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Beam Foil Spectroscopy

An experiment to start with!
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Need of a Quantum Theory of Relaxation Phenomena

pecay @ Coherent superposition of
system eigenstates

= non-trivial interplay between
Coherent Dynamics and
Energy-Relaxation /Decoherence

Time

Contact with microscopic quantum description at large times

@ The fundamental equations governing the basic laws of
Physics are time reversible and not dissipative.

@ Macroscopic irreversible equations obtained through

e averaging over microscopic degrees of freedom (stochasticity)
o energy-time scale separation (ueV versus meV, etc.)
o neglecting recollisions (Markovicity)
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Van Hove Limit in Quantum Open Systems

o H=HsQ®HpB Hy=Hs®1+1® Hp
o H=Q®d, Hy = Hy + \H'

System observables in Heisenberg picture

@ The state on H is p = ps ® 03

o At time t, O\(t) = et Os @ 1 et

o We measure (0*(t)), = tr[p OA(t)] = tr[ps O2(t)] where
o 02(t) = Py O\(t) system observable at time t

© P X®Y =tr(ogY) X ® 1 partial trace projection

Markovian Approximation in the Van Hove Limit

o Define W) 0Os := Og‘(t) system evolution superoperator
o Expect W) ~ exp{Lyt}, 0<t<A 27, A~0

[1] L. Van Hove, Physica 21 517 (1955)
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Exact System Evolution : the Memory Kernel

Formulation on operator spaces
e B = By ® By Banach spaces B; = Pi(B), Pi=1-FPp
@ Z0 =i[Hy, O] and AO = i[H', O] Liouvillians
o W) = Pyexp{(Z+ M\A)t}|s, subsystem evolution

The Nakajima-Zwanzig master equation

t t1
W) = X2 + A2 / dt; / dtr X{*p, Aor Up _, Aro Wi
0 0

e Aj = P;AP; splitted interaction
o U} =exp{(Z + Moo+ \u)t}, X} = PoU}

[1] Nakajima, S., Prog. Theor. Phys. 20(6) 948-959 (1958)
[2] Zwanzig, R, J. Chem. Phys. 33 1338 (1960)
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The Born-Markov approximation: Davies generator

Markovian Hypotheses (Bounds on Dyson Expansion)

\—%F
/ dx HAOIU)?AIOH < C, |)\| <1
0

A—2F
V7 >0, lim / dx || Ag1 (U3 — Uy)Aso| =0
A—0 0

Davies Markovian Approximation Theorem (MAT)

o V7>0 lim sup W) —exp{Lt}||=0
A=0 o<i<a-27

o with Ly := Zy + Mg + /\2KD, and
o Kp = fooo dr U_,Ap1U,A1p Davies generator

@ Kp well defined for arbitrary Hs spectra

[1] E. B. Davies, Markovian Master Equations I, Math. Ann. 219 147-158 (1976)
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Confined Systems : Davies averaged generator®

Time averaging map I

Then Ly = Zy + A2K?
@ satisfies MAT iff Kp does
@ incorporates Pauli Master Equation as [Zp, Kg] =0
o describes resonances of the Liouvillian (Fermi Golden Rule)?3

@ generates a Quantum Dynamical Semigroup

e only if Py is a partial trace
@ only when Apy = 0 (no average forces on the system)

o K% well defined only if Zy has discrete spectrum

[1] E. B. Davies, Commun. Math. Phys. 39 91-110 (1974)
[2] Jaksic V., Pillet C.-A., Ann. Inst. H. Poincare Phys. Theor. 67 425-445 (1997)
[3] Derezinski J., Jaksic V., J. Stat. Phys. 116 411-423 (2004)
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Infinitely Extended systems : Kp is the only candidate

all of R*. The Markovian limit for systems with an H¢
with a discrete spectrum, is, in essence, understood,
whereas the case of an H ; with a continuous spectrum
still presents certain difficulties,

[1] H. Sphon, Rev. Mod. Phys. 53 3 (1980)

Kp employed only under severe restrictions

ABSTRACT. — We consider a non-relativistic quantum mechanical
particle in an external potential well, coupled to an infinite free quantum
field. We prove rigorously that with certain cut-offs and in the weak
coupling limit, the particle decays exponentially between its bound states
as predicted by perturbation theory. We also prove the existence of a « dyna-

[2] E.B. Davies, Ann. Inst. Henri Poincaré 281 (1978) o

Why Kp is so bad?

