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Situation and strategy

Situation

Analytical Exponential-like Decoherence processes for
Lorentzian type distribution of field modes in
Jaynes-Cummings model

Oscillating decay and trapping for distribution of field modes
with photonic band gap (PBG) edge near the resonant
frequency of the two-level system

Strategy

Delay the Decoherence process by engineering the reservoirs
of field modes

Search for inverse power laws in the exact dynamics
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The Jaynes-Cummings model

The Hamiltonian of the whole system:

H = HS + HE + HI , ~ = 1

HS = ω0σ+σ−, HE =
∞∑
k=1

ωka
†
kak , HI =

∞∑
k=1

(
gkσ+ ⊗ ak + g∗kσ− ⊗ a†k

)
The operators acting on the Hilbert space of the qubit:

σ+|0〉 = |1〉, σ+|1〉 = 0, σ− = σ†+

The operators acting on the Hilbert space of the field modes:

a†k | · · · , nk , · · · 〉E =
√
nk + 1 | · · · , nk + 1, · · · 〉E

N = σ+σ− +
∞∑
k=1

a†kak , [H,N] = [HI ,N] = 0
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Initial condition and time evolution

Initial unentangled condition between the qubit and the vacuum
state of the external environment:

|Ψ(0)〉 = (c0|0〉+ c1(0)|1〉)⊗ |0〉E

Exact time evolution

|Ψ(t)〉 = c0 |0〉 ⊗ |0〉E + c1(t) |1〉 ⊗ |0〉E +
∞∑
k=1

dk(t) |0〉 ⊗ |k〉E

where
|k〉E = a†k |0〉E , k = 1, 2, · · ·
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The equations of the exact dynamics: Ansatz

Interaction picture

|Ψ(t)〉I = eı(HS+HE )t |Ψ(t)〉

= c0|0〉 ⊗ |0〉E + C1(t)|1〉 ⊗ |0〉E +
∞∑
k=1

Λk(t) |0〉 ⊗ |k〉E

where
Λk(t) = eıωk t dk(t), k = 1, 2, . . .
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The equations of the exact dynamics: Convolution
equation

Equations for the coefficients:

Ċ1(t) = −ı
∞∑
k=1

gke
ı(ω0−ωk )t Λk(t),

Λ̇k(t) = −ı g∗k e−ı(ω0−ωk )t C1(t)

Closed equation for C1(t)

Ċ1(t) = − (f ∗ C1) (t),

where two-point correlation function of the reservoir of field modes

f
(
t − t ′

)
=
∞∑
k=1

|gk |2 e−ı(ωk−ω0)(t−t′)
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The correlation function and the spectral density

Two-point correlation function of the reservoir of field modes

f
(
t − t ′

)
=
∞∑
k=1

|gk |2 e−ı(ωk−ω0)(t−t′)

For a continuous distribution of modes η(ω)

f (τ) =

∫ ∞
0

J (ω) e−ı(ω−ω0)τdω,

where

spectral density function

J (ω) = η (ω) |g (ω)|2

frequency dependent coupling constant g(ω)
9/38
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Reduced density matrix

By tracing over the degrees of freedom of the reservoir:

ρ1,1(t) = = 1− ρ0,0 = ρ1,1(0) |G (t)|2 ,
ρ1,0(t) = ρ∗0,1(t) = ρ1,0(0) e−ıω0tG (t)

The term G (t) fulfills

Ġ (t) = − (f ∗ G ) (t),

with
G (0) = 1
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The Lorentzian spectral density and Exponential-like
relaxations (1)

Garraway model (Phys Rev A55 (1997) 2290):

Lorentzian spectral density function

J̃L (ω) =
1

2π

γλ2

(ω − ω0)2 + λ2

Reservoir correlation function:

f̃L (τ) =

∫ ∞
−∞

J̃L (ω) e−ı(ω−ω0)τdω =
γλ

2
e−λ|τ |

where

λ > 0: spectral width of the coupling
γ > 0: relaxation rate
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The Lorentzian spectral density and Exponential-like
relaxations (2)

The exact dynamics of the qubit:

ρ1,1(t) = 1− ρ0,0(t) = ρ1,1(0) |GL(t)|2

ρ1,0(t) = ρ∗0,1(t) = ρ1,0(0) e−ıω0tGL(t)

The weak and strong coupling regimes:

GL(t) = e−λt/2
(

cosh

(
d

2
t

)
+
λ

d
sinh

(
d

2
t

))
, λ > 2γ

GL(t) = e−λt/2

(
cos

(
d̂

2
t

)
+
λ

d̂
sin

(
d̂

2
t

))
, λ < 2γ

d̂ =
√

2γλ− λ2, d =
√
λ2 − 2γλ
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Lorentzian type spectral densities

