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A motivating example: Landau-Zener tunnelling
The Hamiltonian case

H(s) =
1
2
~x · ~σ on C

2 (~x(s) = (s,0,∆))

=
|~x |
2

P+ − |~x |
2

P−

σ(H(s))

s
∆

e
−

(s)

e+(s)

◮ eigenvalues
e±(s) = ±|~x(s)|/2

◮ eigenprojections
P±(s) → (1±σx)/2, (s → ±∞)

H(s) is general form of single-parameter avoided crossing



Landau-Zener: Hamiltonian case (cont.)
◮ scaled time s = εt :

i
dψ
dt

= H(εt)ψ

or
iεψ̇ = H(s)ψ ( ˙ = d/ds)

◮ initial state: spin down

(ψ(s),P+(s)ψ(s)) → 0 (s → −∞)

◮ tunnelling probability

(ψ(s),P+(s)ψ(s)) → T (s → +∞)

◮ Landau, Zener (1932)

T = e−π∆2/2ε

(exponentially small in ε→ 0).



Adiabatic tunnelling: Hamiltonian case
More generally, let

◮ H(s) smooth
◮ H(s) (or P±(s)) constant

near s = ±∞, e.g. at
s = s0, s1. e

−
(s)

e+(s)
σ(H(s))

ss1s0



Adiabatic tunnelling: Hamiltonian case
More generally, let

◮ H(s) smooth
◮ H(s) (or P±(s)) constant

near s = ±∞, e.g. at
s = s0, s1. e

−
(s)

e+(s)
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Then:
◮

T (s, s0) = O(ε2) (s generic)

At intermediate times s, “down” state contains a coherent
admixture O(ε) of the “up” state.

◮

T (s1, s0) = O(εn) (n = 1,2, . . .)



Adiabatic tunnelling: Hamiltonian case
More generally, let

◮ H(s) smooth
◮ H(s) (or P±(s)) constant

near s = ±∞, e.g. at
s = s0, s1. e

−
(s)

e+(s)
σ(H(s))

ss1s0

Then:
◮

T (s, s0) = O(ε2) (s generic)

At intermediate times s, “down” state contains a coherent
admixture O(ε) of the “up” state.

◮

T (s1, s0) = O(εn) (n = 1,2, . . .)

Essentially no memory is retained at the end: tunnelling is
reversible.



Lindblad evolution
System coupled to Bath: Evolution of a mixed state ρ = ρS

ρ 7→ φt(ρ) = trB
(

Ut(ρ⊗ ρB)U∗
t

)

with joint unitary evolution Ut (Ut+s = UtUs)
Properties:

◮ trφt(ρ) = tr ρ
◮ φt completely positive
◮ φt+s = φt ◦ φs

◮ approximately, if time scales of Bath ≪ time scales of
System

◮ exactly, if bath is white noise
Generator:

L :=
dφt

dt

∣

∣

t=0

Theorem (Lindblad, Sudarshan-Kossakowski-Gorini 1976)
The general form of the generator is

L(ρ) = −i[H, ρ] +
1
2

∑

α

(2ΓαρΓ
∗
α − Γ∗

αΓαρ− ρΓ∗
αΓα)



Dephasing Lindbladians

L(ρ) = −i[H, ρ] +
1
2

∑

α

(2ΓαρΓ
∗
α − Γ∗

αΓαρ− ρΓ∗
αΓα)

with
[Γα,Pi ] = 0 for H =

∑

i

eiPi

Then L(Pi) = 0, resp. φt(Pi) = Pi : Like in the Hamiltonian
case, eigenstates Pi are invariant.
Example: 2-level system

L(ρ) = −i[H, ρ] − γ(P−ρP+ + P+ρP−) (γ ≥ 0)

Evolution turns coherent into incoherent superpositions within a
time ∼ γ−1. Is a model for measurement of H.
Application: Nuclear magnetic resonance



Dephasing 2-level Lindbladian

L(s)(ρ) = −i[H(s), ρ] − γ(s)(P−(s)ρP+(s) + P+(s)ρP−(s))

with
◮ H(s) = ~x(s) · ~σ/2
◮ γ(s) ≥ 0

◮ ~x(s) with ~̇x(s) → ~̇x(±∞), (s → ±∞).

