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Open quantum random walks (OQRW) are introduced as quantarkdV chains on graphs. It is shown
that OQRWSs contain as a limit classical random walks. A sstggephysical realization procedure for OQRW
can recover unitary quantum random walks. A straightfoduarravelling of the OQRW allows for stochastic
simulations in terms of quantum trajectories. Simple eXaspf OQRWSs show a rich dynamical behavior. In
particular, promising dissipative mechanisms of transpbexcitations can be implemented in the formalism,
which makes them interesting candidates for the investigatf quantum efficiency.

Introduction. Random walks [1, 2] are a useful mathemat- open quantum walks, which is exclusively based on the non-
ical concept, which found successful applications, e. m@., i unitary dynamics induced by the environment. The formal-
physics [2], computer science [3], economics [4] and biglog ism suggested is similar to the formalism of quantum Markov
[5]. Basically, the trajectory of a random walk consists of chains [18] and rests upon the implementation of apprapriat
a sequence of random steps on some underlying set of conempletely positive maps [10, 19]. As we will show below
nected vertices [2]. It is appealing to extend the concept othe formalism of the open quantum random walks includes
the classical random walk to the quantum domain. QRWs cathe classical random walk and through a physical realinatio
be introduced in a discrete time [6] and in a continuous timeprocedure a connection to the unitary quantum walk is estab-
[7] fashion. While for a classical random walk the probapili lished. Furthermore, the OQRW allows for an unravelling in
distribution of the position of the walker depends only oa th terms of quantum trajectories. In general, the behavior of
transition rates between the nodes of the graph, in the quathe walk can not be explained in terms of classical or uni-
tum case [8] the probability amplitude of the walker dependgary walks. The particular properties of the OQRW make it
on the dynamics of his internal degrees of freedom. The apa promising candidate for modeling of quantum efficiency in
pearance of interference effects makes these walks traly-qu biological systems and quantum computing.
tum. General setup.We consider a random walk on a set of

Unitary quantum random walks found wide application in nodes or vertice¥ with oriented edgeg(i,j); i,j € V}.
quantum computing [9]. Although, physical implementation The number of nodes is considered to be finite or countable
of any quantum concept is usually difficult due to unavoid-infinite. The space of states corresponding to the dynamics o
able dissipation and decoherence effects [10], experimhentthe graph specified by the set of nodésvill be denoted by
realizations of unitary quantum random walks have been rek = CY. If Vis aninfinite countable set, the space of states
ported. Implementations with negligible effect of deceher Will be any separable Hilbert space with an orthonormalsasi
ence and dissipation were realized in optical lattices,[@f]  (|7)),., indexed byV. The internal degrees of freedom of the
photons in waveguide lattices [12], with trapped ions [18a quantum walker, e.g. the spin arenergy levels, will be de-
free single photons in space [14]. scribed by a separable Hilbert spakeattached to each node

Recently, there has been interest in understanding the rof the graph. More concisely, any state of the quantum walker
of quantum transport in biological systems [15]. Naturally Will be described on the direct product of the Hilbert spaces
this raises the question of finding a framework for quantum @ K.
walks in an open environment, for which dissipation and de- Let us now describe the dynamics of the quantum walker.
coherence will play a non negligible role. On the contrary, To this end, for each edde, j) we introduce a bounded op-
such open quantum random walks may even assist in the ugrator B; € . This operator describes the change in the
derstanding of quantum efficiency. internal degree of freedom of the walker due to the shift from

During the last few years attempts were made to take intgode;j to nodei. By imposing for eaclj that,
account decoherence and dissipation in the descriptiomeof t .
quantum walks [16]. However, in these approaches decoher- Z B Bj =1, 1)
ence is treated as an extra modification of the unitary quan- i

tum walk scheme, the effect of which needs to be minimizequ make sure, that for each vertex of the graph V there

and elimjnated. Recently, the general frgmework of quanturﬁg a corresponding completely positive map on the positive
stochastic walks was proposed [17], which incorporates Unigperators of4:

