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Institut de Mathématiques de Toulouse

23 Juin 2016 - Cergy Pontoise
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Introduction

Purpose of the talk

I Take the question of Strichartz inequalities (for the Schrödinger equation) on
asymptotically flat manifolds as a case study to review some related scattering
estimates (resolvent estimates, timedecay, smoothing estimates), either for
comparison or because they are crucial inputs in the proofs of Strichartz
inequalities

I Present some recent results (joint with H. Mizutani) on Strichartz inequalities on
asymptotically flat manifolds



Strichartz and scattering estimates on the Euclidean space

Strichartz inequalities for the Schrödinger equation

take the form

(∫ T

−T
||e it∆u0||pLq(Rn)

dt

) 1
p

≤ C ||u0||L2

provided (p, q) is admissible (scaling condition)

2

p
+

n

q
=

n

2
, p, q ≥ 2, q 6=∞ if n = 2.

[Strichartz], [Ginibre-Velo], [Keel-Tao]
Interests:

1. Shows that e it∆u0 ∈ Lq for a.e. t without using any derivative on u0. Compare
with Sobolev inequalities (2 ≤ q <∞)

||e it∆u0||Lq . ||e it∆u0||Hs = ||u0||Hs , s =
n

2
−

n

q

2. Important to solve non linear equations at low regularity

3. For T = +∞ (= global in time estimates), shows that ||e it∆u0||Lq → 0 as
t →∞ (on Lp average if q > 2) ∼ local energy decay (RAGE Theorem) since

||e it∆u0||L2(K) .K ||e it∆u0||Lq(Rn), K b Rn.
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Strichartz and scattering estimates on the Euclidean space

Scattering inequalities

I Resolvent estimates: give the behaviour with respect to λ ∈ R of

R0(λ± i0) = lim
δ→0±

(−∆− λ− iδ)−1

In general, the existence of the limit is called limiting absorption principle
Intuition. R0(λ+ iδ) is the Fourier multiplier by (|ξ|2 − λ− iδ)−1. This multiplier
has a limit as δ → 0± (∼ principal value) provided it is tested against smooth
enough functions on the Fourier side ↔ decaying functions on the spatial side.
Examples.

1. High energy estimates: if ν > 1/2,∣∣∣∣〈x〉−νR0(λ± i0)〈x〉−ν
∣∣∣∣

L2→L2 . λ
−1/2

, λ ≥ 1

2. Low energy estimates: if ν = 1 and n ≥ 3∣∣∣∣〈x〉−1R0(λ± i0)〈x〉−1∣∣∣∣
L2→L2 . 1, |λ| ≤ 1

3. One may (actually, one has to) also consider estimates on

R0(λ± i0)k =
1

(k − 1)!

dk−1

dλk−1
R0(λ± i0)
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has a limit as δ → 0± (∼ principal value) provided it is tested against smooth
enough functions on the Fourier side ↔ decaying functions on the spatial side.
Examples.

1. High energy estimates: if ν > 1/2,∣∣∣∣〈x〉−νR0(λ± i0)〈x〉−ν
∣∣∣∣

L2→L2 . λ
−1/2

, λ ≥ 1

2. Low energy estimates:

if ν = 1 and n ≥ 3∣∣∣∣〈x〉−1R0(λ± i0)〈x〉−1∣∣∣∣
L2→L2 . 1, |λ| ≤ 1

3. One may (actually, one has to) also consider estimates on

R0(λ± i0)k =
1

(k − 1)!

dk−1

dλk−1
R0(λ± i0)
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Strichartz and scattering estimates on the Euclidean space

Scattering inequalities (continued)

I Propagation / time decay estimates:

given a (spectral) cutoff ϕ ∈ C∞0 (0,+∞),
understand the time decay of

ϕ(−∆/λ)e it∆

as t →∞, in term of the parameter λ > 0.
Intuition. For λ = 1, the Schwartz kernel of ϕ(−∆)e it∆ is the oscillatory integral∫

e i(x−y)·ξ−it|ξ|2ϕ(|ξ|2)
dξ

(2π)n
=

i

2t

∫ (
ξ

2|ξ|2
· ∂ξe−it|ξ|2

)
e i(x−y)·ξϕ(|ξ|2)

dξ

(2π)n

which leads to ∣∣∣∣∣∣〈x〉−kϕ(−∆)e it∆〈x〉−k
∣∣∣∣∣∣
L2→L2

. 〈t〉−k .

