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Abstract and notations

We analyse the spectrum of the dissipative Schrödinger operator on
binary tree-shaped networks. As applications, we study the stability of
the Schrödinger system using a Riesz basis as well as the transfer
function associated to the system.
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A multi-index ᾱ is a k-tuple (α1, . . . , αk ) if k lies in N− {0} and it
is empty if k = 0. For a fixed integer n, we choose for I the set of
multi-indices ᾱ, with length k in {0, 1, . . . , n}, such that, if k 6= 0,
αj ∈ {1; 2}, for all j in {1, . . . , k}. Then the set of vertices V of the
tree T is V := (∪ᾱ∈IOᾱ) ∪ {R} where R is an additional vertex
which will be the root of the tree T .

The edges are denoted by eᾱ with ᾱ in I . Note that the number of
edges is the cardinal of I and it holds: |I | = N = 2n+1 − 1.

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016



Outline
Feedback stabilization of Schrödinger operator
Dispersive effects for the Schrödinger operator

Some references

Define, for any non-empty multi-indices ᾱ = (α1, ..., αk ) and
β̄ = (β1, ..., βm), the multi-index ᾱ ◦ β̄ := (α1, ..., αk , β1, ..., βm) of length
(k + m). Then, for a non-empty multi-index ᾱ = (α1, ..., αk ), the edge eᾱ
is chosen to have the extremities Oᾱ and Oᾱ′ with ᾱ = ᾱ′ ◦ (αk ) and the
edge e (corresponding to the case ᾱ = ∅) has the extremities R and O.
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By the multiplicity of a vertex of T we mean the number of edges
that branch out from that vertex. If the multiplicity is equal to one,
the vertex is called exterior. Otherwise, it is said to be interior.

We denote by Int the set of the interior vertices of the tree T and
by Dir the set of the exterior vertices, except R, which has a
particular status in our problem. Dir is chosen for Dirichlet. A
dissipation law is imposed at the root R which explains why it is
isolated from the other exterior vertices.

Define IInt = {ᾱ; Oᾱ ∈ Int}, IDir = {ᾱ; Oᾱ ∈ Dir} which are the
sets of the indices of the interior and exterior vertices, except R,
respectively.
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Note that the multiplicity of each interior point of the tree T is equal to
3 and that the integer (n + 1) represents the maximum level of the binary
tree T . Furthermore, the length of the edge eᾱ is equal to 1. Then, eᾱ
will be parametrized by its arc length by means of the functions πᾱ,
defined in [0, 1] such that πᾱ(0) = Oᾱ and πᾱ(1) is the other vertex of
this edge.
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We study the dissipative Schrödinger operator under the tree-shaped
network T . The case N ≥ 3 is the one we are interested in: it
corresponds to n ≥ 1.

•R •O

•
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•
O2

•
O1,1

•
O2,2

e

e1

e2

e11

e22
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•
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•
O2,1

Figure: A Tree-Shaped network

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016



Outline
Feedback stabilization of Schrödinger operator
Dispersive effects for the Schrödinger operator

Some references

More precisely, we consider the following initial and boundary value
problem:

∂uᾱ
∂t

(x , t) + i
∂2uᾱ
∂x2

(x , t) = 0, 0 < x < 1, t > 0, ᾱ ∈ I , (2.1)

i u(1, t) +
∂u

∂x
(1, t) = 0, uᾱ(0, t) = 0, ᾱ ∈ IDir , t > 0, (2.2)

uᾱ◦(β)(1, t) = uᾱ(0, t), t > 0, β = 1, 2, ᾱ ∈ IInt , (2.3)

2∑
β=1

∂uᾱ◦(β)

∂x
(1, t) =

∂uᾱ
∂x

(0, t), t > 0, ᾱ ∈ IInt , (2.4)

uᾱ(x , 0) = (uᾱ)0 (x), 0 < x < 1, ᾱ ∈ I , (2.5)

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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where uᾱ : [0, 1]× (0,+∞)→ R, ᾱ ∈ I , is the transverse displacement
of the edge eᾱ. These functions allow us to identify the network with its
rest graph. Note that in the problem above, (2.1) is the Schrödinger
equation imposed on all the branches of the tree, (2.2) concerns the root
and the other exterior nodes (recall that u = uᾱ with ᾱ = ∅ and that
this empty multi-index is chosen for the edge containing the root R).
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Well-posedness of the system

In order to study system (2.1)-(2.5) we need a proper functional setting.
We define the following space

H =
∏
ᾱ∈I

L2(0, 1)

equipped with the inner product

< u, ũ >H =
∑
ᾱ∈I

∫ 1

0

uᾱ(x) ¯̃uᾱ(x) dx . (2.6)

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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It is well-known that system (2.1)-(2.5) may be rewritten as the first
order evolution equation {

u′ = Ad u,
u(0) = u0,

(2.7)