Lindblad equation for ρ = ρ(s)

ερ̇ = L(s)(ρ)

Result

T = ε

∫ ∞

−∞

γ(s)

~x(s)2 + γ(s)2 tr
(

Ṗ−(s)2)ds + O(ε2)

Tunnelling has memory and is irreversible.



Dephasing Landau-Zener Lindbladian
~x(s) = (s,0,∆):

tr
(

Ṗ−(s)2) =
∆2

2~x 4

For γ(s) constant:

T =
πε

4∆2 Q(γ/∆) + O(ε2)

Q(x) =
π
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Figure: The function Q(x). It has a maximum at x = 1.13693
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linear at small γ Zeno effect at large γ



Outline

The Landau-Zener model

An adiabatic theorem

Optimal parametrization

Linear response theory and geometry



A question

Recall:

◮ Hamiltonian case → reversible tunnelling, oblivion
◮ Deph. Lindbladian case → irreversible tunnelling, memory



A question

Recall:

◮ Hamiltonian case → reversible tunnelling, oblivion
◮ Deph. Lindbladian case → irreversible tunnelling, memory

Question: Is there a common point of view making this evident?



The scheme

Setup:
◮ V linear space, finite-dimensional.
◮ L(s) : V → V , x 7→ L(s)x linear in x ∈ V , smooth in

0 ≤ s ≤ 1.

Assumptions:
◮ 0 is an eigenvalue of L(s), isolated uniformly in s.
◮ V = ker L ⊕ ran L. In particular:

◮ L is invertible on ran L: L−1

◮ 1 = P + Q (projections), x = a + b (decomposition)

Evolution equation for x = x(s): εẋ = L(s)x
Parallel transport T (s, s′) : V → V with

∂

∂s
T (s, s′) = [Ṗ(s),P(s)]T (s, s′) , T (s′, s′) = 1

implying P(s)T (s, s′) = T (s, s′)P(s′)



The theorem

i) εẋ = L(s)x admits solutions of the form

x(s) =
N

∑

n=0

εn(an(s) + bn(s)) + εN+1rN(ε, s)

with
◮ an(s) ∈ ker L(s), bn(s) ∈ ran L(s)

◮ an(0) ∈ ker L(0), rN(ε, 0) ∈ V arbitrary

ii) Coefficients (n = 0,1, . . .):
◮ b0(s) = 0
◮ an(s) = T (s,0)an(0) +

∫ s
0 T (s, s′)Ṗ(s′)bn(s′)ds′

◮ bn+1(s) = L(s)−1(Ṗ(s)an(s) + Q(s)ḃn(s))

iii) If L(s) generates a contraction semigroup, then rN(ε, s) is
uniformly bounded in ε and in s, if so at s = 0



A corollary

Recall:
◮ b0(s) = 0
◮ an(s) = T (s,0)an(0) +

∫ s
0 T (s, s′)Ṗ(s′)bn(s′)ds′

◮ bn+1(s) = L(s)−1(Ṗ(s)an(s) + Q(s)ḃn(s))

(Note: b0  a0  b1  a1 . . .)

Corollary If P(s) is constant near s = s0, then

bn(s0) = 0 , (n = 0,1,2, . . .)
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bn(s0) = 0 , (n = 0,1,2, . . .)

Answer: the an’s carry the memory, the bn’s don’t.



A corollary

Recall:
◮ b0(s) = 0
◮ an(s) = T (s,0)an(0) +

∫ s
0 T (s, s′)Ṗ(s′)bn(s′)ds′

◮ bn+1(s) = L(s)−1(Ṗ(s)an(s) + Q(s)ḃn(s))

(Note: b0  a0  b1  a1 . . .)