By scaling ∣∣∣∣∣∣〈λ 1
2 x〉−kϕ(−∆/λ)e it∆〈λ

1
2 x〉−k

∣∣∣∣∣∣
L2→L2

. 〈λt〉−k
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Strichartz and scattering estimates on the Euclidean space
Scattering inequalities (end)

I Integrated decay/ smoothing estimates:

Integrated space-time decay estimates
are of the form (∫

R
||〈x〉−νϕ(−∆/λ)e it∆u0||2L2dt

) 1
2

.λ ||u0||L2 ,

with ν > 1/2. By tracking the dependence on λ, one may obtain the non
spectrally localized estimate (n ≥ 3)(∫

R
||〈x〉−1〈D〉

1
2 e it∆u0||2L2dt

) 1
2

. ||u0||L2

which is the 1
2

-smoothing effect for the Schrödinger equation. Note that even
locally in time (i.e. with R replaced by [−T ,T ]) this is non trivial.

Intuition. More on the next slides. Technically, they follow from resolvent
estimates via a Parseval argument, using that e it∆ is the Fourier transform
(λ→ t) of the spectral measure

R0(λ+ i0)− R0(λ− i0).

Rem. This correspondence λ→ t also allows to convert resolvent estimates into
time decay/propagation estimates (smoothness of R0(λ± i0)↔ decay of e itP)
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Strichartz inequalities vs smoothing effect for a wave packet

Strichartz inequalities

Consider the L2 normalized semiclassical wave packet

Gz,ζ,h(x) = (πh)−
n
4 exp

(
i

h
ζ · (x − z)−

|x − z|2

2h

)
.

Then, ∣∣e i t2 ∆Gz,ζ,h(x)
∣∣ =

π−
n
4(

h〈t/h〉2
) n

4

exp

(
−
∣∣x − z − (t/h)ζ

∣∣2
2h〈t/h〉2

)

with 〈τ〉 = (1 + τ2)
1
2 . This implies easily

∣∣∣∣e i t2 ∆Gz,ζ,h

∣∣∣∣
Lq

= (2/q)
n

2q

(
1

πh〈t/h〉2

) n
2

(
1
2
− 1

q

)

Remark. The translation by (t/h)ζ is not used. Only the spreading/dilation factor
〈t/h〉 plays a role.

In particular, for q = 2∗ = 2n/(n − 2),∫ T

−T

∣∣∣∣e i t2 ∆Gz,ζ,h

∣∣∣∣2
L2∗ dt = cn

∫ T

−T

1

〈t/h〉2
dt

h
= cn

∫ T/h

−T/h

1

1 + τ2
dτ ≤ C

for all h ∈ (0, 1] and z ∈ Rn.
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Strichartz inequalities vs smoothing effect for a wave packet
Smoothing effect (local in time)

∣∣〈D〉se i t2 ∆Gz,ζ,h(x)
∣∣

∼ 〈ζ/h〉s
π−

n
4(

h〈t/h〉2
) n

4

exp

(
−
∣∣x − z − (t/h)ζ

∣∣2
2h〈t/h〉2

)
h→ 0,

= 〈ζ/h〉sG t
z,ζ,h(x).