tary and non-unitary effects of the quantum Markovian dy-

namics. _ e Mj(r) = 3 BirB)'
In this paper we introduce a formalism for discrete time .
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FIG. 1: Schematic illustration of the formalism of the Opems@tum
Random Walk: The walk is realized On a graph with a set of vesti FIG. 2: OQRW onZ. (a) A schematic representation of the
denoted by, j, k € V. The operatord] decribes transitions inthe  OQRW onZ: all transitions to the right are induced by the opera-
internal degree of freedom of the “walker” jumping from nddeto  tor Bi+* = B, while all transitions to the left are induced by the
node(j). operatorB!~! = C (see Eq. (7)); Figures (b)-(e) show the occu-
pation probability distribution for the “walker” with thenitial state

_ I>/2 ® |0)(0] and transition operators given by Eq. (7) after 10, 20,
Since the operator8; act only on# and do not perform tran- 50 and 100 steps, respectively.
sitions from nodej to nodei, an operatorM;f € 'H®K can

be introduced in the following form
The above iteration formula gives a clear physical mearong t

M; = B; @ i)(j] - the mapping that we introduced: the state of the system on
sitei is determined by the conditional shift from all connected
sitesj, which are defined by the explicit form of the operators
Bi. Also, one can see that[pl"+11] = 3, Te[pl" 1] =
Quantum trajectoriesThe above introduction of a OQRW
M(p) = Z ZM; pM;T. ) allovys for a very useful quantumtrajectoryinterpretaIiAB- _
suming that at the start of the walk the system is prepared in
] ) ) a pure statéy) = |b;) ® |j) on sitej, it is easily recognized
The above map defines the discrete tiopen quantum ran- hat after one step it will jump to one of the pure states
dom walk(OQRW). It is easy to see that for an arbitrary initial

It is clear that, if the condition expressed in Eq. (1) issati

fied, then_, . M”Ml = 1. This latter condition defines a
completely posmve map for density matricesAHm £, i.e.,

state the density matriX_, . p; ; ® |i)(j| will take a diagonal L .
. i ——=Bjlb;) @ |i)

form after just one step of the open quantum random walk Eq. /pi_

(2). Hence, in the following, we will assume that the initial J

state of the system has the form ) o ) 9
with probability pi = || Bi|b;)||”. In other words, for pure

p= Zpi ® i) (il (3) states the OQRW describes a classical Markov chain on the
; space of stochastic wave functions. As is the case for thal usu
Quantum Trajectories methods for Markovian open quantum
systems, by averaging over an ensemble of realizationsof th
Z Tr (p;) = 1. (4)  stochastic wave function one recovers the OQRW.

; A simple example: OQRW dh Let us elucidate the for-
malism by considering the simple OQRW on a graph in which
only adjacent sites are connected. The situation we describ
is depicted in Fig. 2 (a). For this simple one-dimensional
plntl = M(p["]) — ZpE"“] ® |i)(i], (5)  walk, the only non-zero transition outiof cellare gi\{en by

operators of the fornB/"' = B andB} ™' = C (again, the
notation is illustrated in Fig. 2(a) ). Obviously, the optera
B and( satisfy the conditio’3'B + CTC = I, as imposed
["+1] ZB Bﬁ (6) in Eqg. (1). Assuming the initial state of the system to be
localized on sité), i.e., pg = p ® |0)(0], after one step the

with

It is straightforward to give an explicit formula for the iige
tion of the OQRW from step to stepn + 1

%

where



3

The first stepis to extend the state into a larger Hilbert space

£ N S | [n] _ .
P oorw P = MET) in the following way
!
Step 1 . p=_pi@i)i| = p™* = Zm@ll (1] ® i) i,
Trxc [p°] i
pPrERHRKDK [Step5 so that the extended density matpiXt € H ® K @ K.
swap ink ® K Step 2is the_appllcgn(i? Qf the unitary operattrto the
Step 2 extended density matrip***, i.e.,
1 Step 4