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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where the operator Ad : D(Ad ) ⊂ H → H is defined by

Ad u := (−i ∂2
x uᾱ)ᾱ∈I ,

with

D(Ad ) :=

{
u ∈

∏
ᾱ∈I

H2(0, 1) : satisfies (2.8) to (2.10) hereafter

}
,

i u(1) +
du

dx
(1) = 0, uᾱ(0) = 0, ᾱ ∈ IDir , (2.8)

uᾱ◦(β)(1) = uᾱ(0), β = 1, 2, (2.9)

2∑
β=1

duᾱ◦(β)

dx
(1) =

duᾱ
dx

(0), ᾱ ∈ IInt . (2.10)
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The natural energy E (t) of a solution u = (uᾱ)ᾱ∈I of (2.1)-(2.5) is
defined by:

E (t) =
1

2

∑
ᾱ∈I

∫ 1

0

|uᾱ(x , t)|2 dx . (2.11)

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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Proposition

(i) For an initial datum u0 ∈ H, there exists a unique solution
u ∈ C ([0, +∞), H) to problem (2.7). Moreover, if u0 ∈ D(Ad ), then

u ∈ C ([0, +∞), D(Ad )) ∩ C 1([0, +∞), H).

(ii) The solution u of (2.1)-(2.5) with initial datum in D(Ad ) satisfies the
dissipation law:

E ′(t) = −
∣∣u(1, t)

∣∣2 ≤ 0. (2.12)

Therefore the energy is a non-increasing function of the time variable t.

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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Spectral analysis

The goal is to look for the eigenvalues and eigenvectors of the dissipative
operator Ad as well as those of the associated conservative operator A0.
To that end, the operator Aε is defined like Ad except for equation (2.8)
which is replaced by:

iε u(1) +
du

dx
(1) = 0, uᾱ(0) = 0, ᾱ ∈ IDir . (2.13)

Thus A0 and Ad are Aε with ε = 0 and ε = 1 respectively.

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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Proposition (Spectra of A0)

Let σ(0) be the spectrum of the conservative operator A0, then

σ
(0) = σ

(0)
1 ∪ σ

(0)
2 , (2.14)

where

σ
(0)
1 = {i(kπ)2 : k ∈ Z∗} ∪

{
i

(
kπ +

π

2

)2
: k ∈ Z

}
,

and, if n is even,

σ
(0)
2 =

{
i

(
kπ +

1

2
arg(z

(n)
A,j

)

)2

: j = 2, ..., n + 1, k ∈ Z
}

if n is odd,

σ
(0)
2 =

{
i

(
kπ +

1

2
arg(z

(n)
A,j

)

)2

: j = 1, ..., n + 1, k ∈ Z
}

where z
(n)
A,j
, j = 1, ..., n + 1 is the family of the complex roots of the polynomial PA,n defined in ici .

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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Theorem (Spectra of Ad )

Let σ be the spectrum of the dissipative operator Ad , then

σ = σ1 ∪ σ2 ∪ σ̃2, (2.15)

where σ1 = σ
(0)
1 , σ̃2 = {(λk )k∈S : S is finite, <(λk ) < 0} and

σ2 = {i(ωj,k )2 : j = 1, ..., n + 1, k ∈ Z, |k| ≥ k0},

k0 being an integer.
Moreover

<(i(ωj,k )2) < 0, ∀i(ωj,k )2 ∈ σ2,

and the following asymptotic behaviour holds:

i(ωj,k )2 = i

k2
π

2 + kπ arg(z
(n)
A,j

) +
(arg(z

(n)
A,j

))2

4

 + 2πγj + o(1) (2.16)

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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where γj is a real negative number (γj = − PB,n(z
(n)
A,j )

2πz
(n)
A,j (PA,n)′(z

(n)
A,j )

). The

polynomials PA,n and PB,n are defined by

PA,m+1(z) = 2(z + 1) PA,m(z) + (z − 1) PB,m(z),∀m ∈ N, (2.17)

PB,m+1(z) = 2(z − 1) PA,m(z) + (z + 1) PB,m(z),∀m ∈ N, (2.18)

PA,0(z) = z + 1, PB,0(z) = z − 1. (2.19)

admits n + 1 distinct complex roots z
(n)
A,j 6= 1, j = 1, ..., n + 1 with

modulus equal to 1.

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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Note that when n is even, (−1) is a root of PA,n which is denoted by

z
(n)
A,1. Since kπ + 1

2 arg(z
(n)
A,1) = kπ + π

2 , when n is even, the index j starts

from 2 in the definition of σ
(0)
2 . This ensures σ

(0)
1 ∩ σ

(0)
2 = ∅ for any value

of n ≥ 1.

