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Open quantum random walks (OQRW) are introduced as quantum Markov chains on graphs. It is shown
that OQRWs contain as a limit classical random walks. A suggested physical realization procedure for OQRW
can recover unitary quantum random walks. A straightforward unravelling of the OQRW allows for stochastic
simulations in terms of quantum trajectories. Simple examples of OQRWs show a rich dynamical behavior. In
particular, promising dissipative mechanisms of transport of excitations can be implemented in the formalism,
which makes them interesting candidates for the investigation of quantum efficiency.

Introduction.Random walks [1, 2] are a useful mathemat-
ical concept, which found successful applications, e. g., in
physics [2], computer science [3], economics [4] and biology
[5]. Basically, the trajectory of a random walk consists of
a sequence of random steps on some underlying set of con-
nected vertices [2]. It is appealing to extend the concept of
the classical random walk to the quantum domain. QRWs can
be introduced in a discrete time [6] and in a continuous time
[7] fashion. While for a classical random walk the probability
distribution of the position of the walker depends only on the
transition rates between the nodes of the graph, in the quan-
tum case [8] the probability amplitude of the walker depends
on the dynamics of his internal degrees of freedom. The ap-
pearance of interference effects makes these walks truly quan-
tum.

Unitary quantum random walks found wide application in
quantum computing [9]. Although, physical implementation
of any quantum concept is usually difficult due to unavoid-
able dissipation and decoherence effects [10], experimental
realizations of unitary quantum random walks have been re-
ported. Implementations with negligible effect of decoher-
ence and dissipation were realized in optical lattices [11], on
photons in waveguide lattices [12], with trapped ions [13] and
free single photons in space [14].

Recently, there has been interest in understanding the role
of quantum transport in biological systems [15]. Naturally,
this raises the question of finding a framework for quantum
walks in an open environment, for which dissipation and de-
coherence will play a non negligible role. On the contrary,
such open quantum random walks may even assist in the un-
derstanding of quantum efficiency.

During the last few years attempts were made to take into
account decoherence and dissipation in the description of the
quantum walks [16]. However, in these approaches decoher-
ence is treated as an extra modification of the unitary quan-
tum walk scheme, the effect of which needs to be minimized
and eliminated. Recently, the general framework of quantum
stochastic walks was proposed [17], which incorporates uni-
tary and non-unitary effects of the quantum Markovian dy-
namics.

In this paper we introduce a formalism for discrete time

open quantum walks, which is exclusively based on the non-
unitary dynamics induced by the environment. The formal-
ism suggested is similar to the formalism of quantum Markov
chains [18] and rests upon the implementation of appropriate
completely positive maps [10, 19]. As we will show below
the formalism of the open quantum random walks includes
the classical random walk and through a physical realization
procedure a connection to the unitary quantum walk is estab-
lished. Furthermore, the OQRW allows for an unravelling in
terms of quantum trajectories. In general, the behavior of
the walk can not be explained in terms of classical or uni-
tary walks. The particular properties of the OQRW make it
a promising candidate for modeling of quantum efficiency in
biological systems and quantum computing.

General setup.We consider a random walk on a set of
nodes or verticesV with oriented edges{(i, j) ; i, j ∈ V}.
The number of nodes is considered to be finite or countable
infinite. The space of states corresponding to the dynamics on
the graph specified by the set of nodesV will be denoted by
K = C

V . If V is an infinite countable set, the space of statesK
will be any separable Hilbert space with an orthonormal basis
(|i〉)i∈V indexed byV . The internal degrees of freedom of the
quantum walker, e.g. the spin orn-energy levels, will be de-
scribed by a separable Hilbert spaceH attached to each node
of the graph. More concisely, any state of the quantum walker
will be described on the direct product of the Hilbert spaces
H⊗K.

Let us now describe the dynamics of the quantum walker.
To this end, for each edge(i, j) we introduce a bounded op-
eratorBi

j ∈ H. This operator describes the change in the
internal degree of freedom of the walker due to the shift from
nodej to nodei. By imposing for eachj that,

∑

i

Bi
j

†
Bi

j = I, (1)

we make sure, that for each vertex of the graphj ∈ V there
is a corresponding completely positive map on the positive
operators ofH:

Mj(τ) =
∑

i

Bi
jτB

i
j

†
.
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FIG. 1: Schematic illustration of the formalism of the Open Quantum
Random Walk: The walk is realized on a graph with a set of vertices
denoted byi, j, k ∈ V. The operatorsBj

i decribes transitions in the
internal degree of freedom of the “walker” jumping from node(i) to
node(j).