Other known solutions for:

J̃L+ (ω) =
W1 Γ1(

ω − ω(1)
r

)2
+ (Γ1/2)2

+
W2 Γ2(

ω − ω(2)
r

)2
+ (Γ2/2)2

J̃L′ (ω) =
4Γ3/
√

2

(ω − ωr )4 + Γ4

J̃L− (ω) =
W1 Γ1

(ω − ωr )2 + (Γ1/2)2
− W2 Γ2

(ω − ωr )2 + (Γ2/2)2
, (PBG )

(Exponential-like decay and trapping)
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The Fox H-function

Very general function defined by:

Hm,n
p,q

[
z

∣∣∣∣∣ (a1, α1) , . . . , (ap, αp)
(b1, β1) , . . . , (bq, βq)

]

=
1

2πı

∫
C

Πm
j=1Γ (bj + βjs) Πn

m=1Γ (1− al − αls) z−s

Πp
l=n+1Γ (al + αls) Πq

j=m+1Γ (1− bj − βjs)
ds

0 ≤ m ≤ q, 0 ≤ n ≤ p
αj , βj > 0; aj , bj complex numbers such that no pole of
Γ(bj + βjs) for j = 1, 2, . . . ,m coincides with any pole of of
Γ(1− aj + αjs) for j = 1, 2, . . . , n.
C is a contour in the complex s-plane from ω− i∞ to ω+ i∞
such that (bj + k)/βj and (aj − 1− k)/αj lie to the right and
left of C , respectively. 15/38
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Special cases

The generalized Bessel-Maitland function

Jλµ,ν(z) = H1,3
1,1

[
z2

4

∣∣∣∣∣
(
λ+ ν

2 , 1
)(

λ+ ν
2 , 1
)
,
(
ν
2 , 1
)
,
(
µ
(
λ+ ν

2 − λ− ν, µ
)) ]

The Wright generalized hypergeometric functions

pΨq

[
z

∣∣∣∣∣ (ap,Ap)
(bq,Bq)

]
= Hp,q+1

1,p

[
−z

∣∣∣∣∣ (1− a1,A1) . . . (1− ap,Ap)
(0, 1), (1− b1, b1) , . . . (1− bq, bq)

]
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More special cases

The Meijer G -function

Gm,n
p,q

[
z

∣∣∣∣∣ (a1, . . . , ap)
(b1, . . . , bq)

]
= Hp,q

m,n

[
−z

∣∣∣∣∣ (a1, 1) . . . (ap, 1)
(b1, 1) , . . . (bq, 1)

]

The Generalized Mittag-Leffler function

Eγα,β(−z) =
1

Γ (γ)
H1,1
1,2

[
z

∣∣∣∣∣ (1− γ, 1)
(0, 1) , (1− β, α)

]
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Even more special cases

The MacRobert’s E -function

E (α1, . . . , αp;β1, . . . βq; z) = Hp,1
q+1,p

[
z

∣∣∣∣∣ (1, 1), (β1, 1) , . . . , (βq, 1)
(α1, 1) , . . . , (αp, 1)

]

The Whittaker function

Wk,m (z) = z−ρez/2H1,2
2,0

[
z2

4

∣∣∣∣∣ (ρ− k + 1, 1)(
ρ+ m + 1

2

)
,
(
ρ−m + 1

2 , 1
) ]
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Structured photonic band gap reservoirs

Discontinuity in the distribution of frequency modes

New phenomena in atom-cavity interactions (oscillatory
relaxation)
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Special reservoir with structured photonic band gap

Continuous spectral density

Jα (ω) =
2A (ω − ω0)α Θ (ω − ω0)

a2 + (ω − ω0)2
, A > 0, a > 0, 1 > α > 0

PBG edge in the qubit transition frequency

sub-ohmic at low frequencies ω ∼ ω0

inverse power law for ω � ω0 (similar to Lorentz)

Jα(ω) ≈ 2A/a2(ω − ω0)α for ω → ω+
0

Jα(ω) ≈ 2Aωα−2, for ω → +∞ (1)
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Lorentzian type and PBG spectral densities

(LP)

(LM)

(L4)

(E)

-4 -2 0 2 4 6 8 10
Ω

0.2

0.4

0.6
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1.0

1.2

1.4

J HΩL

Figure: Various forms of spectral densities. The curve (LP) represents
J̃L+ (ω), the sum of two Lorentzians; (LM) is J̃L− (ω), the difference of
two Lorentzians with PBG in the resonance frequency; (L4) represents
J̃L′ (ω) while (E ) represents JE (ω) with a PBG.
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Exact dynamics of the qubit

Exact density matrix evolution:

ρ1,1(t) = ρ1,1(0) |Gα(t)|2 , ρ1,0(t) = ρ∗0,1(t) = ρ1,0(0) e−ıω0tGα(t)

Exact result

Gα(t) =
∞∑
n=0

n∑
k=0

(−1)n zkα z
n−k
0 t3n−αk

k!(n − k)!