We assume that ζ 6= 0, say |ζ| = 1 and then, by possibly rotating the axis, that
ζ = (1, 0, . . . , 0). Then

∣∣∣∣〈x〉−ν〈ζ/h〉sG t
z,ζ,h

∣∣∣∣2
L2
x

= cn〈ζ/h〉2s〈t/h〉−n
∫
〈h

1
2 y+z+tζ/h〉−2ν exp

(
−

y2

〈t/h〉2

)
dy

If we further integrate in time on [−T ,T ]t ,

cnh〈ζ/h〉2s
∫ T/h

−T/h
〈τ〉−n

∫
〈h

1
2 y + z + τζ〉−2ν exp

(
−

y2

〈τ〉2

)
dydτ

which is bounded by

cnh〈1/h〉2s
∫ T/h

−T/h

∫
〈h

1
2 Y1〈τ〉+ z1 + τ〉−2ν exp

(
−Y 2

)
dYdτ

Remark. Up to the term Y1〈τ〉, there is no more contribution of the spreading 〈τ〉.
Here, the main role will be played the translation by (t/h)ζ = τζ.
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Strichartz inequalities vs smoothing effect for a wave packet
Recall we are estimating
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2 Y1〈τ〉+ z1 + τ〉−2ν exp

(
−Y 2
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dYdτ.

I In the region |h1/2Y1| ≤ ε (ε� 1 fixed), we integrate in time by using the variable

τ̃ = τ + h
1
2 Y1〈τ〉 (Jacobian = 1 + O(ε))
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−Y 2
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d τ̃
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−Y 2
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−Y 2/2
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O(h∞)

⇒ Integral ≤ (1)× O(h∞)

Conclusion: If s = 1
2

and ν > 1
2∣∣∣∣〈x〉−ν〈ζ/h〉 1

2 G t
z,ζ,h

∣∣∣∣
L2([−T ,T ]×Rn)

≤ C uniformly in h ∈ (0, 1] and in z ∈ Rn.
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Global Strichartz inequalities on asymptotically flat manifolds

General problem: Extend Strichartz estimates to asymptotically flat manifolds

1. see which properties persist or can be lost

2. more specifically, try to decouple what happens near infinity (where one expects
the same behavior as on Rn) from what happens inside a compact set (where the
geometry/geodesic flow may be arbitrary and complicated)

3. see the influence of the geometry on nonlinear equations

4. the Schrödinger equation can be replaced by other dispersive PDE (wave,
Klein-Gordon) which are relevant on asymptotically flat manifolds

5. good motivation / test to understand which scattering properties are robust and
relevant (in particular in the low energy analysis)

Scattering inequalities turn out to play a crucial role in this problem.
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Asymptotically flat manifolds
I The model: Rn, equipped with the flat metric,

G0 = dx2
1 + · · ·+ dx2

n =
∑
j,k

Gjkdxjdxk , G0 := (Gjk ) = I .

The geodesic flow φt : Rn × Rn(= T∗Rn)→ Rn × Rn is given by

φt(x , ξ) = (x + 2tξ, ξ) =: (x t , ξt),

it solves the Hamilton equations

ẋ t = (∂ξp)(x t , ξt), ξ̇t = −(∂xp)(x t , ξt)

where
p(x , ξ) = |ξ|2 = ξ · G−1

0 ξ

is the (principal) symbol of −∆ = D2
1 + · · ·+ D2

n with Dj = 1
i
∂
∂xj

I Pertubed model: Rn, equipped with a metric
∑

j,k Gjk (x)dxjdxk such that

G(x)− I → 0 as x →∞, G(x) :=
(
Gjk (x)

)
more precisely, ∂α(Gjk (x)− δjk ) = O(〈x〉−µ−|α|) for some µ > 0. The geodesic
flow is defined analogously with

p(x , ξ) = ξ · G(x)−1ξ =
∑
j,k

G jk (x)ξjξk

the (principal) symbol of the Laplace-Beltrami operator

−∆G = −
∑
j,k

G jk (x)∂xj ∂xk +
∑
j,k,`

G jk (x)Γ`jk (x)∂x`
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Asymptotically flat manifolds

I More general model: asymptotically conical manifolds.

