L(s)$.

Tunnelling out of $e(s)$ is motion out of $\operatorname{ker} L(s)$. Hence reversible.

Appl. to QM: Dephasing Lindbladian case

$$
V=\{\text { operators on } \mathcal{H}\}, \quad x=\rho, \quad L(s)=\mathcal{L}(s)
$$

For simplicity $\operatorname{dim} \mathcal{H}=2$, hence $\operatorname{dim} V=4$.

$$
\mathcal{L}(\rho)=-\mathrm{i}[H, \rho]-\gamma\left(P_{-} \rho P_{+}+P_{+} \rho P_{-}\right)
$$

with $\gamma \geq 0$ and $H\left|\psi_{i}\right\rangle=e_{i}\left|\psi_{i}\right\rangle,(i= \pm)$
Basis of V :

$$
E_{i j}=\left|\psi_{i}\right\rangle\left\langle\psi_{j}\right|
$$

In particular, $P_{i}=E_{i j}$.

Appl. to QM: Dephasing Lindbladian case

$$
V=\{\text { operators on } \mathcal{H}\}, \quad x=\rho, \quad L(s)=\mathcal{L}(s)
$$

For simplicity $\operatorname{dim} \mathcal{H}=2$, hence $\operatorname{dim} V=4$.

$$
\mathcal{L}(\rho)=-\mathrm{i}[H, \rho]-\gamma\left(P_{-} \rho P_{+}+P_{+} \rho P_{-}\right)
$$

with $\gamma \geq 0$ and $H\left|\psi_{i}\right\rangle=\boldsymbol{e}_{i}\left|\psi_{i}\right\rangle,(i= \pm)$ Basis of V :

$$
E_{i j}=\left|\psi_{i}\right\rangle\left\langle\psi_{j}\right|
$$

In particular, $P_{i}=E_{i j}$.

$$
\begin{gathered}
\mathcal{L}\left(P_{i}\right)=0 \\
\mathcal{L}\left(E_{+-}\right)=\left(-\mathrm{i}\left(e_{+}-e_{-}\right)-\gamma\right) E_{+-} \equiv \lambda_{+-} E_{+-}, \quad \lambda_{-+}=\bar{\lambda}_{+-} \\
\operatorname{ker} \mathcal{L}=\operatorname{span}\left(P_{+}, P_{-}\right), \quad \operatorname{ran} \mathcal{L}=\operatorname{span}\left(E_{+-}, E_{-+}\right)
\end{gathered}
$$

Tunnelling $T(s, 0)=\operatorname{tr}\left(P_{+}(s) \rho(s)\right)$ for $\rho(0)=P_{-}(0)$ is motion within $\operatorname{ker} \mathcal{L}$. Hence irreversible.

Dephasing Lindbladian case: Quantitative result

 Recall: In the general scheme, solution of $\varepsilon \dot{x}=L(s) x$ of the form$$
\begin{gathered}
x(s)=a_{0}(s)+\varepsilon\left(a_{1}(s)+b_{1}(s)\right)+O\left(\varepsilon^{2}\right) \\
a_{n}(s)=T(s, 0) a_{n}(0)+\int_{0}^{s} T\left(s, s^{\prime}\right) \dot{P}\left(s^{\prime}\right) b_{n}\left(s^{\prime}\right) d s^{\prime} \\
b_{n+1}(s)=L(s)^{-1}\left(\dot{P}(s) a_{n}(s)+Q(s) \dot{b}_{n}(s)\right)
\end{gathered}
$$

In the application $x=\rho, a_{0}(0)=P_{-}(0), a_{1}(0)=0$ one obtains

$$
\begin{gathered}
a_{0}(s)=P_{-}(s) \\
a_{1}(s)=\left(-P_{-}(s)+P_{+}(s)\right) \int_{0}^{s} \alpha\left(s^{\prime}\right) d s^{\prime} \quad \text { (loss \& gain) } \\
\alpha(s)=-\left(\lambda_{+-}(s)^{-1}+\lambda_{-+}(s)^{-1}\right) \operatorname{tr}\left(P_{+}(s) \dot{P}_{-}(s)^{2} P_{+}(s)\right) \\
-\left(\lambda_{+-}^{-1}+\lambda_{-+}^{-1}\right)=\frac{2 \gamma}{\left(e_{+}-e_{-}\right)^{2}+\gamma^{2}}
\end{gathered}
$$

as claimed.