Since the operatorsBi
j act only onH and do not perform tran-

sitions from nodej to nodei, an operatorM i
j ∈ H ⊗ K can

be introduced in the following form

M i
j = Bi

j ⊗ |i〉〈j| .

It is clear that, if the condition expressed in Eq. (1) is satis-
fied, then

∑

i,j M
i
j

†
M i

j = 1. This latter condition defines a
completely positive map for density matrices onH⊗K, i.e.,

M(ρ) =
∑

i

∑

j

M i
j ρM

i
j

†
. (2)

The above map defines the discrete timeopen quantum ran-
dom walk(OQRW). It is easy to see that for an arbitrary initial
state the density matrix

∑

i,j ρi,j ⊗ |i〉〈j| will take a diagonal
form after just one step of the open quantum random walk Eq.
(2). Hence, in the following, we will assume that the initial
state of the system has the form

ρ =
∑

i

ρi ⊗ |i〉〈i|, (3)

with
∑

i

Tr (ρi) = 1. (4)

It is straightforward to give an explicit formula for the itera-
tion of the OQRW from stepn to stepn+ 1

ρ[n+1] = M(ρ[n]) =
∑

i

ρ
[n+1]
i ⊗ |i〉〈i|, (5)

where

ρ
[n+1]
i =

∑

j

Bi
jρ

[n]
j Bi

j

†
. (6)
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FIG. 2: OQRW onZ. (a) A schematic representation of the
OQRW onZ: all transitions to the right are induced by the opera-
tor Bi+1

i ≡ B, while all transitions to the left are induced by the
operatorBi−1

i ≡ C (see Eq. (7)); Figures (b)-(e) show the occu-
pation probability distribution for the “walker” with the initial state
I2/2 ⊗ |0〉〈0| and transition operators given by Eq. (7) after 10, 20,
50 and 100 steps, respectively.

The above iteration formula gives a clear physical meaning to
the mapping that we introduced: the state of the system on
sitei is determined by the conditional shift from all connected
sitesj, which are defined by the explicit form of the operators
Bi

j . Also, one can see thatTr[ρ[n+1]] =
∑

i Tr[ρ
[n+1]
i ] = 1.

Quantum trajectories.The above introduction of a OQRW
allows for a very useful quantum trajectory interpretation. As-
suming that at the start of the walk the system is prepared in
a pure state|ψ〉 = |bj〉 ⊗ |j〉 on sitej, it is easily recognized
that after one step it will jump to one of the pure states

1
√

pij

Bi
j |bj〉 ⊗ |i〉,

with probability pij =
∥

∥Bi
j |bj〉

∥

∥

2
. In other words, for pure

states the OQRW describes a classical Markov chain on the
space of stochastic wave functions. As is the case for the usual
Quantum Trajectories methods for Markovian open quantum
systems, by averaging over an ensemble of realizations of the
stochastic wave function one recovers the OQRW.

A simple example: OQRW onZ. Let us elucidate the for-
malism by considering the simple OQRW on a graph in which
only adjacent sites are connected. The situation we describe
is depicted in Fig. 2 (a). For this simple one-dimensional
walk, the only non-zero transition out of celli are given by
operators of the formBi+1

i ≡ B andBi−1
i ≡ C (again, the

notation is illustrated in Fig. 2(a) ). Obviously, the operators
B andC satisfy the conditionB†B + C†C = I, as imposed
in Eq. (1). Assuming the initial state of the system to be
localized on site0, i.e., ρ0 = ρ ⊗ |0〉〈0|, after one step the
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ρ[n]

ρext ∈ H ⊗K⊗K

Step 1

UρextU†

Step 2

{Pk = |k〉〈k|} ∈ K
Step 3

swap inK⊗K

Step 4

TrK[ρ̃
ext]

Step 5

ρ[n+1] = M(ρ[n])
OQRW

FIG. 3: Scheme of the various steps required for the physicalrealiza-
tion of the Open Quantum Random Walk.