In polar coordinates, Rn \ 0 equipped with the Euclidean metric is isometric to

(0,+∞)× Sn−1 equipped with dr2 + r2gSn−1

with gSn−1 the standard metric on the sphere.
An asymptotically conical manifold is of the form M = Mc tM∞ with Mc

compact with boundary

M∞ ≈ (R,∞)r × S equipped with G = dr2 + r2g(r)

with S compact (without boundary), dim(S) = n− 1, and, for some metric g(∞)
on S and some µ ∈ (0, 1],

∂kr
(
g(r)− g(∞)

)
= O(〈r〉−µ−k ).

Motivation to study such models:

I Good models of scattering theory

I time slices of certain space-times

I allow to describe the propagation into an inhomogeneous medium, with possible
impurities (small perturbations) at infinity and strong perturbation inside a
compact set
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Scattering estimates on asymptotically flat manifolds

Let P be the selfadjoint realization of −∆G on L2(M), with (M,G) an asymptotically
flat manifold. We let

R(z) = (P − z)−1, z ∈ C \ [0,+∞)

Rem: recall that spec(P) ⊂ [0,∞) since (Pu, u)L2 =
∣∣∣∣|∇Gu|

∣∣∣∣2
L2 ≥ 0

Facts:

I P has no (embbeded) eigenvalues, i.e. the spectrum is continuous (Froese-Herbst
82, Donnelly 99, Koch-Tataru 06, Ito-Skibsted 13)

I there is a limiting absorption principle, i.e.

〈r〉−νR(λ± i0)〈r〉−ν : L2(M)→ L2(M)

exists at all positive energies if ν > 1
2
, and is C k on (0,∞) if ν > 1

2
+ k

(consequence of the Mourre Theory, [Jensen-Mourre-Perry])

I In particular, for any ϕ ∈ C∞0 (0,+∞) and λ > 0,∣∣∣∣∣∣〈r〉−νϕ(P/λ)e−itP〈r〉−ν
∣∣∣∣∣∣
L2(M)→L2(M)

≤ Cλ,ϕ,ν〈t〉−k (2)

if ν > 1
2

+ k

Question: behavior of R(λ± i0) and (2) as λ→∞ (high energy) and λ→ 0 (low
energy) ?
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Scattering estimates on asymptotically flat manifolds
High energy estimates (λ→ +∞)

depend on the behavior of the geodesic flow φt

I Worst case: general case (everywhere below ν > 1/2)∣∣∣∣〈r〉−νR(λ± i0)〈r〉−ν
∣∣∣∣
L2(M)→L2(M)

. eCλ
1/2

[Burq , Cardoso-Vodev]
I Best case: non trapping geodesic flow∣∣∣∣〈r〉−νR(λ± i0)〈r〉−ν

∣∣∣∣
L2(M)→L2(M)

. λ−1/2

[Robert-Tamura,] [C. Gérard-Martinez] , [Vasy-Zworski]
Rem: this estimate is equivalent to the non trapping condition [Wang]

I Intermediate cases: for “weak hyperbolic trapping” (hyperbolic trapping with
negative topological pressure)∣∣∣∣〈r〉−νR(λ± i0)〈r〉−ν

∣∣∣∣
L2(M)→L2(M)

. λ−1/2 log λ

[Christianson, Datchev, Nonnenmacher-Zworski] (+ [Ikawa] for obstacles)
For certain surfaces of revolution∣∣∣∣〈r〉−νR(λ± i0)〈r〉−ν

∣∣∣∣
L2(M)→L2(M)

. λκ

[Christianson-Wunsch]
I Partial converse for trapping manifolds: if there are trapped geodesics∣∣∣∣〈r〉−νR(λ± i0)〈r〉−ν

∣∣∣∣
L2(M)→L2(M)