@ It does not generate a proper QDS
[4] Diimcke R and Spohn H, Z. Phys. B 34 419 (1979)

@ is it really a big problem after all, or just some transient?

David Taj david.tajOgmail.com



Failure of Kp approximation at large times

Case of a two-level quantum-dot system in a thermal bosonic environment

One particle sector

o= (o i )=(3 2)

sige @ Very small perturbation of
/ thermal distribution at
t=20
: @ Characteristic interlevel
\ splitting: 30 meV
2 i & i o Very high temperatures!

= [p=)

@ Analytically solved: divergences don't come from numerics!

e Totally unphysical results for large times/steady states

[1] Taj D., lotti R.C., Rossi F. , Eur. Phys. J. B 72 3 (2000)
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The main idea : symmetry could recover probabilities

I remember once when I was in Copenhagen, that Bohr
asked me what | was working on and | told him 1 was trying
to get a satisfactory relativistic theory of the electron, and Bohr
said ‘But Klein and Gordon have already done that!” That
answer first rather disturbed me. Bohr seemed quite satisfied
by Klelns solunon but I ‘was not bﬁ.ausc of Lhc negative
prob about
etting a theory which would have only positive probabilities:

Conversation between Dirac and J. Mehra, March 28, 1969, quoted
by Mehra in Aspects of Quantum Theory, ed. by A. Salam and E. P.
Wigner (Cambridge University Press, Cambridge, 1972).

FIgU reé. S. Weinberg " The Quantum Theory of fields”, vol 1, Cambridge University Press (1995)

Probabilities must be positive!

@ It could help in getting a good (unique?) evolution equation
o Hidden time symmetries in the memory kernel could
imply positive probabilities!
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The Van Hove Limit: a new approach

The Nakajima-Zwanzig master equation

t t1
W) = X2 + A2 / dt; / dtr X{*,, Aor Up _, Ao Wi
0 0

o’
. f B . B

Davies' change of variable in the integral kernel

( o ) _ ( 0 N > ( t1 ) @ linear homogeneous
r L=l t2 @ )2 jacobian

V.

Our change of variable in the integral kernel
o\ [ N%/2 X?)2 t P
(r)_< 1 1 b, + 0 for some g € R

(we will remove the g-asymmetry in a second step)
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Dynamical Scattering Time T,

W/\

A—27

Time rescaled interaction picture: W2 = x*

A—2r

A A A A A
W= 1;({]5)10& Xox2—g—q01UrAwXszg o g Wl (s 1q)

o Llet T\ = [A[5, A~0, 0<Eé<?2

—il
o e.g. Ty = (|\|||[PoA2Po|Y/?)
Dynamical Scattering Time

Memory effects removal under Markovian Hypotheses

r 2 2
e (>0=> ff dodr =~ fonJfOOOdre_(i)/TA, A = @
D(\,9)

Ni YN N
e <2 WX, o~ W, A~0
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Averaging with Dynamical Scattering Time
Averaging among our generators

©  (1/2?
K(q77—) :/O dre 12 U_g_,_qul U A1 Ué—q = Uq K(07T) U_q4

° m corresponds to K(uo,T): use gaussian with o = T, !

Our Dynamical Time averaged generator

+o0o iy
KT: Po {/ dtl (D(tl)/ tgq)(tl)}Po
—6% s P
®(t) = /o7(t) U_t(A—Aoo) U, or(t) = \/%Tefﬁ

Results under the same Markovian Hypotheses of Davies
@ MAT for Ly = Zy + Moo + )\2K7—A 0<t< )\_2?, A~0)
o L) always well defined VA # 0, independently of Zy spectrum!

@ If ||Po|]| =1 then exp{L,t} is a contraction!!!

o limz_ o0 Kiy-17 = KhD when 3, recovering Davies

V.
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Kt generates a QDS on Operator Algebras

Let B, By be Operator Algebras with identity
o Let Py: B — By Conditional Expectation
o Let Py(i[H.,"]) generate automorphisms (Hy = Ho + AH')

"The" Quantum Fokker-Planck Equation

. . dw ~
atX = PO(I[H)\,X]) + )\21 |:/ %PO(‘CT\M‘C)\UJ))X
A2 ~ ~ oA v
— 5 {Po(LrL), X} + A"Po(LAX L)
Dynamically Averaged Coupling