system will jump to sites±1 so that the new density matrix
will be ρ[1] = BρB† ⊗ |1〉〈1| + CρC† ⊗ | − 1〉〈−1|. The
procedure can easily be iterated. In Figs. 2(b)-(e) we show
the probability to find a “walker” on a particular lattice site
for different numbers of steps. For this simulation we have
chosen the transition matricesB andC as follows,

B =

(

0 0

0
√
3
2

)

, C =

(

1 0
0 1

2

)

. (7)

As we said, the system is initially localized on site 0. A re-
markable non-Gaussian behavior is observed, which indicates
the dynamical richness of OQRWs. Already after 10 steps,
one can clearly see two distinctive behaviors of the “walker”.
The first is a Gaussian wave-packet moving slowly to the left
and the second one is a completely deterministic trapped state
propagating to the right at a speed of 1 in units of cells per
time step. Other examples of the OQRW onZ can be found
in [20].

Physical realization. It is natural to ask how to derive a
OQRW by reduction of the unitary dynamics of an appropri-
ately enlarged system. The situation is illustrated in Fig.3 and
will be described step by step. To achieve this goal we need
to extend the Hilbert space of the system by an ancilla-graph
identical to the graph described by the spaceK and define on
this extended Hilbert spaceH ⊗ K ⊗ K a specially chosen
unitary operatorU . It is alway possible for any givenk to
define a unitary operatorU(k) ∈ H ⊗ K, such that the first
column of the operator is given byBi

k and by filling the rest
with corresponding elements to fulfill the unitary condition

U i
1(k) = Bi

k,
∑

j

U i′

j (k)
†U i

j(k) = δi,i′I.

The unitary operatorU is a diagonal sum of the operators
U(k) with corresponding projector representation

U =
∑

k

U(k)⊗ |k〉〈k|.

Again, we assume the initial stateρ =
∑

i ρi⊗|i〉〈i| ∈ H⊗K.

The first stepis to extend the state into a larger Hilbert space
in the following way

ρ =
∑

i

ρi ⊗ |i〉〈i| → ρext =
∑

i

ρi ⊗ |1〉〈1| ⊗ |i〉〈i|,

so that the extended density matrixρext ∈ H⊗K ⊗K.
Step 2is the application of the unitary operatorU to the

extended density matrixρext, i.e.,

UρextU† =
∑

i,j,p

B
j
i ρiB

p†
i ⊗ |j〉〈p| ⊗ |i〉〈i|.

In Step 3we perform a full set of measurementsPk = IH⊗
|k〉〈k| ⊗ IK on the ”extra” position space or we subject the
system to decoherence in this ”extra” position subspace. As
result of Step 3 we obtain the following density matrix

∑

i,j

B
j
i ρiB

j†
i ⊗ |j〉〈j| ⊗ |i〉〈i|.

In Step 4we swap position subspaces. The result of this
operation is the following density matrix

∑

i,j

B
j
i ρiB

j†
i ⊗ |i〉〈i| ⊗ |j〉〈j|.

The last step(Step 5) is tracing out the ”extra” position sub-
space and one obtains the OQRW as promised

∑

i,j

B
j
i ρiB

j†
i ⊗ |j〉〈j|.

Connection to the unitary random walk. Theunitary quan-
tum random walk(UQRW) can be recovered from the OQRW
realization procedure by a special choice of the transitionop-
eratorsBj

i and by excluding from the physical realization pro-
cedure illustrated in Fig. 3 Step 3 (measurements). This is eas-
ily demonstrated for a UQRW onZ. In this case of a UQRW
on the line an additional condition needs to be imposed on the
transition operatorsB andC: next to the normalization con-
ditionB†B +C†C = I we need to request thatC†B = 0. In
this case the sum ofB andC is a unitary operator. Explicitly,
in order to recover the Hadamard UQRW on the line we may
choose

B =

(

α β

0 0

)

, C = ±
(

0 0
−β∗ α∗

)

,

where|α|2 + |β|2 = 1 andα, β ∈ C. Starting from the state
|ψ0〉 ⊗ |0〉 and following the physical realization procedure
(Fig. 3) while skipping Step 3, the state of the system after
one step is given byB|ψ0〉 ⊗ |+1〉+C|ψ0〉 ⊗ | − 1〉. This is
exactly a Hadamard UQRW onZ. The general condition for
obtaining UQRWs from OQRWs can be found in [20].