Corollary If P(s) is constant near s = s0, then

bn(s0) = 0 , (n = 0,1,2, . . .)

Answer: the an’s carry the memory, the bn’s don’t.
Next: One result, different applications.



Appl. to Quantum Mechanics: Hamiltonian case

V = H , x = ψ

iεψ̇ = H(s)ψ

e(s) : isolated, simple eigenvalue of H(s)

Set ψ̃(s) = ψ(s) exp(iε−1
∫ s e(s′)ds′) and rewrite

ε ˙̃ψ = −i(H(s) − e(s))ψ̃ ≡ L(s)ψ̃

with 0 isolated, simple eigenvalue of L(s).



Appl. to Quantum Mechanics: Hamiltonian case

V = H , x = ψ

iεψ̇ = H(s)ψ

e(s) : isolated, simple eigenvalue of H(s)

Set ψ̃(s) = ψ(s) exp(iε−1
∫ s e(s′)ds′) and rewrite

ε ˙̃ψ = −i(H(s) − e(s))ψ̃ ≡ L(s)ψ̃

with 0 isolated, simple eigenvalue of L(s).

Tunnelling out of e(s) is motion out of ker L(s). Hence
reversible.



Appl. to QM: Dephasing Lindbladian case

V = {operators on H} , x = ρ , L(s) = L(s)

For simplicity dimH = 2, hence dim V = 4.

L(ρ) = −i[H, ρ] − γ(P−ρP+ + P+ρP−)

with γ ≥ 0 and H|ψi〉 = ei |ψi〉, (i = ±)
Basis of V :

Eij = |ψi〉〈ψj |
In particular, Pi = Eii .



Appl. to QM: Dephasing Lindbladian case

V = {operators on H} , x = ρ , L(s) = L(s)

For simplicity dimH = 2, hence dim V = 4.

L(ρ) = −i[H, ρ] − γ(P−ρP+ + P+ρP−)

with γ ≥ 0 and H|ψi〉 = ei |ψi〉, (i = ±)
Basis of V :

Eij = |ψi〉〈ψj |
In particular, Pi = Eii .

L(Pi) = 0

L(E+−) = (−i(e+ − e−) − γ)E+− ≡ λ+−E+− , λ−+ = λ̄+−

kerL = span(P+,P−) , ranL = span(E+−,E−+)

Tunnelling T (s,0) = tr(P+(s)ρ(s)) for ρ(0) = P−(0) is motion
within kerL. Hence irreversible.



Dephasing Lindbladian case: Quantitative result
Recall: In the general scheme, solution of εẋ = L(s)x of the
form

x(s) = a0(s) + ε(a1(s) + b1(s)) + O(ε2)

an(s) = T (s,0)an(0) +

∫ s

0
T (s, s′)Ṗ(s′)bn(s′)ds′

bn+1(s) = L(s)−1(Ṗ(s)an(s) + Q(s)ḃn(s))

In the application x = ρ, a0(0) = P−(0), a1(0) = 0 one obtains

a0(s) = P−(s)

a1(s) = (−P−(s) + P+(s))

∫ s

0
α(s′)ds′ (loss & gain)

α(s) = −(λ+−(s)−1 + λ−+(s)−1) tr
(

P+(s)Ṗ−(s)2P+(s)
)

−(λ−1
+− + λ−1

−+) =
2γ

(e+ − e−)2 + γ2

as claimed.
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Optimal parametrization: Statement of the problem

Family of 2-level Lindbladians parametrized by 0 ≤ q ≤ 1

L(q)(ρ) = −i[H(q), ρ] − γ(q)(P−(q)ρP+(q) + P+(q)ρP−(q))

Allotted time 1/ε to get from q = 0 to q = 1:

q = q(s) = q(εt)

with q : [0,1] → [0,1], s 7→ q; q(0) = 0,q(1) = 1.

