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Introduction

Situation and strategy

@ Analytical Exponential-like Decoherence processes for
Lorentzian type distribution of field modes in
Jaynes-Cummings model

@ Oscillating decay and trapping for distribution of field modes
with photonic band gap (PBG) edge near the resonant
frequency of the two-level system

@ Delay the Decoherence process by engineering the reservoirs
of field modes

@ Search for inverse power laws in the exact dynamics
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Jaynes-Cummings model

The Jaynes-Cummings model

The Hamiltonian of the whole system:

H = Hs + Hg + H,, h=1
(0.) (o.0]
Hs = wporo_, HE:Zwka;r(ak, H, :Z<gka+®ak —I—g,fa_®a£>
k=1 k=1

The operators acting on the Hilbert space of the qubit:
opl0) =1]1), off1)=0, o_ =0}
The operators acting on the Hilbert space of the field modes:

31!"',nk,-">E=\/nk+1|"',nk+1,"'>E

(0.)
N=o.0_+Y alax, [H,N]=[H,N=0
k=1
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Jaynes-Cummings model

Initial condition and time evolution

Initial unentangled condition between the qubit and the vacuum
state of the external environment:

[W(0)) = (c0l0) + c1(0)[1)) ® [0)e

Exact time evolution

[W(t)) = co0) @ [0)e + c1(t) [1) ® |00 + Y di(£) [0) ® k)&
k=1

where
k)e = al|0)E, k=1,2,---
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Jaynes-Cummings model

The equations of the exact dynamics: Ansatz

Interaction picture

() = esHiotu(r)

— al0)® e+ GOIL @ e+ 3 AE)[0) @ ke
k=1

where
Ai(t) = gkt de(t), k=1,2,...
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Jaynes-Cummings model

The equations of the exact dynamics: Convolution
equation

Equations for the coefficients:

Gt) = —1 ) gre o DIN (1),
k=1
Ae(t) = —ugfe ot Cy(t)

Closed equation for Ci(t)

Gi(t) = — (f » Gi) (1),

where two-point correlation function of the reservoir of field modes

f(t—t) Zygkf —rsn)(t—)
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Jaynes-Cummings model

The correlation function and the spectral density

Two-point correlation function of the reservoir of field modes
(=) = St -t

For a continuous distribution of modes n(w)

f(r) = / J(w) e om0 gy,
0

where

@ spectral density function

J () =1n(w)lg @)

e frequency dependent coupling constant g(w)
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Jaynes-Cummings model

Reduced density matrix

By tracing over the degrees of freedom of the reservoir:

p1a(t) = =1—poo=p1100)|G(t)]*,
pro(t) = pgi(t) = p1o(0) e "t G(t)

The term G(t) fulfills

G(t) =~ (F+ G) (1), J

with
G(0)=1
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Jaynes-Cummings model

The Lorentzian spectral density and Exponential-like
relaxations (1)

Garraway model (Phys Rev A55 (1997) 2290):

@ Lorentzian spectral density function

@ Reservoir correlation function:

O A

— 00

where
@ A > 0: spectral width of the coupling

@ v > 0: relaxation rate
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Jaynes-Cummings model

The Lorentzian spectral density and Exponential-like
relaxations (2)

The exact dynamics of the qubit:

p11(t) =1 — poo(t) = p1,1(0) |GL(t)]?
p1o(t) = pg1(t) = p1,0(0) e“0F G (t)

The weak and strong coupling regimes:
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Jaynes-Cummings model

Lorentzian type spectral densities

Other known solutions for:

W1 Fl W2 r2

J L(w) = +

' (w - w£1)>2 + (1/2)? (w - w£2))2 + (M2/2)?

- 3 4r3/3/2

o) = (w—w, )+
jLi (w) _ W1 F1 . W2 r2 (PBG)

(w—w)® +(M1/2°  (w—w)®+(T2/2)*

(Exponential-like decay and trapping)
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Jaynes-Cummings model
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The Fox H-function

The Fox H-function

Very general function defined by:

(31,061) 9 oo .,(ap,ap)

(b1> 51) PR (bq7 ﬁq)
1 7,1 (b + Bis) My qF (1 —a —ays)z°
- = s
2m Jo M), 4T (a1 + ays) I'IJ‘.’:mHF (1 — bj — Bjs)

Hmsn

pa |%

e0<m<q,0<n<p

® «j, Bj > 0; aj, bj complex numbers such that no pole of
F(bj + Bjs) for j =1,2,..., m coincides with any pole of of
MN1—aj+ajs)forj=1,2,...,n.

o C is a contour in the complex s-plane from w — ico to w + oo
such that (b; + k)/B; and (aj — 1 — k)/«; lie to the right and

left of C, respectively. 15/38



The Fox H-function
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The Fox H-function