The classical random walk. It is interesting to note that the
OQRW contains, as a special case, the classical random walk
as well. To see this, we specializeH = K = CV , introduce
a matrixP = {Pi,j} of classical transition probabilities on
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FIG. 4: Open Quantum Random Walk on a 4-node graph. Figure
(a) shows the scheme for a OQRW on the 4-node graph; Fig. (b)
shows the occupation probability distribution for the initial state of
the walkerρ0 = 1

3
I2 ⊗ |3〉〈3| + 1

6
I2 ⊗ |4〉〈4|; Figs. (c)-(e) show

the occupation probability densities on the graph after 5, 25 and 40
steps, respectively.

the graphV with normalization condition
∑

i Pj,i = 1, and
consider an arbitrary family of unitary operators,U j

i ∈ CV .
In this case, it seems natural to choose the transition operators
B

j
i to have the formBj

i =
√

Pi,jU
j
i . Then, for the initial

stateρ =
∑

k ρk ⊗ |k〉〈k| the probability to find a “walker”
after one step on the sitei reads

∑

k pk,iTr(ρk). After two
steps the probability to find walker on the sitei will be given
by

∑

k,m pm,kpk,iTr(ρm), and so on. Thus, the probability of
transition does not depend on the internal degrees of freedom
of the “walker”. It only depends on the classical transition
probability matrixP , as expected for a classical random walk.

OQRW on a 4-node graph.To motivate the potential of
OQRW in the understanding of quantum transport we con-
sider as a first example the 4-node graph illustrated in Fig. 4
(a) with initial population distributed between nodes(3) and
(4), i.e.,ρ0 = 1

3I2 ⊗ |3〉〈3| + 1
6I2 ⊗ |4〉〈4|. The distribution

of the occupation probabilities at the initial moment of time is
shown in Fig 4. (b). The transitions in the system are induced
by the operatorsB, C, D1, D2, D3 andD4 (see Fig. 4 (a)),
which are explicitly given by

B =
1√
2

(

0 1
0 0

)

, C =
1√
2

( √
2 0
0 1

)

, (8)
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FIG. 5: Efficient transport with Open Quantum Random Walk. Fig.
(a): a scheme of the chain of theN nodes with neighbor-neighbor
interaction. The transition operatorsB andC are given by Eq. (8).
Fig. (b): occupation probability distribution as a function of time
and lattice sites. The initial state of the walker is localized in the first
node and given byρ0 = 1

2
I2 ⊗ |1〉〈1|.

andDi =
1√
2
I2 for i = 1, 2, 3, 4. In Fig. 4 (c)-(e) the distribu-

tion of the occupation probability for different number of step
is presented. As one can see the initial population is trapped
in sites 3 and 4. Essentially, after 10 steps of the OQRW all
populations are shifted to nodes 1 and 2, indicating a clear
mechanism of transport.

Efficient quantum transport.As a last example we illus-
trate the importance role OQRW may play in the description
of highly efficient transport of an excitation, as it is relevant
for the understanding of transport properties in biological sys-
tems. To this end we consider a chain of nodes (see Fig. 5(a)).
An initial excitation is in node(1), so thatρ0 = 1

2I2 ⊗ |1〉〈1|.
To be specific, we chose transition operatorsB andC as in
the previous example. It is very interesting to note that in
this case the excitation propagates through the chain with ve-
locity almost equal to 1 (in units of cells per time step): in
other words, the initial excitation in node (1) is completely
transferred to the last node (N) in N+3 steps. As an explicit
example, in Fig. 5 (b) we consider a 100 node chain and show
that the initial excitation reaches the final node (100) in 103
steps. The high performance of transport of excitations in the
OQRW formalism opens up new avenues of research into the
understanding of quantum efficiency in open systems.

In conclusion, we have introduced above a very flexible
framework of open quantum random walks, which clearly
shows a richness of different dynamical behaviors, and, at
the same time, includes as special cases the classical random
walk and through the realization procedure the unitary quan-
tum random walks. The examples we have have considered
show that the framework can be used to explain non-trivial
highly efficient transport phenomena not only in linear but
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also in more complex topologies of the underlying graphs. We
expect the potential of this framework to be soon revealed in
the realms of quantum biology and quantum computing.
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