Tunnelling T [q] = tr(P+(s)ρ(s))s=1 for ρ(0) = P−(0)



Optimal parametrization: Statement of the problem
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q = q(s) = q(εt)

with q : [0,1] → [0,1], s 7→ q; q(0) = 0,q(1) = 1.

Tunnelling T [q] = tr(P+(s)ρ(s))s=1 for ρ(0) = P−(0)

Question: Given ε > 0. Which are the parametrizations q
minimizing T [q]?



Optimal parametrization: Statement of the problem

Family of 2-level Lindbladians parametrized by 0 ≤ q ≤ 1

L(q)(ρ) = −i[H(q), ρ] − γ(q)(P−(q)ρP+(q) + P+(q)ρP−(q))

Allotted time 1/ε to get from q = 0 to q = 1:

q = q(s) = q(εt)

with q : [0,1] → [0,1], s 7→ q; q(0) = 0,q(1) = 1.

Tunnelling T [q] = tr(P+(s)ρ(s))s=1 for ρ(0) = P−(0)

Question: Given ε > 0. Which are the parametrizations q
minimizing T [q]?
Aside: In the Hamiltonian case, for small ε, minimizers (with
T [q] = 0) are ubiquitous.



Optimal parametrization: The functional

L(q)(ρ) = −i[H(q), ρ] − γ(q)(P−(q)ρP+(q) + P+(q)ρP−(q))

To leading order in ε

T [q] = ε

∫ 1

0

γ(s)

~x(s)2 + γ(s)2 tr
(

Ṗ−(s)2)ds

with f (s) := f (q(s)) for f = ~x , γ and

Ṗ−(s) = P ′
−(q(s))q̇(s) , ( ˙ =

d
ds

, ′ =
d
dq

)

Functional of Lagrangian type

T [q] =

∫ 1

0
L(q(s), q̇(s), s)ds

L(q, q̇, s
/

) = ε
γ(q)

~x(q)2 + γ(q)2 tr
(

P ′
−(q)2)q̇2

(weighted Fubini-Study metric)



Optimal parametrization: Results

T [q] =

∫ 1

0
L(q(s), q̇(s), s)ds

L(q, q̇, s
/

) = ε
γ(q)

~x(q)2 + γ(q)2 tr
(

P ′
−(q)2)q̇2

Minimizing parametrization has conserved “energy”

∂L
∂q̇

q̇ − L = L

Theorem The parametrization minimizes tunnelling iff it has
constant tunnelling rate.

In particular: velocity q̇ is
◮ large, where gap |~x(q)| is large
◮ small, where projection P−(q) changes rapidly
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A particular Lindbladian

A dephasing Lindbladian determined by the Hamiltonian:
◮

α = i , Γ∗
i Γi = γiPi for H =

∑

i

eiPi

◮ No energy scale beyond the spectrum 0 = e0 < e1 < . . . :
γi = γei , (γ ≥ 0)

Resulting in:

L(ρ) = −i[H, ρ] + γ
∑

i

ei(PiρPi − Piρ− ρPi)



Adiabatic evolution (recall)

ρ(s) = a0(s) + ε(a1(s) + b1(s)) + . . .

with

a0(s) = P0(s)

a1(s) = −
∑

j 6=0

Tj(s)(P0(s) − Pj(s))

(loss & gain; cumulated tunneling Tj(s) ∝ γ)

b1(s) =
∑

j 6=0

λ−1
j0 Pj Ṗ0 + h.c.

