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Abstract. We consider n by n real matrices whose entries are non-degenerate

random variables that are independent but non necessarily identically dis-

tributed, and show that the probability that such a matrix is singular is
O(1/

√
n). The purpose of this note is to provide a short and elementary

proof of this fact using a Bernoulli decomposition of arbitrary non degenerate
random variables.

1. Introduction

Let Mn = (aij) be a random n× n matrix, where the aij are independent (non
necessarily identically distributed) real random variables. We assume that the r.v.
aij satisfy the following uniform non-degeneracy property

(H) There exists ρ ∈]0, 1
2 [ such that for any i, j = 1, · · · , n, P(aij > x+

ij) > ρ

and P(aij < x−ij) > ρ for some real numbers x−ij < x+
ij .

We provide an elementary proof of the following proposition.

Proposition 1. Let Mn be an n × n matrix whose coefficients are independent
random variables satisfying (H). Then P(Mn is singular) = O(1/

√
n).

The study of the singularity of random matrices goes back, at least, to Komlós
who showed in [Ko1] that P(Mn is singular) = o(1) for independent and identically
distributed (iid) Bernoulli entries, namely aij = 0, 1 with probability 1/2. Using
Sperner’s Lemma, Komlós noticed that the probability was O(n−1/2) [B], a result
which has been further extended in [Sl] to the case of iid entries equally distributed
over a finite set. For iid Bernoulli entries, the conjecture is that P(Mn is singular) =
(c + o(1))n with c = 1

2 . Such an exponential behaviour has been successively
obtained and improved in [KKoS, TV1, TV2] up to c = 3

4 . The value c = 1
2 still

seems to be out of reach.
If one turns to general entries, Komlós proved in [Ko2] that P(Mn is singular) =

o(1) for independent and identically distributed non degenerate random variables.
Furthermore, as pointed out by Tao and Vu in [TV1, Section 8], it follows from
their analysis that P(Mn is singular) = o(1) for independent non degenerate entries,
provided Property (H) holds. Under the same hypothesis Proposition 1 asserts that
P(Mn is singular) = O(n−1/2).

But the main purpose of this note is to illustrate how the Bernoulli decomposition
developed in [AGKW] may be used in order to extend results known for Bernoulli to
the general case of independent non degenerate random variables. We perform that
illustration by extending Komlós’s argument as reproduced in [B], to independent
random variables satisfying the Property (H). It is however not clear, at least to the
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authors, whether results in [TV1, TV2], and in particular Halàsz-type arguments,
could be extended in a similar way.

2. Proof

Our approach relies on the following lemma which is essentially contained in
[AGKW]. For the reader’s convenience we sketch its proof in the appendix.

Lemma 2. Let Mn be an n× n matrix whose coefficients are independent random
variables satisfying (H). We can decompose the entries of the matrix Mn as follows:
For all i, j, there exist two independent random variables wij and εij and functions
fij :]0, 1[→ R and δij :]0, 1[→]0,+∞[ such that
1. εij is a Bernoulli random variable with parameter pij ∈]0, 1[;
2. wij has the uniform distribution in ]0, 1[;
3. aij = fij(wij) + δij(wij)εij .
Moreover, pij ∈]1− p0, p0[ for all i, j, where p0 = 1− ρ.

Remark 3. It is of crucial importance for us (see (6) in the proof of Lemma 5)
that δij > 0. We however do not need here a uniform bound from below on these
δij. In some situations, one actually does need such a uniform lower bound (see
[AGKW]), in which case it is sufficient to modify (H) above and require the existence
of x− < x+ independent of i, j.

Thanks to Lemma 2 and since wij and εij are independent r.v., we may adopt the
following strategy to prove the proposition: 1. do the conditioning with respect to
the variables wij , so that, given the wij ’s, Mn becomes a sum of a constant matrix
and of a random matrix with Bernoulli entries with probabilities (1− pij , pij) and
amplitudes δij(wij); 2. estimate, with respect to the Bernoulli variables εij , the
probability that Mn is singular following the strategy of [B]; 3. take the expectation
value with respect to the variables wij .

We shall denote by P(w) the conditional probability with respect to the wij
variables, i.e. P(w)(·) := P(·|{wij}i,j).

Following [B], we introduce the strong rank of a system of vectors S = {v1, · · · , vn},
sr(S), to be the largest integer k such that any k of the vj ’s are linearly indepen-
dent. For an m by n matrix A, we denote by src(A) and srr(A) to be, respectively,
the strong rank of the system of columns and of rows of A.

The first ingredient of the proof is the following upper bound on the probability
for an m by n matrix to have a “not too large” strong rank.