Up™ Ut =" Blp:BI" @ |j)(p| @ [i)il.
extgft (P = |k)k|} €K
up u Step3 { k | >< |} ©,5,D
. . o In Step 3we perform a full set of measuremes = I ®
EIG. 3: Scheme of the various steps required for the physicéiza- k) (k| ® Ic on the "extra” position space or we subject the
tion of the Open Quantum Random Walk. system to decoherence in this "extra” position subspace. As
result of Step 3 we obtain the following density matrix

system will jump to sitest1 so that the new density matrix i it e Ny

will be pl = BpBt @ [1)(1]| + CpCt @ | — 1)(—1|. The 2 BloiBl' @il @ fiil.

procedure can easily be iterated. In Figs. 2(b)-(e) we show i

the probability to find a “walker” on a particular lattice esit In Step 4we swap position Subspaces_ The result of this

for different numbers of steps. For this simulation we havepperation is the following density matrix
chosen the transition matricésandC' as follows, . ‘
> Bl piBIT @ [i)(i| @ |5)(].

0 0 10 —
B - co=(p1) @
(02) o= (o}

The last stef§Step 5) is tracing out the "extra” position sub-
As we said, the system is initially localized on site 0. A re- space and one obtains the OQRW as promised
markable non-Gaussian behavior is observed, which irekcat
the dynamical richness of OQRWs. Already after 10 steps, > BlpiBl" @ 5)(l.
one can clearly see two distinctive behaviors of the “wdlker i.j
The first is a Gaussian wave-packet moving slowly to the left ) ) )
and the second one is a completely deterministic trappéel sta  CONnection to the unitary random walkheunitary quan-
propagating to the right at a speed of 1 in units of cells pefUm random walkUQRW) can be recovered from the OQRW

time step. Other examples of the OQRW rzan be found realization procedure by a special choice of the transiion
in [20]. eratorsB; and by excluding from the physical realization pro-

cedureillustrated in Fig. 3 Step 3 (measurements). Thissis e
ily demonstrated for a UQRW 0o#. In this case of a UQRW
on the line an additional condition needs to be imposed on the

will be described step by step. To achieve this goal we neefjansition operator$ andC" next to the normalization con-
to extend the Hilbert space of the system by an ancilla-grapfition B' B + CTC = I we need to request that' B = 0. In
identical to the graph described by the sp&tand define on IS case the sum d¥ andC' is a unitary operator. Explicitly,
this extended Hilbert spack @ K ® K a specially chosen N order to recover the Hadamard UQRW on the line we may
unitary operatot{. It is alway possible for any giveh to ~ €h00se

define a unitary operatdf (k) € H ® K, such that the first o B 0 0

column of the operator is given by; and by filling the rest B = ( 00 > C=+ ( —B* o ) ;

with corresponding elements to fulfill the unitary conditio
where|a|? + |3|* = 1 anda, B € C. Starting from the state

Ui(k) = By, ZUZ kUL (k) = 6,001 l40) @ |0) and following the physical realization procedure

(Fig. 3) while skipping Step 3, the state of the system after

one step is given byB|o) @ | + 1) + Clyg) ® | — 1). Thisis

exactly a Hadamard UQRW dh. The general condition for

obtaining UQRWs from OQRWSs can be found in [20].

U — Z Uk) @ |k) (k The classical random walldt is interesting to note that the

OQRW contains, as a special case, the classical random walk
as well. To see this, we specialize = K = CV, introduce

Again, we assume the initial stgte= > . p;®|i)(i| € H®K.  a matrix P = {P; ;} of classical transition probabilities on

Physical realization It is natural to ask how to derive a
OQRW by reduction of the unitary dynamics of an appropri-
ately enlarged system. The situation is illustrated in Bignd

The unitary operatoi/ is a diagonal sum of the operators
U (k) with corresponding projector representation



D>

4 o 4
2!
0
(1)
3)

() @
0.6
0
0.
0

FIG. 4: Open Quantum Random Walk on a 4-node graph. Figur
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FIG. 5: Efficient transport with Open Quantum Random Wallg. Fi
(a): a scheme of the chain of tHé nodes with neighbor-neighbor
interaction. The transition operatoBsandC' are given by Eq. (8).
Fig. (b): occupation probability distribution as a functiof time
and lattice sites. The initial state of the walker is locadiin the first
node and given by, = 31> ® [1)(1].

andD; = \%IQ fori = 1,2, 3, 4. InFig. 4 (c)-(e) the distribu-

(a) shows the scheme for a OQRW on the 4-node graph; Fig. (b§on of the occupation probability for different number ¢

shows the occupation probability distribution for the imlistate of
the walkerpo = 1> ® [3)(3| + 12 ® |4)(4]; Figs. (c)-(e) show
the occupation probability densities on the graph aftersad 40
steps, respectively.

the graphy with normalization conditior) _, P;; = 1, and
consider an arbitrary family of unitary operatotgf e CV.