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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The families of eigenvalues

Theorem (Families of eigenvalues of A0 and Ad )

1 - The complex λ = iω2 (ω ∈ C) is an eigenvalue of the operator A0

if and only if

either ω = kπ, k ∈ Z∗ and the dimension of the corresponding
eigenspace is equal to: 2n − 1,

or ω = (π/2) + kπ, k ∈ Z and the dimension of the corresponding

eigenspace is equal to:
1

3
2n +

2

3
if n is even and

1

3
(2n − 2) if n is

odd,

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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or ω = ((arg(z
(n)
A,j ))/2) + kπ, k ∈ Z where z

(n)
A,j (j = 1, . . . , n if n is

odd, j = 2, . . . , n if n is even) is the family of the roots of the

polynomial PA,n (if n is even, the first root z
(n)
A,1 = −1 is excluded).

The dimension of the eigenspace associated to each eigenvalue is
one.

2 - The complex λ = iω2 (ω ∈ C) is an eigenvalue of the operator Ad

if and only if

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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either ω = kπ, k ∈ Z∗ and the dimension of the corresponding
eigenspace is equal to: 2n − 1,

or ω = (π/2) + kπ, k ∈ Z and the dimension of the corresponding

eigenspace is equal to:
1

3
(2n − 1) if n is even and

1

3
(2n − 2) if n is

odd,

or ω satisfies ω 6= kπ, ω 6= (π/2) + kπ, k ∈ Z and

PA,n(z) +
PB,n(z)

ω
= 0. (2.20)

where z = e2iω. The dimension of the eigenspace associated to
each eigenvalue is one.

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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Note that the first two families of eigenvalues of Aε lie on the imaginary
axis. The third one also lies on the imaginary axis for the conservative
operator.
The third family of eigenvalues of the dissipative operator lies on the
half-plane of complex numbers with a negative real part.

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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Riesz basis

It is proved that the generalized eigenfunctions of the dissipative operator
Ad associated to the eigenvalues in σ2 ∪ σ̃2 form a Riesz basis of the
subspace of H which they span.

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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Theorem

Let A be a densely defined operator in a Hilbert space H with compact
resolvent. Let {φn}∞n=1 be a Riesz basis of H. If there are two integers
N1, N2 ≥ 0 and a sequence of generalized eigenvectors {ψn}∞n=N1+1 of A
such that

∞∑
n=1

‖φn+N2 − ψn+N1‖2
2 <∞,

then the set of generalized eigenvectors (or root vectors) of A, {ψn}∞n=1

forms a Riesz basis of H.

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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Theorem (Riesz basis for the operator Ad )

Denote by ω0 the number ω0
j,k := kπ +

1

2
arg(z

(n)
A,j ) which is such that

i(ω0)2 ∈ σ(0)
2 (except from the case n = 2 and j = 1: i(ω0

1,k )2 is an

eigenvalue in σ
(0)
1 ).

Denote by ω := ωj,k the value which is such that i(ωj,k )2 ∈ σ2 ∪ σ̃2. The
indices j and k are dropped for simplicity since they are fixed here.
Denote by ϕ0(ω0, ·) (resp. ϕ(ω, ·)) the eigenfunction of A0 (resp. Ad )
associated to the eigenvalue i(ω0)2 (resp. iω2).

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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For an odd n and any i = 1, . . . , n, there exists an integer k0 such that,
for any j = 1, . . . , n:∑

|k|>k0

‖ϕi (ωj,k , ·)− ϕ0
i (ω0

j,k , ·)‖2
2 <∞.

The index i comes from an indexation based on the level of the vertices
of the tree which is read from the leaves to the root here and not the
other way round as before.
For an even n and any i = 1, . . . , n, there exists an integer k0 such that,
for any j = 2, . . . , n:∑

|k|>k0

‖ϕi (ωj,k , ·)− ϕ0
i (ω0

j,k , ·)‖2
2 <∞.

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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Energy decreasing

Using the Riesz basis, the energy is proved to decrease exponentially to a
non-vanishing value depending on the initial datum. The decay rate is
explicitly given since the ω’s satisfying iω2 ∈ (σ2 ∪ σ̃2) are the solutions
of (2.20). For any fixed value of n, the constant C is computable
numerically.

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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Let us explicit the case n = 2. The polynomials PA,2 and PB,2 are:

PA,2(z) = 9z3 + 7z2 + 7z + 9, PB,2(z) = 9z3 + z2 − z − 9.

The polynomial PA,2 has 3 roots which are:

z
(2)
A,1 = −1 = e iπ, z

(2)
A,2 =

1

9
(1− 4i

√
5) = e−i arctan(4

√
5),

z
(2)
A,3 =

1

9
(1 + 4i

√
5) = e i arctan(4

√
5).

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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Thus the spectrum of the conservative operator A0 is given by (2.14)
with

σ
(0)
2 = {i(kπ ± arctan(4

√
5))2 : k ∈ Z}.