Lemma 4. Let A be an m by n random matrix whose coefficients aij satisfy (H),
and w = (wij) be given. Then

P(w)(src(A) < k) ≤
(
n
k

)
pm−k+1

0

1− p0
and P(w)(srr(A) < k) ≤

(
m
k

)
pn−k+1

0

1− p0
.

(1)

Proof. The second statement is clearly equivalent to the first one (applied to AT ).
By definition of the strong rank, src(A) < k if and only if there exists k columns
of A which are linearly dependant. It thus suffices to show that for any 1 ≤ i1 <
· · · < ik ≤ n,

P(w)(rank{vi1 , · · · , vik} < k) ≤ pm−k+1
0

1− p0
, (2)
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where the vj denote the columns of A. Now we have

P(w)(rank{vi1 , · · · , vik} < k) (3)

≤ P(w)(vi1 = 0) +
k−1∑
j=1

P(w)(vij+1 ∈ Span{vi1 , · · · , vij}|rank{vi1 , · · · , vij} = j).

Let B denote the m by j matrix whose columns are the vectors vi1 , · · · , vij . If

B has rank j, without loss of generality we may decompose it as B =
(
C
D

)
where C is an invertible j by j matrix. In a similar way, let us decompose vij+1 as

vij+1 =
(
Y
Z

)
, where Y has length j and Z length m−j. Note that for w given in

the Bernoulli decomposition, the probability of each entry of Z taking a particular
value is bounded by p0.

Then, vij+1 ∈ Span{vi1 , · · · , vij} iff there exists a vector u = (u1, · · · , uj)T such
that Bu = vij+1 and hence iff Cu = Y and Du = Z. But since C is invertible we
finally get vij+1 ∈ Span{vi1 , · · · , vij} iff Z = DC−1Y . Therefore we have

P(w)(vij+1 ∈ Span{vi1 , · · · , vij}|rank{vi1 , · · · , vij} = j) (4)

= E(w)
Y

(
P(w)(Z = DC−1Y |Y )

)
≤ E(w)

Y (pm−j0 ) = pm−j0 , (5)

where E(w)
Y denotes the conditional expectation with respect to the variables w and

over the random vector Y . Inserting (4) into (3) and noting that P(w)(vi1 = 0) ≤
pm0 , this proves (2). �

The second ingredient of the proof is the following improvement of (2).

Lemma 5. Let v1, · · · , vk ∈ Rn (k < n) be linearly independent and X = (a1, · · · , an)
a random vector whose coefficients satisfy (H). Suppose that srr(A) = s where A
is the matrix whose columns are the vj’s. Then P(w)(X ∈ Span{v1, · · · , vk}) ≤
Cpn−k−1

0 /
√
s.

The above lemma relies on the following generalization of the Littlewood and Of-
ford problem to the case of non necessarily identically distributed r.v. and which is
an immediate consequence of an extended version of Sperner’s lemma (see [AGKW],
Lemma 3.2).

Lemma 6. If α1, · · · , αs are non zero real numbers, b ∈ R and ε1, · · · , εs indepen-
dent Bernoulli random variables with parameter pi ∈]1− p0, p0[, then

P(α1ε1 + · · ·+ αsεs = b) = O(1/
√
s).

Proof of Lemma 5. Let B denote the (n by k+ 1) matrix A augmented with the
column vector X, and let r1, · · · , rn denote the rows of B. If X ∈ Span{v1, · · · , vk}
then B has rank k, so that without loss of generality we may assume that r1, · · · , rk
are linearly independent, and that the others rj depend on these. In particular

k+1∑
i=1

γiai = 0,
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where γk+1 = 1 and, because srr(B) ≥ srs(A) = s, at least s of the others γi are
non-zero. Thus, using Lemma 6, we have, recalling δ(wi) > 0,

P(w)

(
k+1∑
i=1

γiai = 0

)
= P(w)

(
k+1∑
i=1

γiδ(wi)εi = −
k+1∑
i=1

γif(wi)

)
≤ C/

√
s+ 1. (6)

Finally, in the same way as in the proof of (4), the ai for k+2 ≤ i ≤ n are uniquely
determined by a1, · · · , ak, and thus each of them has a probability at most p0 to
take a particular value. �
Proof of Proposition 1. By Lemma 2 we have

P(rank(Mn) < n) = E{wij}i,j

(
P(w)(rank(Mn) < n

)
.

Let 0 < β < α < 1 to be specified. Let C1, · · · , Cn denote the column vectors of
Mn and write Ek for the event that C1, · · · , Ck are linearly independent and Ck+1

depends on them. We then have

P(w)(rank(Mn) < n) ≤ P(w)(src(Mn) < αn) +
n−1∑
k=αn

P(w)(Ek).