Special cases

The generalized Bessel-Maitland function

The Wright generalized hypergeometric functions

(ap, Ap)
(bg, Bq)

pVq

V4

jop

_ ypatl|_, (1—a1,A1)...(1—ap,Ap)
Lp (071)7(1_b17b1)7"‘(1_bQ7 q)

v
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The Fox H-function

More special cases

The Meijer G-function

Gm ,n [
The Generalized Mittag-Leffler function

(1_771)
(071)7(1_5704)

(a1,...,ap)
(b1,...,bq)

1 11
’y —_ b
Eaﬂ(—z) = W H172 V4
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The Fox H-function

Even more special cases

The MacRobert's E-function

1,1 1), ... (Ba, 1
E(a1,...,0p B1,...8q:2) = Hg_"_ll?p [z‘ Eajl’)f)(:éil_?. ’)(aap, 17)(5(7 ) ]

4

The Whittaker function

(p—k+1,1)
(ptm+3),(p—m+3,1)

22

Wi, m (z) = ZﬁpeZ/2H21:§ 4

V.
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Structured photonic band gap reservoirs

Structured photonic band gap reservoirs

@ Discontinuity in the distribution of frequency modes

@ New phenomena in atom-cavity interactions (oscillatory
relaxation)
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Structured photonic band gap reservoirs

Special reservoir with structured photonic band gap

Continuous spectral density

2A(w — wp)® © (w — wp)

2 + (w —wp)?

Jo (w) =

@ PBG edge in the qubit transition frequency
@ sub-ohmic at low frequencies w ~ wy

@ inverse power law for w > wy (similar to Lorentz)

=
&
2

2A/a*(w — wp)® for w — wg
2Aw®™2, for w — 400 (1)

=
&
2
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Structured photonic band gap reservoirs

Lorentzian type and PBG spectral densities

Figure: Various forms of spectral densities. The curve (LP) represents
Ji, (w), the sum of two Lorentzians; (LM) is J._ (w), the difference of
two Lorentzians with PBG in the resonance frequency; (L4) represents

Jir (w) while (E) represents Jg (w) with a PBG.
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Structured photonic band gap reservoirs

Exact dynamics of the qubit

Exact density matrix evolution:
pra(t) = p11(0) [Ga()|*,  pro(t) = p51(t) = p1,o(0) e Ga(t)

Exact result

© n (_1) é n— kt3” ak
Galt) = 2, K(n— K]
n=0 k=0
) ( 71)
<\ Hz (22| (1) ok — 3m.2)
_ 2441, 2 (*nvl)
FEH2 | AT (0,1), (ak —3n—2,2) ])
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Structured photonic band gap reservoirs

The special case @ = 1/2 and the Eulerian dynamics (1)

2A (w — wo)? O (w — wo)
a? + (w — wp)?

JE (w) =

Exact dynamics (linear combination of Euler Incomplete Gamma
functions)

p11(t) = 1—poo(t) = p1,1(0) |Ge(t)?
pro(t) = po1(t) = p10(0) e ™ Ge(t)
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Structured photonic band gap reservoirs

The special case @ = 1/2 and the Eulerian dynamics (2)

4
ZR(Z/ z/ez/ r(1/2, z? t)
=1

(1—12) (a2 +2) (122 + 2)
2z ((L+1)a+3a/2z+2(1 —1) 2?)

R(z) =
@ 71, 2o, z3, z4 roots of
Q(z) = nv/2/aA+1az?+(1 +12) a/?z3+2} =0, 1=1,2,3,4
Giraldi F. and Petruccione F. (2010) arXiv:1011.0059
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Structured photonic band gap reservoirs

Longtime behaviour

Asymptotic expansion identifies
@ time scale 7
@ Decoherence factor D

such that for time scales t < 7

G(t)~ Dt™32, for t— oo

Asymptotic form of p (t — o0)

p11(t) =~ p11(0)|Dft™3

pro(t) ~ pro(0)exp(—iwot)t 3

Q
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Structured photonic band gap reservoirs

Lorentzian vs Eulerian relaxation

[o1,00]
0.20 <

0.15

0.05 B

Figure: The time evolution of coherent term, |p10(t)|, for a reservoir,
described by either J; (w), both in strong coupling regime (red line) and
weak coupling regime (yellow line), or Jg (w) (blue line) spectral density
function, respectively.
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Structured photonic band gap reservoirs

Exponential vs inverse power law

|o1.00]
0.035

0.030
0.025
0.020
0.015
0.010

0.005

Figure: The relaxation of coherent term, |p1 0(t)|, over long time scales,
t> 1, 7~ 0.974, 75 = 1 in strong coupling regime, 75 = 0.05 in weak
coupling regime, of the reduced density matrix of a qubit, interacting
with a reservoir, described by either J; (w), both in strong coupling

regime (red line) and weak coupling regime (yellow.line); or Jg (w)-(blue
lFma) araetrs(l Alemeisy EnmEtham 28/38