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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Figure: n = 2 : the spectrum σ2 ∪ σ̃2.
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The values of γj are: γ1 = − 2

5π
, γ2 = γ3 = − 3

10π
.

Then the set σ2 which is a part of the spectrum of the dissipative
operator Ad has two vertical asymptots:

<(λ) = 2πγ1 = −4

5
, <(λ) = 2πγ2 = 2πγ3 = −3

5
,

which is consistent with the numerical computation of the spectrum.

At last, numerically the eigenvalue of Ad with the largest real part is
λ ≈ −0.37459 + 0.873125i . Hence the approximate value for the decay
rate: C ≈ 0.37459.
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Energy decreasing using the Riesz basis

Theorem (Energy decreasing of the solution)

Let E(t) be the energy defined by (2.11) and H the Hilbert space. Let H1 (respectively H2) be the subspace of H

spanned by the ψ1(ω, ·)’s (resp. ψ2(ω, ·)’s), which are the normalized (in H) eigenfunctions of Ad associated to

the eigenvalues iω2 in σ1 (resp. σ2 ∪ σ̃2).

1 H1 is orthogonal to H2.

2 Let u0 in H be the initial condition of the boundary value problem and u1
0 its orthogonal projection onto

H1.

Then E(t) decreases exponentially to E1(0) := ‖u1
0‖

2
H when t tends to +∞. More precisely

E(t) ≤ E1(0) + e−2Ct E2(0) (2.21)

where −C := sup{iω2∈(σ2∪σ̃2)} <(iω2) < 0.

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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Transfer function analysis

In order to obtain the decay properties of the damped problem
(2.1)-(2.5) via observability inequalities for the conservative problem, we
can use an assumption which consists in the boundedness of the
associated transfer function. More precisely, if u is the solution of{

u′ = A0u,
u(0) = u0 ∈ H2

(2.22)

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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then the observability inequality consists in proving the existence of a
time T > 0 and a positive constant C (T ) such that∫ T

0

|u(1, t)|2dt ≥ C (T )‖u0‖2
H . (2.23)

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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

λzᾱ + i
d2zᾱ
dx2

= 0, (0, 1), ᾱ ∈ I ,

dz

dx
(1) = (−i)g , zᾱ(0) = 0, ᾱ ∈ IDir ,

zᾱ◦(β)(1) = zᾱ(0), β = 1, 2, ᾱ ∈ IInt ,
2∑

β=1

dzᾱ◦(β)

dx
(1) =

dzᾱ
dx

(0), ᾱ ∈ IInt .

(2.24)

where <λ > 0 and the input g belongs to C. Therefore the ouput z(1)
has the form z(1) = H(λ)g and our goal is to give an estimate of |H(λ)|
for λ on the line <λ = γ, γ > 0.
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We recall that the operator A0 : D(A0) ⊂ H → H is defined by

A0u := (−i ∂2
x uᾱ)ᾱ∈I ,

with

D(A0) :=

{
u ∈

∏
ᾱ∈I

H2(0, 1) : satisfies (2.25) to (2.27) hereafter

}
,

du

dx
(1) = 0, uᾱ(0) = 0, ᾱ ∈ IDir , (2.25)

uᾱ◦(β)(1) = uᾱ(0), β = 1, 2, ᾱ ∈ IInt , (2.26)

2∑
β=1

duᾱ◦(β)

dx
(1) =

duᾱ
dx

(0), ᾱ ∈ IInt . (2.27)

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016
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Then we define B ∈ L(C,D(A0)′) by its dual B∗ such that
B∗(Φ) := Φ(1), for any Φ in D(A0) (the duality is obtained by means of
the inner product in H). Then a straightforward computation shows that
the solution z of problem (2.24) is in H and is equal to (λI −A0)−1Bg .
Consequently z(1) = B∗(z) = B∗(λI −A0)−1Bg and the transfer
function has the form

H(λ) = B∗(λI −A0)−1B.
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Theorem (Estimate of the transfer function)

Let A0 : D(A0) ⊂ H → H and B be the operators defined above. The
transfer function is given by:

H(λ) = B∗(λI −A0)−1B ∈ L(C), λ ∈ C+ = {λ ∈ C; <λ > 0} .