Outline

The Landau-Zener model

An adiabatic theorem

Optimal parametrization

Linear response theory and geometry

Optimal parametrization: Statement of the problem

Family of 2-level Lindbladians parametrized by $0 \leq q \leq 1$

$$
\mathcal{L}(q)(\rho)=-\mathrm{i}[H(q), \rho]-\gamma(q)\left(P_{-}(q) \rho P_{+}(q)+P_{+}(q) \rho P_{-}(q)\right)
$$

Allotted time $1 / \varepsilon$ to get from $q=0$ to $q=1$:

$$
q=q(s)=q(\varepsilon t)
$$

with $q:[0,1] \rightarrow[0,1], s \mapsto q ; q(0)=0, q(1)=1$.
Tunnelling $T[q]=\operatorname{tr}\left(P_{+}(s) \rho(s)\right)_{s=1}$ for $\rho(0)=P_{-}(0)$

Optimal parametrization: Statement of the problem

Family of 2-level Lindbladians parametrized by $0 \leq q \leq 1$

$$
\mathcal{L}(q)(\rho)=-\mathrm{i}[H(q), \rho]-\gamma(q)\left(P_{-}(q) \rho P_{+}(q)+P_{+}(q) \rho P_{-}(q)\right)
$$

Allotted time $1 / \varepsilon$ to get from $q=0$ to $q=1$:

$$
q=q(s)=q(\varepsilon t)
$$

with $q:[0,1] \rightarrow[0,1], s \mapsto q ; q(0)=0, q(1)=1$.
Tunnelling $T[q]=\operatorname{tr}\left(P_{+}(s) \rho(s)\right)_{s=1}$ for $\rho(0)=P_{-}(0)$
Question: Given $\varepsilon>0$. Which are the parametrizations q minimizing $T[q]$?

Optimal parametrization: Statement of the problem

Family of 2-level Lindbladians parametrized by $0 \leq q \leq 1$

$$
\mathcal{L}(q)(\rho)=-\mathrm{i}[H(q), \rho]-\gamma(q)\left(P_{-}(q) \rho P_{+}(q)+P_{+}(q) \rho P_{-}(q)\right)
$$

Allotted time $1 / \varepsilon$ to get from $q=0$ to $q=1$:

$$
q=q(s)=q(\varepsilon t)
$$

with $q:[0,1] \rightarrow[0,1], s \mapsto q ; q(0)=0, q(1)=1$.
Tunnelling $T[q]=\operatorname{tr}\left(P_{+}(s) \rho(s)\right)_{s=1}$ for $\rho(0)=P_{-}(0)$
Question: Given $\varepsilon>0$. Which are the parametrizations q minimizing $T[q]$?
Aside: In the Hamiltonian case, for small ε, minimizers (with $T[q]=0$) are ubiquitous.

Optimal parametrization: The functional

$$
\mathcal{L}(q)(\rho)=-\mathrm{i}[H(q), \rho]-\gamma(q)\left(P_{-}(q) \rho P_{+}(q)+P_{+}(q) \rho P_{-}(q)\right)
$$

To leading order in ε

$$
T[q]=\varepsilon \int_{0}^{1} \frac{\gamma(s)}{\vec{x}(s)^{2}+\gamma(s)^{2}} \operatorname{tr}\left(\dot{P}_{-}(s)^{2}\right) d s
$$

with $f(s):=f(q(s))$ for $f=\vec{x}, \gamma$ and

$$
\dot{P}_{-}(s)=P_{-}^{\prime}(q(s)) \dot{q}(s), \quad\left(\dot{ }=\frac{d}{d s}, \quad,=\frac{d}{d q}\right)
$$

Functional of Lagrangian type

$$
\begin{gathered}
T[q]=\int_{0}^{1} L(q(s), \dot{q}(s), s) d s \\
L(q, \dot{q}, s)=\varepsilon \frac{\gamma(q)}{\vec{x}(q)^{2}+\gamma(q)^{2}} \operatorname{tr}\left(P_{-}^{\prime}(q)^{2}\right) \dot{q}^{2}
\end{gathered}
$$

(weighted Fubini-Study metric)

Optimal parametrization: Results

$$
\begin{gathered}
T[q]=\int_{0}^{1} L(q(s), \dot{q}(s), s) d s \\
L(q, \dot{q}, s)=\varepsilon \frac{\gamma(q)}{\vec{x}(q)^{2}+\gamma(q)^{2}} \operatorname{tr}\left(P_{-}^{\prime}(q)^{2}\right) \dot{q}^{2}
\end{gathered}
$$

Minimizing parametrization has conserved "energy"

$$
\frac{\partial L}{\partial \dot{q}} \dot{q}-L=L
$$

Theorem The parametrization minimizes tunnelling iff it has constant tunnelling rate.