×

(
H1,1
1,2

[
z1t

2

∣∣∣∣∣ (−n, 1)
(0, 1) , (αk − 3n, 2)

]

− a2t2H1,1
1,2

[
z1t

2

∣∣∣∣∣ (−n, 1)
(0, 1) , (αk − 3n − 2, 2)

])
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The special case α = 1/2 and the Eulerian dynamics (1)

JE (ω) =
2A (ω − ω0)1/2 Θ (ω − ω0)

a2 + (ω − ω0)2

Exact dynamics (linear combination of Euler Incomplete Gamma
functions)

ρ1,1(t) = 1− ρ0,0(t) = ρ1,1(0) |GE (t)|2

ρ1,0(t) = ρ∗0,1(t) = ρ1,0(0) e−ıω0tGE (t)
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The special case α = 1/2 and the Eulerian dynamics (2)

GE (t) =
1√
π

4∑
l=1

R (zl) zl e
z2l t Γ

(
1/2, z2l t

)
where

R(z) =
(1− ı)

(
a1/2 + z

) (
ıa1/2 + z

)
2z
(
(1 + ı) a + 3a1/2z + 2 (1− ı) z2

)
z1, z2, z3, z4 roots of

Q (zl) = π
√

2/aA+ıaz2l +(1 + ı) a1/2z3l +z4l = 0, l = 1, 2, 3, 4

Giraldi F. and Petruccione F. (2010) arXiv:1011.0059
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Longtime behaviour

Asymptotic expansion identifies

time scale τ

Decoherence factor D

such that for time scales t � τ

G (t) ≈ Dt−3/2, for t →∞

Asymptotic form of ρ (t →∞)

ρ1,1(t) ≈ ρ1,1(0)|D|2t−3

ρ1,0(t) ≈ ρ1,0(0) exp(−iω0t)t−3/2
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Lorentzian vs Eulerian relaxation

C0

1 2 3 4 5 6
t

0.05

0.10

0.15

0.20

¡Ρ1,0HtL¥

Figure: The time evolution of coherent term, |ρ1,0(t)|, for a reservoir,

described by either J̃L (ω), both in strong coupling regime (red line) and
weak coupling regime (yellow line), or JE (ω) (blue line) spectral density
function, respectively.
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Exponential vs inverse power law

C0

5 10 15 20 25 30
t

0.005

0.010

0.015

0.020

0.025

0.030

0.035

¡Ρ1,0HtL¥

Figure: The relaxation of coherent term, |ρ1,0(t)|, over long time scales,
t � 1, τ ' 0.974, τB = 1 in strong coupling regime, τB = 0.05 in weak
coupling regime, of the reduced density matrix of a qubit, interacting
with a reservoir, described by either J̃L (ω), both in strong coupling
regime (red line) and weak coupling regime (yellow line), or JE (ω) (blue
line) spectral density function. 28/38
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The general case

Jα (ω) =
2A (ω − ω0)α Θ (ω − ω0)

a2 + (ω − ω0)2
, A > 0, a > 0, 1 > α > 0

Time scale for inverse power law behaviour:

τα = max

{
1,

∣∣∣∣ 3

z0

∣∣∣∣1/3 , ∣∣∣∣ 3
zα
z0

∣∣∣∣1/α , 3 ∣∣∣∣z1z0
∣∣∣∣
}

where

z0 = ıπAaα cos (πα/2)

zα = −2ıπAe−ıπα/2 csc (πα)

z1 = πAaα−1 sec (πα/2)− a2
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Towards 1/t qubit decoherence

Time scales t � τα:

Gα(t) ∼ −Dα t−1−α, t → +∞, 1 > α > 0

where

Dα =
2 ı α a2(1−α)e−ıπα/2 csc (πα) sec2 (πα/2)

πA Γ (1− α)

Exact dynamics of the qubit over long time scales

ρ1,1(t) = 1− ρ0,0(t) ∼ ρ1,1(0) |Dα|2 t−2−2α

ρ1,0(t) = ρ∗0,1(t) ∼ ρ1,0(0)Dα e−ıω0t t−1−α

Giraldi F. and Petruccione F. (2010) arXiv:1011.0938
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Spontaneous emission of an excited atom

Total Hamiltonian: H = HA + HE + HI

HA = ω0|1〉a a〈1|, HE =
∞∑
k=1

ωk b
†
kbk ,

HI = ı
∞∑
k=1

gk

(
b†k ⊗ | 0〉a a〈1| − bk ⊗ |1〉a a〈0|

)
.