It satisfies sup
<λ=γ

|H(λ)| <∞, γ > 0.
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Stabilization to zero by changing the feedback law

We can obtain an exponential stability result of system (2.28)-(2.33) to
zero in the energy space by changing the feedback law:
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Dissipation law Dirichlet boundary condition

Dissipation law

Figure: A Tree-Shaped network with exponential stabilizing feedback
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Let ᾱ∗ be an arbitrary element of IDir . We consider the following initial
and boundary value problem :

∂uᾱ
∂t

(x , t) + i
∂2uᾱ
∂x2

(x , t) = 0, 0 < x < 1, t > 0, ᾱ ∈ I , (2.28)

i u(1, t)+
∂u

∂x
(1, t) = 0, i uᾱ(0, t)−∂uᾱ

∂x
(0, t) = 0, ᾱ ∈ IDir , ᾱ 6= ᾱ∗, t > 0,

(2.29)
uᾱ∗(0, t) = 0, t > 0, (2.30)

uᾱ◦β(1, t) = uᾱ(0, t), t > 0, β = 1, 2, ᾱ ∈ IInt , (2.31)

2∑
β=1

∂uᾱ◦β
∂x

(1, t) =
∂uᾱ
∂x

(0, t), t > 0, ᾱ ∈ IInt , (2.32)

uᾱ(x , 0) = (uᾱ)0(x), 0 < x < 1, ᾱ ∈ I . (2.33)
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It is well-known that system (2.28)-(2.33) may be rewritten as the first
order evolution equation {

u′ = Ad u,
u(0) = u0,

(2.34)

where the operator Ad : D(Ad ) ⊂ H → H is defined by
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Ad u := (−i ∂2
x uᾱ)ᾱ∈I ,

with

D(Ad ) :=

{
u ∈

∏
ᾱ∈I

H2(0, 1) : satisfies (2.35) to (2.38) hereafter

}
,

i u(1) +
du

dx
(1) = 0, i uᾱ(0)− duᾱ

dx
(0) = 0, ᾱ ∈ IDir , ᾱ 6= ᾱ∗, (2.35)

uᾱ∗(0) = 0, (2.36)

uᾱ◦β(1) = uᾱ(0), β = 1, 2, ᾱ ∈ IInt , (2.37)

2∑
β=1

duᾱ◦β
dx

(1) =
duᾱ
dx

(0), ᾱ ∈ IInt . (2.38)
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The operator Ad generates a C0 semigroup of contractions on H.

We show that the semigroup etAd decays to the null steady state
with an exponential decay rate. To obtain this, our technique is
based on a frequency domain approach method and combines a
contradiction argument with the multiplier technique to carry out a
special analysis for the resolvent.
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Theorem

There exist constants C , τ > 0 such that the semigroup etAd satisfies the
following estimate ∥∥etAd

∥∥
L(H)

≤ C e−τ t , ∀ t > 0. (2.39)
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Lemma (Prüss, Huang)

A C0 semigroup etL on a Hilbert space H satisfies

||etL||L(H) ≤ C e−τ t ,

for some constant C > 0 and for τ > 0 if and only if

ρ(L) ⊃
{

iβ
∣∣ β ∈ R} ≡ iR, (2.40)

and
lim sup
|β|→∞

‖(iβI − L)−1‖L(H) <∞, (2.41)

where ρ(L) denotes the resolvent set of the operator L.
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The star-shaped network case

We prove the time decay estimates L1(R)→ L∞(R), where R is an

infinite star-shaped network, for the Schrödinger group e it(− d2

dx2 +V ) for
real-valued potentials V satisfying some regularity and decay
assumptions. Further we show that the solution for initial conditions with
a lower cutoff frequency tends to the free solution, if the cutoff frequency
tends to infinity.
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Let Ri , i = 1, ...,N, be N(N ∈ N,N ≥ 2) disjoint sets identified with
(0,+∞) and put R := ∪N

k=1Rk . We denote by
f = (fk )k=1,...,N = (f1, ..., fN ) the function on R taking their values in R
and fk is the restriction of f to Rk .
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•O

Figure: Star-Shaped Network (N = 3)
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Define the Hilbert space H =
∏N

k=1 L2(Rk ) with scalar product

((uk ), (vk ))H =
∑N

k=1(uk , vk )L2(Rk ) and introduce the following
transmission conditions :

(uk )k=1,...,N ∈
N∏

k=1

C (Rk ) satisfies ui (0) = uk (0) ∀ i , k = 1, ...,N, (3.42)

(uk )k=1,...,N ∈
N∏

k=1

C 1(Rk ) satisfies
N∑

k=1

duk

dx
(0+) = 0. (3.43)
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Let H0 : D(H0)→ H be the linear operator of H defined by :

D(H0) =
{

(uk ) ∈ H2(Rk ); (uk ) satisfies (3.42), (3.43)
}
,

H0(uk ) = (H0,k uk )k=1,...,N = (−d2uk

dx2
)k=1,...,N = −∆R(uk ).
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The operator H0 defined above is self-adjoint and satisfies that his
spectrum σ(H0) is equal to [0,+∞).