+0o . ~
Ly, = / dt \/ITo() €F Ud(H')  Ero = Pi(La)
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A Free Quantum Particle in 3D Euclidean Space
Inelastically Coupled to a Fermionic Heath Bath

Limit Dynamics for Ho = Hs ® 1+1® Hg, H' =Qx ®
o h(t) = tr[os® U (P)] — tr[osP]?, first order corrected!
° Aw,A — i \/ﬁ t eiwt eiHst Q e—stt

KT(A)X == —271'1/\/7 [Aw)\Aw/\,X]

gt t
+2r Eh(w) <—2 {AL A X} + AwAXAw,A)

@ Markovian Hypotheses verified if [ dt h(t)(1+ [t|) < oo

e For Hs = ¢(P) = %2 in 3D, (p|Q|p") = q(ep,ep), g € S(R?),
there 3L s.t. | T(A\)Kyn) — Ll =0, and [Z, L] = 0.

@ Thermal distributions of observabLes affiliated to Hs are
stationary under L if furthermore h € S(R).

o | found a Pauli Equation with FGR conditionally on ps = pg ...

David Taj david.tajOgmail.com



Summary of this section

Abstract. We study the van Hove limit for master equations on a Banach
space, and propose a contraction semigroup as limit dynamics. The gen-
erator has a Lindblad form if specialized to C"-algebras, is always well
defined irrespectively of the subsystem spectrum, includes first-order con-
tributions, and returns Davies averaged generator, when the latter is
defined. The theory is applied to the case of a free particle in contact
with a heat bath.

[1] Taj D., Ann. Henri Poincaré Online First (2010)
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Time Independent Mesoscopic Quantum Transport

A device modelling approach

f(contact ) = f, (7) b e e S S

e
Incoming particles

contact

s q

contact

-
Incoming particles

WR, Frensley, Rev. Mod. Phys. 62, 3 (1990)

Some Existing Models in Perpendicular Quantum Transport

o Landauer-Buttiker! : NESS |-V

@ Quantum Kinetics (Haug, Jaujo) : quantum truncation.
o Lattice models (Datta) : atomistic devices

[1] W. Aschbacher, V. Jaksic, Y. Pautrat, C.-A. Pillet, J. Math. Phys. 48 032101-032129 (2007)

@ Full space and time resolution of charge density in device

@ Boltzmann Transport Eq. with Up-wind BC's as 4 — 0
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Quantum Transport: our model (1)

Physical ideas

e LC, RC, D all infinitely extended: quantum non-locality
@ LC-D and RC-D interactions spatially localized

[ % = | Physical Subsystem

| x +f—Ppx s o o F=FQFq4RF,

° <O/®Od®or>:
TI‘[E/ O/] TI‘[Er Or] Oy

Spatial locality: interaction implemented

o H, = [ G(x)VL(x)W4(x)dx + h.c., (z=1,r)
o G 0<—<x +1/2)), Gi(x) = B(x— 1/2)
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Quantum Transport: our model (2)

Limit dynamics: the many body equation

8tX:i[Hd,X]+)\7dkgzi(k) (i [/:!::ai( Z )at (Vi ), X

R, X+ VDXV

Fermi-Dirac 7 , g =1, & =1-13

Scattering probability amplitude
Wz (K) = /b5, (Wi —wl—w) Gk, k')

Excellent physical interpretation, and exactly solvable!

Gaussian states are invariant
we(al(fr) -~ a'(f)a(gy) -~ alg1)) = dnw det(f;, G g))
@ G obeys an associated closed linear equation
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A Wigner Transport Equation (WTE) for a free device

The (impoper) Wigner Function on the "classical” phase space

o Classical picture : density f(q, p)
o Quantum picture : f(g,p) = [ & &P (q+ £|G|q — §)

For a free device hy = %, the Eq. for G becomes
WTE  Of = —pOgf — 3{L*, f},, + S
o Li(g,p) = L}(q) = V2rN2T(N) 0[(q +1/2)]
o SNa.p) = L}a) [ £ £,(0) akgsine (&)
° Ap(4) = 3772
= classical scheme recovered for i — 0!