Initial state of the system

|Ψ(0)〉 = |1〉a ⊗ |0〉E
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Time evolution of the population

The case α = 1/2

P(t) =
1

π

∣∣∣∣∣
4∑

l=1

χl R (χl) eχ
2
l t Γ

(
1/2, χ2

l t
)∣∣∣∣∣

2

.

Γ1
Γ2

Γ3

Γ4

Γ5

Γ6

0 5 10 15 20 25
t

0.2

0.4

0.6

0.8

1.0
PHtL

γ6: A = 1, a = 1000

γ5: A = 1, a = 100

γ4: A = 5, a = 70

γ3: A = 7, a = 35

γ2: A = 5, a = 10

γ1: A = 1, a = 1,
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Time evolution of the population (2)

The general case

Pα(t) =

∣∣∣∣∣
∞∑
n=0

n∑
k=0

(−1)n zkα z
n−k
0 t3n−αk

k!(n − k)!

(
H1,1

1,2

[
z1t

2

∣∣∣∣∣ (−n, 1)
(0, 1) , (αk − 3n, 2)

]

− a2t2H1,1
1,2

[
z1t

2

∣∣∣∣∣ (−n, 1)
(0, 1) , (αk − 3n − 2, 2)

])∣∣∣∣∣
2

For t � τα

Pα(t) ∼ ζα t−2(1+α), t → +∞, 1 > α > 0,

where

ζα =
4α2 a4(1−α) csc2 (πα) sec4 (πα/2)

π2A2 (Γ (1− α))2
.
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Spontaneous emission of an excited TLA in the presence of
N-1 TLAs in the ground state

The Dicke model

HN =
∞∑
k=1

(ωk − ω0) b†kbk + ı

∞∑
k=1

gk

(
J1, 0 b

†
k − J0,1 bk

)
where

Jl ,m =
∑N

n=1 | l〉(n) (n)〈m|, l ,m = 0, 1,

J2 = J23 + (J2,1J1, 2 + J1, 2 J2,1) /2

J3 = (J2, 2 − J1,1) /2 J3|J,M〉 = M|J,M〉
The superradiant states (initial condition): |J,M = 1− J 〉
Ref: S. John and T. Quang, Phys. Rev. A 50 (1994) 1764.
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The exact decay

PN, α(t) =

∣∣∣∣∣
∞∑
n=0

n∑
k=0

(−N)n zkα z
n−k
0 t3n−αk

k!(n − k)!

×

(
H1,1
1, 2

[
zN,1 t

2

∣∣∣∣∣ (−n, 1)
(0, 1) , (αk − 3n, 2)

]

− a2t2H1,1
1, 2

[
zN,1 t

2

∣∣∣∣∣ (−n, 1)
(0, 1) , (αk − 3n − 2, 2)

])∣∣∣∣∣
2

zN, 1 = π AN aα−1 sec (πα/2)− a2, zN, 0 = N z0, zN, α = N zα
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Time scales and critical number of atoms for inverse power
laws

The long time scale:

t � τN, α, τN, α = max

{
1,

∣∣∣∣ 3

zN, 0

∣∣∣∣1/3 , ∣∣∣∣ 3
zα
z0

∣∣∣∣1/α , 3 ∣∣∣∣zN, 1zN, 0

∣∣∣∣
}

PN, α(t) ∼ ζN, α t−2(1+α), 1 > α > 0

ζN, α =
4α2 a4(1−α) csc2 (πα) sec4 (πα/2)

π2A2N2 (Γ (1− α))2

N � N(?)
α ⇒ ζN, α � 1, N(?)

α =

[
2α a2(1−α) csc (πα) sec2 (πα/2)

πA Γ (1− α)

]
Ref: F. Giraldi and F. Petruccione (2010) ArXiv:1011.3014
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K1
K2

K3

K4

K5

K6

0 2 4 6 8 10 12
t

0.2

0.4

0.6

0.8

1.0
PN HtL Parameters: a = 20, A = 1/3

K6: N=2

K5: N=7

K4: N=30

K3: N=50

K2: N=90

K1: N=1000

Suppression of trapping for large N

Critical number: N∗1/2 = 21
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Thank you for your attention!

petruccione@ukzn.ac.za
http://quantum.ukzn.ac.za
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