Structured photonic band gap reservoirs

The general case

2A (w — wo)® © (w — wp)
a2 T (w — w0)2

Jo (W) =

Time scale for inverse power law behaviour:

V3 | L qMa |4
Ta =max L [=| |32 [3|=
7 7y 7
where
@ zp = wwAa® cos(ma/2)
0 z, = —2urAe /2 csc (mar)

o z1 = mAa* Lsec (ra/2) — a?
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Structured photonic band gap reservoirs

Towards 1/t qubit decoherence

Time scales t > 7,:
Go(t) ~ =Dy t7179, t — +oo, 1>a>0

where

21« a2(1=a) g=1ma/2 coc (1) sec? (mar/2)
“ TAT (1 — )

Exact dynamics of the qubit over long time scales

p11(t) = 1—poo(t) ~ p1,1(0) [Dul* 7272
pro(t) = poa(t) ~ p1,o(0) Dy e ™0t e 17

Giraldi F. and Petruccione F. (2010) arXiv:1011.0938
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Spontaneous emission and the Dicke model

Spontaneous emission of an excited atom

Total Hamiltonian: H = Ha + He + H,

Ha = wol1), a(1], HE:ZWk bl by,
k=1
Hi=1> e (bZ ®]0)a (1] — by ® y1>aa<0\) .
k=1

Initial state of the system

[W(0)) = [1)a ®|0)e

31/38



Spontaneous emission and the Dicke model

Time evolution of the population

The case a =1/2

2
4
]. 2 D
P(t) = — D xiR(x) €91 (1/2,x7t)
I=1
P()
e v6: A=1, a= 1000
o.si ) v5: A=1, a= 100
06 r\\\ B Va: =5 a=70
|\
0all \ v3: A=17, a=35
‘\\ \\\ Ya
02l \ S~ ., - Y2: A=5,a=10
\ N =
\\'\L\;; 7’3777777777‘77;:**71 r«l,/l: A = ]_Y a—= 1'
0 5 10 15 2 = !

32/38



Spontaneous emission and the Dicke model

Time evolution of the population (2)

The general case

e m n ok n—k 3n—ak
Pa(t) = HZ:M_O( 2 kz!(,,zo_ )t_ (H11321 2t ((0 1) )(ak 3n)2) ]
2
—aHy; | At ((B,ni)l?(ak ~3n-2,2) ] >
For t > 7,
Po(t) ~ o t72H) ¢ foo, 1>a>0,
where

4 o2 a*(1=%) csc? (ma) sec* (ma/2)
m2A2 (I (1 - a))?

a =
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Spontaneous emission and the Dicke model

Spontaneous emission of an excited TLA in the presence of

N-1 TLAs in the ground state

The Dicke model

Hy = (wk — wo) blbk +1 ng (Jl,o b;r( —Jo1 bk)
k=1 k=1

where

U J/,m:ZnN:1|I>(n)(n)<m’7 l;m=0,1,

0 J2= J32 aF (J2,1J172 + 2 J2,1) /2

o = (h2—Jh1)/2 J|d, M) = M|J, M)
The superradiant states (initial condition): [JJM =1—J)
Ref: S. John and T. Quang, Phys. Rev. A 50 (1994) 1764.
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Spontaneous emission and the Dicke model

The exact decay

B ee W (_N)n k n k p3n—ak
Pra(t) =2 KR!
n=0 k=0

1,1 2| (—=n,1)

8 (HL? NI (0,1), (ak — 3n,2) ]
(~n,1) 2
2.2,,1,1 2| \—h,
B |zt (0,1),(ak—3n—2,2)]>
ZN1 :ﬂANaO‘_lsec(ﬂa/2)—az, zy,0 = N zo, zZN,o = Nz,
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Spontaneous emission and the Dicke model

Time scales and critical number of atoms for inverse power

laws

The long time scale:
1/3 1/«
,3

Zo
9 & —

20

ZN1
ZpN,0

ZN, 0

}

t> N0 TN,a = max{l,

Pn,a(t) ~ (N, a 72049 1> a>0

o = 4 a? a*(1-9) csc? (ma) sec* (ma/2)
Noa T2A2N2 (T (1 — )2

2 o 22179 csc (mar) sec? (7ra/2)]

N> N&) 1. N® =
> Na” = o <1 Na TAT (L= a)

Ref: F. Giraldi and F. Petruccione (2010) ArXiv:1011.3014
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P Parameters:

K6:

08f|

\ g ‘ K5:

AN D K2:

0.2]

Spontaneous emission and the Dicke model

Suppression of trapping for large N

' K1:

a=20,A=1/3
N=2

N=7

N=30

N=50

N=90

N=1000

Critical number: Nik/z =21
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Spontaneous emission and the Dicke model

Thank you for your attention!

petruccione@ukzn.ac.za
http://quantum.ukzn.ac.za
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