In particular: velocity \dot{q} is

- large, where gap $|\vec{x}(q)|$ is large
- small, where projection $P_{-}(q)$ changes rapidly

Outline

The Landau-Zener model

An adiabatic theorem

Optimal parametrization

Linear response theory and geometry

A particular Lindbladian

A dephasing Lindbladian determined by the Hamiltonian:

$$
\alpha=i, \quad \Gamma_{i}^{*} \Gamma_{i}=\gamma_{i} P_{i} \quad \text { for } H=\sum_{i} e_{i} P_{i}
$$

- No energy scale beyond the spectrum $0=e_{0}<e_{1}<\ldots$:

$$
\gamma_{i}=\gamma e_{i},(\gamma \geq 0)
$$

Resulting in:

$$
\mathcal{L}(\rho)=-\mathrm{i}[H, \rho]+\gamma \sum_{i} e_{i}\left(P_{i} \rho P_{i}-P_{i} \rho-\rho P_{i}\right)
$$

Adiabatic evolution (recall)

$$
\rho(s)=a_{0}(s)+\varepsilon\left(a_{1}(s)+b_{1}(s)\right)+\ldots
$$

with

$$
\begin{aligned}
& a_{0}(s)=P_{0}(s) \\
& a_{1}(s)=-\sum_{j \neq 0} T_{j}(s)\left(P_{0}(s)-P_{j}(s)\right)
\end{aligned}
$$

(loss \& gain; cumulated tunneling $T_{j}(s) \propto \gamma$)

$$
b_{1}(s)=\sum_{j \neq 0} \lambda_{j 0}^{-1} P_{j} \dot{P}_{0}+\text { h.c. }
$$

$$
\left(\lambda_{j 0}=-e_{j}(\mathrm{i}+\gamma)\right)
$$

Linear response (setting)

Family of Hamiltonians $H(\varphi)$ with control parameters
$\varphi=\left(\varphi^{1}, \ldots, \varphi^{n}\right) \in M$
Geometric data associated to ground state projection $P(\varphi)=P_{0}(\varphi)$

- adiabatic curvature 2-form ω

$$
\omega_{\mu \nu}=-\mathrm{i} \operatorname{tr}\left(P\left[\partial_{\mu} P, \partial_{\nu} P\right]\right)
$$

(satisfies $d \omega=0$, hence a symplectic form if non-degenerate)

- Fubini-Study metric g

$$
g_{\mu \nu}=\operatorname{tr}\left(\partial_{\mu} P\right)\left(\partial_{\nu} P\right)
$$

with $\partial_{\mu}=\partial \cdot / \partial \varphi^{\mu}$

Linear response (results)

Observables $F_{\mu}=\partial_{\mu} H$, conjugate to φ^{μ}. (Examples: force and displacement, torque and angle, current and flux.)

For slowly time-dependent controls $\varphi(\varepsilon t)$

$$
\begin{aligned}
& \left\langle F_{\mu}\right\rangle=\operatorname{tr}\left(\rho(s) \partial_{\mu} H\right) \\
= & \varepsilon \frac{\gamma}{1+\gamma^{2}} \sum_{j \neq 0} T_{j}(s) \partial_{\mu} e_{j}+\varepsilon \frac{1}{1+\gamma^{2}} \sum_{\nu}\left(\omega_{\mu \nu}+\gamma g_{\mu \nu}\right) \dot{\varphi}^{\nu}+O\left(\varepsilon^{2}\right)
\end{aligned}
$$

Remarks: No contribution from $P_{0}(s)$:

$$
\left\langle F_{\mu}\right\rangle_{0}=\operatorname{tr}\left(P_{0} \partial_{\mu} H\right)=\partial_{\mu} \operatorname{tr}\left(P_{0} H\right)=\partial_{\mu} e_{0}=0
$$

Similarly $\partial_{\mu} e_{j}=0$ if e_{j} independent of φ.