(λj0 = −ej(i + γ))



Linear response (setting)

Family of Hamiltonians H(ϕ) with control parameters
ϕ = (ϕ1, . . . , ϕn) ∈ M

Geometric data associated to ground state projection
P(ϕ) = P0(ϕ)

◮ adiabatic curvature 2-form ω

ωµν = −i tr(P[∂µP, ∂νP])

(satisfies dω = 0, hence a symplectic form if
non-degenerate)

◮ Fubini-Study metric g

gµν = tr(∂µP)(∂νP)

with ∂µ = ∂ · /∂ϕµ



Linear response (results)

Observables Fµ = ∂µH, conjugate to ϕµ. (Examples: force and
displacement, torque and angle, current and flux.)

For slowly time-dependent controls ϕ(εt)

〈Fµ〉 = tr(ρ(s)∂µH)

= ε
γ

1 + γ2

∑

j 6=0

Tj(s)∂µej + ε
1

1 + γ2

∑

ν

(ωµν + γgµν)ϕ̇
ν + O(ε2)

Remarks: No contribution from P0(s):

〈Fµ〉0 = tr(P0∂µH) = ∂µ tr(P0H) = ∂µe0 = 0

Similarly ∂µej = 0 if ej independent of ϕ.



Generalized conductances

δ 〈Fµ〉 ≡ 〈Fµ〉 − 〈Fµ〉0 = fµν φ̇
ν

Hence:
f = (1 + γ2)−1(γg + ω)

Decomposition into dissipative (symmetric) and reactive
(antisymmetric) parts

fµν = f(µ,ν) + f[µ,ν]

Hence

f(µ,ν) =
γ

1 + γ2 gµν f[µ,ν] =
1

1 + γ2ωµν

both affected by dephasing.



Kähler structure

A manifold M with metric g and symplectic form ω is almost
Kähler if J := g−1ω (mapping vectors to vectors) is an almost
complex structure:

J2 = −1

Equivalently,
ω−1g = −g−1ω (*)

M is Kähler if, in addition, M is a complex manifold w.r.t. J.

Examples: 1) CPn−1 (the rays of an n-dimensional Hilbert
space) is Kähler.
2) Manifold M ∋ ϕ of controls: g, ω are pull-backs by way of
P : M → CPn−1. Iff (*) holds, M is Kähler.



Generalized resistances

φ̇ν = (f−1)µνδ 〈Fν〉
If M is Kähler, then

f−1 = γg−1 + ω−1

and the reactive resistance is immune to dephasing γ.

Indeed
f = (γ2 + 1)−1(γg + ω)

and

(γg−1 + ω−1)(γg + ω) = γ2 + 1 + γ(g−1ω + ω−1g) = γ2 + 1



Examples

The Hamiltonians of these examples have spectrum
independent of controls.
1) Harmonic oscillator

H(ζ, µ) =
ω

2
((p − µ)2 + (x − ζ)2 − 1)

with ground states P(ζ, µ) (coherent states): M = C ∋ ζ + iµ
2) Spin 1/2

H(ê) = ê · ~σ + 1 (ê ∈ S2)

with ground state P(ê) (spin down | − ê〉): M = S2 ∋ ê
(Riemann sphere)
3) Let τ = τ1 + iτ2 ∈ C define the torus T = R

2/(Z + τZ).
Landau Hamiltonian H(ϕ1, ϕ2) on T with boundary conditions
ϕ1, ϕ2 and flux 2π. Then M = R

2 ∋ (ϕ1, ϕ2) with complex
structure τ . Reactive resistance is Hall resistance.



Summary

◮ Dephasing Lindbladians describe open systems with
several invariant states.

◮ Tunnelling between them if Lindbladian is changed
adiabatically.

◮ Tunnelling has memory, unlike for Hamiltonian dynamics
◮ Analog of Landau-Zener formula for Hamiltonian 2-level

systems
◮ General adiabatic theorem encompassing Lindbladian and

Hamiltonian dynamics
◮ Optimal parametrization: No unique minimizers in

Hamiltonian case. Unique minimizers in Lindbladian case,
characterized by constant tunnelling rate.

◮ Linear response theory for single-scale Lindbladians.
Reactive resistance immune to dephasing if ground states
define a Kähler geometry
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