In this case, it seems natural to choose the transition tgera
B! to have the formB! = /P, ;U;. Then, for the initial
statep = >, pr ® |k)(k| the probability to find a “walker”
after one step on the sitereads) , py,;Tr(px). After two
steps the probability to find walker on the siteill be given

Is presented. As one can see the initial population is tréippe
in sites 3 and 4. Essentially, after 10 steps of the OQRW all
populations are shifted to nodes 1 and 2, indicating a clear
mechanism of transport.

Efficient quantum transportAs a last example we illus-
trate the importance role OQRW may play in the description
of highly efficient transport of an excitation, as it is redev
for the understanding of transport properties in biolokgya-
tems. To this end we consider a chain of nodes (see Fig. 5(a)).
An initial excitation is in nod€1), so thatpy = 31> ® |1)(1].

To be specific, we chose transition operatBrandC' as in
the previous example. It is very interesting to note that in
this case the excitation propagates through the chain with v

by > 4 1n Pm.kPk,i Tr(pim), and so on. Thus, the probability of |ocity almost equal to 1 (in units of cells per time step): in
transition does not depend on the internal degrees of freedoother words, the initial excitation in node (1) is complgtel

of the “walker”. It only depends on the classical transitiontransferred to the last node (N) in N+3 steps. As an explicit
probability matrixP, as expected for a classical random walk. example, in Fig. 5 (b) we consider a 100 node chain and show

OQRW on a 4-node graphTo motivate the potential of

that the initial excitation reaches the final node (100) i8 10

OQRW in the understanding of quantum transport we consteps. The high performance of transport of excitationaén t
sider as a first example the 4-node graph illustrated in Fig. ©QRW formalism opens up new avenues of research into the

(a) with initial population distributed between nodgg and
(4),1.e.,p0 = 31> ® [3)(3] + 12 ® [4)(4]. The distribution
of the occupation probabilities at the initial moment of¢im

understanding of quantum efficiency in open systems.

In conclusion, we have introduced above a very flexible
framework of open quantum random walks, which clearly

shown in Fig 4. (b). The transitions in the system are induce@hows a richness of different dynamical behaviors, and, at

by the operator#3, C, D1, Do, D3 and D, (see Fig. 4 (a)),
which are explicitly given by
). ®

-5 (1) (!

0 1

01
00

the same time, includes as special cases the classicalmando
walk and through the realization procedure the unitary guan
tum random walks. The examples we have have considered
show that the framework can be used to explain non-trivial
highly efficient transport phenomena not only in linear but



also in more complex topologies of the underlying graphs. We  Phys. Rev. A67, 052307 (2003); E. Farhi, J. Goldstone, and S.
expect the potential of this framework to be soon revealed in  Gutmann, Theory Compu#, 169 (2008).
This work is based upon research supported by the Soutﬂ SystemgOxford University Press, 2002).
. . e - [11] M. Karski, L. Forster, J.-M. Choi, A. Steffen, W. Alt, D.
African Research Chair In|t|at|ve_ of the Department of Sc_l- Meschede, and A. Widera, Scier@s, 174 (2009)
ence and Technology and National Research Foundatiofyp) 4. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandottidan
Work supported by ANR project “‘HAM-MARK” N ANR- Y. Silberberg, Phys. Rev. Lett00, 170506 (2008).
09-BLAN-0098-01 [13] H. Schmitz, R. Matjeschk, Ch. Schneider, J. Glueckert, M. En
derlein, T. Huber, and T. Schaetz, Phys. Rev. LKIB, 090504
(2009); F. Zahringer, G. Kirchmair, R. Gerritsma, E. SalaR.
Blatt, and C. F. Roos, Phys. Rev. Let@4, 100503 (2010)
[14] M. A. Broome, A. Fedrizzi, B. P. Lanyon, |. Kassal, A. Aspuru-