For any s ∈ R, let us denote by L1
s (R) the space of all complex-valued

measurable functions φ = (φ1, . . . , φN ) defined on R such that

‖φ‖L1
s (R) :=

∫
R
|φ(x)| 〈x〉s dx =

N∑
k=1

∫
Rk

|φk (x)| 〈x〉s dx <∞,

where 〈x〉 = (1 + |x |2)1/2. This space is a Banach space with the norm
‖ · ‖L1

s (R).
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Let V ∈ L1
1(R). Denote by H the self-adjoint realization of the operator

− d2

dx2 + V (x) on L2(R) and his spectrum
σ(H) = [0,+∞) ∪ {a finite number of negative eigenvalues}.

We verify that the free Schrödinger group on the star-shaped network R
satisfies the following dispersive estimate∥∥e itH0

∥∥
L1(R)→L∞(R)

≤ C |t|−1/2, t 6= 0.
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Our goal is to assume as little as possible on the potential V = V (x) in
terms of decay or regularity. More precisely, we prove the following
theorem.

Theorem 1 (Ali Mehmeti-A-Nicaise)

Let V ∈ L1
γ(R), with γ > 5/2. Then for all t 6= 0,∥∥e itH Pac (H)

∥∥
L1(R)→L∞(R)

≤ C |t|−1/2 (3.44)

where C is a positive constant and Pac (H) is the projection onto the
absolutely continuous spectral subspace.
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As a consequence, we have the following Lp − Lp′ estimate.

Corollary (Lp − Lp′ estimate)

Under the assumptions of Theorem 1, for 1 ≤ p ≤ 2 and 1
p + 1

p′ = 1 we
have for all t 6= 0,∥∥e itH Pac (H)

∥∥
Lp(R)→Lp′ (R)

≤ C |t|−
1
p + 1

2 , (3.45)

where C > 0 is a constant.
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Moreover we have the following Strichartz estimates which have been
used in the context of the nonlinear Schrödinger equation to obtain
well-posedness results.

Corollary (Strichartz estimates)

Let the assumptions of Theorem 1 be satisfied. Then for 2 ≤ p, q ≤ +∞
and 1

p + 2
q = 1

2 we have for all t,∥∥e itH Pac (H)f
∥∥

Lq(R,Lp(R))
≤ C ‖f ‖2 , ∀ f ∈ Lp(R) ∩ L2(R), (3.46)

where C > 0 is a constant.
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As a direct consequence, we have the following well-posedness result for a
nonlinear Schrödinger equation with potential.

Let p ∈ (0, 4) and suppose that V satisfies the assumptions of Theorem
1. Then, for any u0 ∈ L2(R), there exists a unique solution

u ∈ C (R; L2(R)) ∩
⋂

(p,q) admissible

Lq
loc (R; Lp(R))

of the equation {
iut −∆Ru + V u ± |u|p u = 0, t 6= 0,
u(0) = u0, t = 0,

(3.47)

and where (p, q) is called an admissible pair if (p, q) satisfies that
2 ≤ p, q ≤ +∞ and 2

p + 1
q = 1

2 .
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Remark

Another direct consequence of the dispersive estimate or of the Lp − Lp′

estimate is that we can construct the scattering operator for the
nonlinear Schrödinger equation with potential.
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While proving Theorem 1 we obtain as results of independent interest the
L∞−time decay for the high frequency part of the group and a high
frequency perturbation estimate:

Theorem 2 (Ali Mehemti-A-Nicaise)

Under the assumptions of Theorem 1 we have

‖e itHχ(H)‖1,∞ ≤ (A + B
‖V ‖1√
λ0

)|t|−1/2, t 6= 0, (3.48)

‖e itHχ(H)− e itH0χ(H0)‖1,∞ ≤ B
‖V ‖1√
λ0

|t|−1/2, t 6= 0 . (3.49)
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Here χ is smoothly cutting off the frequencies below λ0 and A,B are in
terms of the cutoff function independent of λ0.
In particular we have for any f ∈ L1(R) that

e itHχ(H)f → e itH0χ(H0)f for λ0 →∞

uniformly on R for every fixed t > 0.
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The perturbation estimate allows the simultaneous control of the
smallness of the difference between perturbed and unperturbed group in
terms of the cutoff frequency, the L1−Norm of the potential and time.
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A counterexample

Consider the infinite network R = ∪n∈Nen, where each edge
en = (n, n + 1) with the set of vertices V = ∪n∈Nvn, where vn = {n}. For
a fixed sequence of positive real numbers α = (αn)n∈N, we define the
Hilbert space L2(R, α) as follows

L2(R, α) =
{

u = (un)n∈N : un ∈ L2(en)∀n ∈ N

such that
∑
n∈N

αn

∫
en

|un(x)|2 dx <∞

}
,

equipped with the inner product

(u, v) =
∑
n∈N

αn

∫
en

un(x)vn(x) dx , ∀u, v ∈ L2(R, α).
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Similarly for all k ∈ N∗, we set

Hk (R, α) =
{

u = (un)n∈N ∈ L2(R, α) :

(u(`)
n )n∈N ∈ L2(R, α) ∀` ∈ {1, 2, . . . , k}

}
,

where u
(`)
n means the ` derivative of un with respect to x .