Generalized conductances

$$
\delta\left\langle F_{\mu}\right\rangle \equiv\left\langle F_{\mu}\right\rangle-\left\langle F_{\mu}\right\rangle_{0}=f_{\mu \nu} \dot{\phi}^{\nu}
$$

Hence:

$$
f=\left(1+\gamma^{2}\right)^{-1}(\gamma g+\omega)
$$

Decomposition into dissipative (symmetric) and reactive (antisymmetric) parts

$$
f_{\mu \nu}=f_{(\mu, \nu)}+f_{[\mu, \nu]}
$$

Hence

$$
f_{(\mu, \nu)}=\frac{\gamma}{1+\gamma^{2}} g_{\mu \nu} \quad f_{[\mu, \nu]}=\frac{1}{1+\gamma^{2}} \omega_{\mu \nu}
$$

both affected by dephasing.

Kähler structure

A manifold M with metric g and symplectic form ω is almost Kähler if $J:=g^{-1} \omega$ (mapping vectors to vectors) is an almost complex structure:

$$
J^{2}=-1
$$

Equivalently,

$$
\begin{equation*}
\omega^{-1} g=-g^{-1} \omega \tag{*}
\end{equation*}
$$

M is Kähler if, in addition, M is a complex manifold w.r.t. J.
Examples: 1) $\mathbb{C} P^{n-1}$ (the rays of an n-dimensional Hilbert space) is Kähler.
2) Manifold $M \ni \varphi$ of controls: g, ω are pull-backs by way of
$P: M \rightarrow \mathbb{C} P^{n-1}$. Iff (*) holds, M is Kähler.

Generalized resistances

$$
\dot{\phi}^{\nu}=\left(f^{-1}\right)^{\mu \nu} \delta\left\langle F_{\nu}\right\rangle
$$

If M is Kähler, then

$$
f^{-1}=\gamma g^{-1}+\omega^{-1}
$$

and the reactive resistance is immune to dephasing γ.
Indeed

$$
f=\left(\gamma^{2}+1\right)^{-1}(\gamma g+\omega)
$$

and

$$
\left(\gamma g^{-1}+\omega^{-1}\right)(\gamma g+\omega)=\gamma^{2}+1+\gamma\left(g^{-1} \omega+\omega^{-1} g\right)=\gamma^{2}+1
$$

Examples

The Hamiltonians of these examples have spectrum independent of controls.

1) Harmonic oscillator

$$
H(\zeta, \mu)=\frac{\omega}{2}\left((p-\mu)^{2}+(x-\zeta)^{2}-1\right)
$$

with ground states $P(\zeta, \mu)$ (coherent states): $M=\mathbb{C} \ni \zeta+\mathrm{i} \mu$ 2) Spin $1 / 2$

$$
H(\hat{e})=\hat{e} \cdot \vec{\sigma}+1 \quad\left(\hat{e} \in S^{2}\right)
$$

with ground state $P(\hat{e})$ (spin down $|-\hat{e}\rangle$): $M=S^{2} \ni \hat{e}$
(Riemann sphere)
3) Let $\tau=\tau_{1}+\mathrm{i} \tau_{2} \in \mathbb{C}$ define the torus $\mathbb{T}=\mathbb{R}^{2} /(\mathbb{Z}+\tau \mathbb{Z})$.

Landau Hamiltonian $H\left(\varphi_{1}, \varphi_{2}\right)$ on \mathbb{T} with boundary conditions φ_{1}, φ_{2} and flux 2π. Then $M=\mathbb{R}^{2} \ni\left(\varphi_{1}, \varphi_{2}\right)$ with complex structure τ. Reactive resistance is Hall resistance.

Summary

- Dephasing Lindbladians describe open systems with several invariant states.
- Tunnelling between them if Lindbladian is changed adiabatically.
- Tunnelling has memory, unlike for Hamiltonian dynamics
- Analog of Landau-Zener formula for Hamiltonian 2-level systems
- General adiabatic theorem encompassing Lindbladian and Hamiltonian dynamics
- Optimal parametrization: No unique minimizers in Hamiltonian case. Unique minimizers in Lindbladian case, characterized by constant tunnelling rate.
- Linear response theory for single-scale Lindbladians. Reactive resistance immune to dephasing if ground states define a Kähler geometry