[1] W. Feller,An Introduction to Probability Theory and its Appli- Guzik, and A. G. White, Phys. Rev. Lett. 104, 153602 (2010).
cations Vol. 1 (Wiley, 1968) [15] P. Rebentrost, M. Mohseni, and A. Aspuru-Guzik, J. Phys.

[2] M. Barber and B.W. NinhamRandom and Restricted Walks: Chem. B113, 9942 (2009); M. Mohseni, P. Rebentrost, S.
Theory and Application{Gordon and Breach, New York, Lloyd, and A. Aspuru-Guzik, J. Chem. Phy$29, 174106
1970) (2008); M. Plenio and S. Huelga, New J. Ph{8, 113019

[3] R. Motwani, P. RaghavaiRandomized AlgorithmE&ambridge (2008); F. Caruso, A. Chin, A. Datta, S. Huelga, and M. Plenio
University Press, 1995) J. Chem. Phy<l31, 105106 (2009); P. Rebentrost, M. Mohseni,

[4] B. Malkiel, A Random Walk Down Wall Stre@#V. W. Norton, . Kassal, S. Lloyd, and A. Aspuru-Guzik, New J. Phys,
New York, 1973) 033003 (2009) _

[5] H.C. Berg, Random Walks in BiologgPrinceton University ~[16] V. Kendon, Math. Struct. Comput. Sdi7, 1169 (2007); T. A.
Press, Princeton, 1993) Brun, H. A. Carteret, and A. Ambainis, Phys. Rev. L&,

[6] Y. Aharonov, L. Davidovich, and N. Zagury, Phys. Rev48, 130602 (2003); A. Romanelli, R. Siri, G. Abal, A. Auyuanet,
1687 (1993). and R. Donangelo, Physica 347, 137 (2005); P. Love and

[7] E. Farhi and S. Gutmann, Phys. Rev58, 915 (1998) B. Boghosian, Quant. Info. Prod, 335 (2005); R. Srikanth,

[8] J. Kempe, Contemp. Phy44, 307 (2003). S. Banerjee, C.M. Chandrashekar, Phys. Re\81A 062123

[9] D. Aharonov, A. Ambainis, J. Kempe, and U. Vazirani, in Pro- (2010);

ceedings of the 33rd ACM Symposium on Theory of Com- [17] J. D. Whitfield, C. A. Rodriguez-Rosario, A. Aspuru-Guzik,

puting, 2001, p. 50.; S. Venegas-Andraca, Quantum Walks  Phys. Rev. A81, 022323 (2010)

for Computer Scientists (Morgan and Claypool, San Rafael[18] S. Gudder, Found. Phydd Numbers 9-10, 1566, (2010); S.

CA, 2008); N. Konno, Quantum Walks in “Quantum Potential Gudder, J Math. Phys49 072105, (2008)

Theory”, Lecture Notes in Mathematics (Springer-VerlagnN  [19] K. Kraus, States, Effects and Operations: Fundamental No-

York, 2008), p. 309; A. Ambainis, Lect. Notes Comput. Sci. tions of Quantum Theor{Springer Verlag 1983); R. Alicki,
4910, 1 (2008); A. Childs, E. Farhi, and S. Gutmann, Quant. K. Lendi, Quantum Dynamical Semigroups and Applications
Info. Proc. 1, 35 (2002); J. Watrous, J. Comput. Syst. &2i. (Springer Verlag 1987)

376 (2001); A. Childs, R. Cleve, E. Deotto, and E. Farhi, in [20] S. Attal, F. Petruccione, C. Sabot, and I. Sinayskiy,prepa-
Proceedings of the 35th ACM Symposium on Theory of Com- ration).
puting, 2003, p. 59; N. Shenvi, J. Kempe, and K. B. Whaley,