Now we consider the Laplace operator −∆α (depending on α) as follows:

D(−∆α) = {u = (un)n∈N ∈ H2(R, α) : satisfying (3.50), (3.51), (3.52) below }

u0(0) = 0, (3.50)

un(n + 1) = un+1(n + 1),∀n ∈ N, (3.51)

αn
dun

dx
(n + 1) = αn+1

dun+1

dx
(n + 1),∀n ∈ N. (3.52)
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For all u ∈ D(−∆α), we set −∆αu = (− d2un

dx2 )n∈N. This operator is a non
negative self-adjoint operator in L2(R, α).

Theorem

For all k ∈ N∗, k2π2 is a simple eigenvalue of −∆α if and only if

s =
∑
n∈N

1

αn
<∞. (3.53)

In that case the associated orthonormal eigenvector ϕ[k] = (ϕ[k])n∈N is
given by

ϕ[k]
n =

√
2

s

(−1)(n−1)k

αn
sin(kπ(x − n)),∀x ∈ en, n ∈ N.
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Now assuming that (3.53) holds, then for any k ∈ N∗ we consider the
solution u of the Schrödinger equation{

∂tu − i∆αu = 0,
u(t = 0) = ϕ[k],

or equivalently solution of
∂tun − i∂2

x un = 0, in en × R,
u0(0, t) = 0, on R,
un(n + 1, t) = un+1(n + 1, t) on R,∀n ∈ N,
αnu′n(n + 1, t) = αn+1u′n+1(n + 1, t) on R,∀n ∈ N,
u(t = 0, ·) = ϕ[k] on R.
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This solution is given by u(t) = e−itk2π2

ϕ[k]. Moreover simple
calculations show that

‖u(t)‖∞,R =

√
2

s
sup
n∈N

1

αn
‖ sin(kπ(· − n))‖∞,en =

√
2

s
sup
n∈N

1

αn
,

which is independent of t and then does not tend to zero as |t| goes to
infinity. On the other hand u(t = 0, ·) belongs to L1(R), since we have

‖u(t)‖L1(R) =

√
2

s

∑
n∈N

1

αn
‖ sin(kπ(· − n))‖L1(en) ≤

√
2s.
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Theorem

If (3.53) holds, then the norm of the Schrödinger operator e it∆α from
L1(R) to L∞(R) does not tend to zero as |t| goes to infinity.
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This counterexample shows that the decay of the norm of the
Schrödinger operator from L1(R) to L∞(R) as |t| goes to infinity is not
guaranteed for all infinite networks. Hence the remainder this talk is to
give some examples where such a case occurs.
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Dispersive estimate for free Schrödinger operator

Theorem (Dispersive estimate)

For all t 6= 0, ∥∥e itH0
∥∥

L1(R)→L∞(R)
≤ C |t|−1/2

, (3.54)

where C > 0 is a constant.
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We have the following result as a direct consequence for a dispersive
estimate for free Schrödinger operator on a star-shaped network.

Corollary (Lp − Lp′ estimate)

For 1 ≤ p ≤ 2 and 1
p + 1

p′ = 1 we have for all t 6= 0,∥∥e itH0
∥∥

Lp(R)→Lp′ (R)
≤ C |t|−

1
p + 1

2 , (3.55)

where C > 0 is a constant.
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According to (3.54) we have

sup
t 6=0
|t|

1
2
∥∥e itH0 f

∥∥
∞ ≤ C ‖f ‖1 , ∀ f ∈ L1(R) ∩ L2(R).

Interpolating with the L2 bound
∥∥e itH0 f

∥∥
2

= ‖f ‖2 , leads to

sup
t 6=0
|t|−

1
2 + 1

p
∥∥e itH0 f

∥∥
p′
≤ C ‖f ‖p , ∀ f ∈ L1(R) ∩ L2(R), (3.56)

where 1 ≤ p ≤ 2.
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It is well-known that via T ∗T argument (3.56) gives rise to the class of
Strichartz estimates∥∥e itH0 f

∥∥
Lq

t (Lp
x )
≤ C ‖f ‖2 , ∀

2

q
+

1

p
=

1

2
, 2 < q ≤ +∞, 2 ≤ p ≤ ∞.

(3.57)
The endpoint q = 2 is not captured by this approach but by the approach
develloped by Kell and Tao. So the estimate (3.57) is valid for all
2 ≤ p, q ≤ +∞ satisfying 2

q + 1
p = 1

2 and we have also,∥∥∥∥∫
R

e−itH0 F (s, .)ds

∥∥∥∥
L2(R)

≤ C ‖F‖Lq′ (R,Lp′ (R)) ,

∥∥∥∥∫ t

0

e i(t−s)H0 F (s)ds

∥∥∥∥
Lq(R,Lr′ (R))

≤ C ‖F‖Lr′ (R,Ls′ (R)) ,

for all admissible pairs (q, p) and (r , s).