Indeed, if αn ≤ src(Mn) < n there exists k ≥ αn such that C1, · · · , Ck are inde-
pendent but Ck+1 does depend on them.

Fix now αn ≤ k < n, and denote by Ak the n by k matrix whose columns are
C1, · · · , Ck. We have then

P(w)(Ek) ≤ P(w)(srr(Ak) < βn) + P(w)(Ek|srr(Ak) ≥ βn).

Using Lemmas 4 and 5, we thus get

P(w)(rank(Mn) < n)

≤
(

n
αn

)
p
n(1−α)+1
0

1− p0
+

n−1∑
k=αn

((
n
βn

)
pk−βn+1

0

1− p0
+ Cpn−k−1

0 /
√
βn

)

≤ p0

1− p0

(
n
αn

)
p

(1−α)n
0 +

p0

(1− p0)2

(
n
βn

)
p

(α−β)n
0 +

C

(1− p0)
√
βn

≤ C ′
(

en(h(α)+(1−α) ln p0) + en(h(β)+(α−β) ln p0) +
1√
n

)
,

where h(x) = −x ln(x)− (1−x) ln(1−x) is the entropy function and we made used
of the Stirling formula to get the last line. It finally suffices to take 0 < β < α < 1
small enough so that h(α) + (1− α) ln p0 and h(β) + (α− β) ln p0 are both strictly
negative. �

3. Appendix

For the reader’s convenience, we recall the basic material from [AGKW] and
show how to extract from (H) the desired uniform estimates on the Bernoulli de-
composition. Namely, we prove Lemma 2.

Let X be a real random variable. We denote by µ its law and by F its distribution
function: F (u) = µ(]−∞, u]). We set, for any t ∈]0, 1[,

G(t) := inf{u, F (u) ≥ t}. (7)

Note that
G(t) ≤ u ⇐⇒ F (u) ≥ t, (8)
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so that, if t is a random variable with uniform distribution in ]0,1[, X and G(t) have
the same law (G(t) can be seen as a parametrization of X). For p ∈]0, 1[ given,
following [AGKW, Proof of Theorem 2.1], we set for t ∈]0, 1[:

Y1(t) := G ((1− p)t)
Y2(t) := G (1− p+ pt) . (9)

We then let

f(t) := Y1(t), (10)
δ(t) := Y2(t)− Y1(t), (11)

so that, if ε is a Bernoulli variable with probabilities (1 − p, p) and t a random
variable with uniform distribution in ]0, 1[, we have (in law)

X = f(t) + δ(t)ε. (12)

That inf ]0,1[ δ(t) > 0 is immediate if Y2(0)− Y1(1) = G(1− p+ 0)−G(1− p) > 0,
which turns out to be the case if X is a Bernoulli itself (choosing p to be its Bernoulli
parameter). If X takes at least 3 values, then it is enough to note in full generality
that there exists (at least one) p ∈]0, 1[ so that T1 > T2 where

T1 = inf{t ∈]0, 1[ : Y1(t) = G(1− p)} (arrival time of Y1),
T2 = sup{t ∈]0, 1[ : Y2(t) = G(1− p+ 0)} (departure time of Y2).

The latter implies that δ(t) > 0 for all t.
Assume now that X satisfies the estimates of Property (H), with points x− < x+.

We set p− = µ(]−∞, x−[), p+ = µ(]x+,+∞[). We show that p = 1−p− is a possible
choice. Thanks to (H), p ≥ p+ > ρ, and 1− p = p− > ρ, so that p ∈]ρ, 1− ρ[.

We always have G(1 − p) ≤ x− ≤ G(1 − p + 0). If G(1 − p) < x− then δ(t) ≥
x− − G(1 − p) > 0. Suppose G(p−) = x−. We claim that T1 = 1 > T2. It is easy
to see that T2 ≤ (p− p+)/p < 1. It remains to show that T1 = 1. Suppose T1 < 1.
For any t ∈]T1, 1[ and for any u < x−, one has x− = G(p−t) > u. Then (8) implies
that F (u) < p−t, and thus we get the following contradiction

p− = µ(]−∞, x−[) = sup
u<x−

F (u) ≤ p−t < p−. (13)
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[KKoS] J. Kahn, J. Komlós, E. Szemerédi, On the probability that a random ±1 matrix is singular,

J. Amer. Math. Soc. 8, 223-240 (1995).
[Ko1] J. Komlós, On the determinant of (0, 1) matrices, Studia. Sci. Math. Hungar. 2, 7-22

(1967).

[Ko2] J. Komlós, On the determinant of random matrices, Studia. Sci. Math. Hungar. 3, 387-399

(1968).



6 LAURENT BRUNEAU AND FRANÇOIS GERMINET
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