= classical scheme recovered for g — +oc!
= Heisenberg principle appears very naturally!
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A Wigner Transport Equation (WTE) for a free device

Quantum source Classical Source

A A dp’ ¢l / 1 . p—p’
° 5i(a,p) = Li(9) J 5 15,(P)) mpgy sine (Ap(q)>
_h_ 1
° Ap(q) = 2q+1/2]
= classical scheme recovered for i — 0!
= classical scheme recovered for g — £o0!
= Heisenberg principle appears very naturally!
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Summary of this section

We have proposed a WTE for mesoscopic time independent
quantum transport (Quantum Collisionless Boltzmann Equation)

Although still preliminary, our WTE

1
Oif = —pOgf — §{LA, e, +S*

is physically robust (guarantees positivity at all times)

it's classical limit is a well known PDE (Collisionless
Boltzmann Equation) with appropriate (Up-wind) BC's

it's a limit dynamics of the exact hamiltonian evolution
fully embodies quantum uncertainty principles

the solution offers a full space and time resolution of device

phonons and nonzero average forces could be accounted for...
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Quantum Brownian Motion

Einstein’s kinetic theory of the Brownian motion, based upon light water molecules
continuously bombarding a heavy pollen, provided an explanation of diffusion from the
Newtonian mechanics. Since the discovery of quantum mechanics it has been a challenge
to verify the emergence of diffusion from the Schrodinger equation.

Figure 2; Einstein’s explanation to Brown's picture

[1] L. Erdos, Lecture notes on Quantum Brownian Motion,

Stochastic dynamics
(no memory)

CLASSICAL MECHANICS

Random walk (Wiener)

QUANTUM MECHANICS

Randem kick model with
zero time corr. potential
(Pillet, Schenker-Kang)

Hamiltonian particle in a
random environment
{one body)

Hamiltonian particle
in a heat bath
(randomness in the
many-body data)

Lorentz gas: particle
in random scatterers
(Kesten-Papanicolao)
(Komorowski-Ryzhik)

Einstein’s kinetic model
(Diirr-Goldstein-Lebowitz)

Anderson model

or quantum Lorentz gas

(Spohn, Erdés-Yau, Erdés-Salmhofer-Yau
Disertori-Spencer-Zirnbauer)

Electron in phonon

or photon bath

(Erdss, Erdés-Adami, Spohn-Lukkarinen
De Roeck-Frohlich)

Periodic Lorentz gas
in the

Sinai billiard
Bunimovich-Sinai

one-body initial data)

Ballistic
(Bloch waves, easy)

Many-body i
Hamiltonian

Nonlinear ann eq
(short time: Lanford)

Quantum NL
(unsolved)

Les Houches Summer School (2010)




The diffusion constant

Heuristically, for N > 0 interactions
o (6x) ~ VN
o N~ t
(6x)> =D t, t — 00

(X2)(6) = t(o(X) = [ dp BE1p.)(8) (o)

o [p](t)(p) :=(p— 5| p(t) [P+ 5)
@ r: relative momentum

= Only low relative momenta matter : need [p,] up to o(r?)
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A Translation Invariant Model
Model Hamiltonian for a Quantum Particle in R

o Hy=¢(P)®1+1® [ dqwgblb,
o H'= [ dpidp2dq |p1){p2| ® bg #(q) é(pr — P2 — q) + h.c.
Relative Momenta Fibration of the Limit Dynamics

Olplr = Li\ (o]
e {f(P)} is left invariant under K

@ The zero fiber is the Pauli Equation

def(p) = A2/dp’ {m(p,p') f(p") — m(p',p) f(p)}

@ with FGR transition rates

m(p,p') = {W(P - P/)‘sz—p"S(ep — € — Wp—p/)
+ |o(p’ — p)|2(1 + Np—p)0(epr — €p — wp/_p)}
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Summary and Conclusions

Generalised Van Hove Limit

We studied weakly perturbed projected one-parameter group of
isometries. We have found a generator that

@ satisfies MAT in the Van Hove Limit under
Davies markovian hypotheses

@ is always well defined, independently of subsystems details

@ generates contractions and a QDS in operator algebras

@ generalizes Davies generator

It furnishes a way to understand infinite open systems such as

@ A free particle in 3D locally coupled to a fermionic heath bath
@ Nanodevices (Quantum Collisionless Boltzmann Equation)

@ A free particle in 3D non-locally coupled to bosonic bath?
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A Wigner Transport Equation (WTE) for a free device

Quantum source Classical Source

/

o SMNa,p) = L}MNa) [ £],(P) mp sinc (K;(Z)>

o L(Ldaf+Fl)(a.p) =LMa) [ L F(q.p) x4 SinC(ﬁ,Z(’Z;))

p(q)

= with only left reservoir, say, f(q,p) = f§“ is stationary!
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