Käıs Ammari Cergy-Pontoise, 21-24 June- 2016



Outline
Feedback stabilization of Schrödinger operator
Dispersive effects for the Schrödinger operator

Some references Tadpole graph case

According to (3.57), we have for p ∈ (0, 4), that for any u0 ∈ L2(R) the
equation

iut −∆Ru ± |u|pu = 0, t 6= 0, u = u0, t = 0,

admits a unique solution
u ∈ C (R, L2(R)) ∩

⋂
(q,r) admissible Lq

loc (R, Lr (R)).

The L2(R)-norm is conserved along the time, i.e.,
‖u(t)‖L2(R) = ‖u0‖L2(R).
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Tadpole graph case

We consider the free Schrödinger group e−it d2

dx2 on a tadpole graph R.
We first show that the time decay estimates L1(R)→ L∞(R) is in |t|− 1

2

with a constant independent of the length of the circle. Our proof is
based on an appropriate decomposition of the kernel of the resolvent.
Further we derive a dispersive perturbation estimate, which proves that
the solution on the queue of the tadpole converges uniformly, after
compensation of the underlying time decay, to the solution of the
Neumann half-line problem, as the circle shrinks to a point. To obtain
this result, we suppose that the initial condition fulfills a high frequency
cutoff.
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Let Ri , i = 1, 2, be two disjoint sets identified with a closed path of
measure equal to L > 0 for R2 and to (0,+∞), for R1, see figure. We set
R := ∪2

k=1Rk . We denote by f = (fk )k=1,2 = (f1, f2) the functions on R
taking their values in C and let fk be the restriction of f to Rk .
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•
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Kirchho� transmission law

Figure: Tadpole graph
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Define the Hilbert space H = ⊕2
k=1L2(Rk ) = L2(R) with inner product

((uk ), (vk ))H =
2∑

k=1

(uk , vk )L2(Rk )

and introduce the following transmission conditions:

(uk )k=1,2 ∈ ⊕2
k=1C (Rk ) satisfies u1(0) = u2(0) = u2(L), (3.58)

(uk )k=1,2 ∈ ⊕2
k=1C 1(Rk ) satisfies

2∑
k=1

duk

dx
(0+)− du2

dx
(L−) = 0. (3.59)
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Let H : D(H) ⊂ H → H be the linear operator on H defined by :

D(H) =
{

(uk ) ∈ ⊕2
k=1H2(Rk ); (uk )k=1,2 satisfies (3.42), (3.43)

}
,

H(uk ) = (Hk uk )k=1,2 =

(
−d2uk

dx2

)
k=1,2

= −∆R(uk ).
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This operator H is self-adjoint and its spectrum σ(H) is equal to
[0,+∞). The self-adjointness and non-negativity of H can be shown by
Friedrichs extension.
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Here, we prove that the free Schrödinger group on the tadpole graph R
satisfies the standard L1 − L∞ dispersive estimate. More precisely, we will
prove the following theorem.

Theorem (Ali Mehmeti-A-Nicaise)

For all t 6= 0, ∥∥e itH Pac

∥∥
L1(R)→L∞(R)

≤ C |t|−1/2
, (3.60)

where C is a positive constant independent of L and t, Pac f is the
projection onto the absolutely continuous spectral subspace and
L1(R) = ⊕2

k=1L1(Rk ), L∞(R) = ⊕2
k=1L∞(Rk ).
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An important point is that this estimate is independent of the length L of
the circle, which also follows from the fact that the problem is scale
invariant.
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Let H0 be the negative laplacian on the half line with Neumann boundary
conditions. Then holds the following dispersive perturbation estimate:

Theorem (Ali Mehmeti-A-Nicaise)

Let 0 ≤ a < b <∞. Let u0 ∈ H ∩ L1(R1) such that

supp u0 ⊂ R1 . (3.61)

Then for all t 6= 0, we have

‖ e itHI(a,b)(H)u0 − e itH0I(a,b)(H0)u0 ‖L∞(R1)

≤ t−1/2L 2
√

2
(

4(2
√

b −
√

a) + L(b − a)
)
‖u0‖L1(R1) .
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This last result implies that the solution of the Schrödinger equation
on the queue R1 of the tadpole with an upper frequency cutoff
tends uniformly to the solution of the half-line Neumann problem
with the same upper frequency cutoff, if the initial condition has its
support in the queue, after compensation of the underlying
t−1/2-decay. In physical terms the frequency cutoff makes that the
localization of the signals is limited and thus they have increasing
difficulties to enter into the head of the tadpole.

Without the high frequency cutoff, this result would not be possible,
as the problem is scale invariant.
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Thank you for your attention
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