& λ−1/2 log λ

[Bony-Burq-Ramond]
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Scattering estimates on asymptotically flat manifolds

Low energy estimates (λ→ 0)

In dimension n ≥ 3, if ν1, ν2 > 1/2 and ν1 + ν2 > 2

I ∣∣∣∣〈r〉−ν1R(λ± i0)〈r〉−ν2
∣∣∣∣
L2(M)→L2(M)

. 1

[Bony-Hafner]

I Sharp version: ∣∣∣∣〈r〉−1R(λ± i0)〈r〉−1
∣∣∣∣
L2(M)→L2(M)

. 1

[B.-Royer]

I Robust estimates for powers∣∣∣∣〈λ 1
2 r〉−k (λ−1P − 1± i0)−k 〈λ

1
2 r〉−k

∣∣∣∣
L2(M)→L2(M)

. 1

[B.-Royer]

I consequence on time decay∣∣∣∣〈λ 1
2 r〉−kϕ(λ−1P)e−itP〈λ

1
2 r〉−k

∣∣∣∣
L2(M)→L2(M)

. 〈λt〉1−k
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Strichartz on asymptotically flat manifolds

Several results for local in time estimates

I For general manifolds:

estimates with loss of derivatives

||e i·Pu0||Lp([−T ,T ],Lq) .T ||u0||H1/p(M) :=
∣∣∣∣〈−∆G 〉1/2pu0

∣∣∣∣
L2

[Burq-Gérard-Tzvetkov]

I For non trapping asymptotically flat manifolds:

||e i·Pu0||Lp([−T ,T ],Lq) .T ||u0||L2

[Staffilani-Tataru], [Robbiano-Zuily], [B.-Tzvetkov], [Hassell-Tao-Wunsch]

I For asymptotically flat manifolds with small hyperbolic trapped set

||e i·Pu0||Lp([−T ,T ],Lq) .T ||u0||L2

[Burq-Guillarmou-Hassell]

Intuition (non trapping case):

I Inside a compact set K , combine

||1K e
i·Pu0||L2([−T ,T ],L2∗ ) .T ||u0||H1/2(M) and||1K e

i·Pv0||L2([−T ,T ],H1/2) .T ||v0||L2

I Outside a compact set: use that the geometry is close to a nice model (...)
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Strichartz on asymptotically flat manifolds

Few about global in time estimates (partially due to the low energy analysis)

I Tataru , Tataru-Marzuola-Metcalfe: asymptotically euclidean case, allow relatively
weak trapping at infinity

I Hassell-Zhang:

non trapping assumption, special type of conical ends
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Results (joint with H. Mizutani)

Let f0 ∈ C∞0 (R) be such that f0 = 1near 0.
Theorem 1 (low frequency) If n ≥ 3 and (p, q) is admissible

||f0(P)e−i·Pu0||Lp(R;Lq(M)) ≤ C ||u0||L2(M).

Theorem 2 (high frequency at infinity) Assuming n ≥ 2 and that R(λ± i0) grows at
most polynomially in λ, there exists a compact set K b M such that for any (p, q)
admissible

||1M\K (1− f0)(P)e−i·Pu0||Lp(R;Lq(M)) ≤ C ||u0||L2(M).

Theorem 3 (global space-time estimates without loss of derivatives) If n ≥ 3 and
the trapping is hyperbolic with negative pressure, then for (p, q) admissible

||e−i·Pu0||Lp(R;Lq(M)) ≤ C ||u0||L2(M).

Theorem 4 (nonlinear scattering) Under the assumptions of Theorem 3, the L2

critical equation

i∂tu − Pu = σ|u|
4
n u, u|t=0 = u0, σ = ±1,

with ||u0||L2 � 1, has a unique solution in (a subspace of) C(R, L2) ∩ L2+ 4
n (R×M)

and
||u(t)− e−itPu±||L2(M) → 0, t → ±∞.
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A quarter of the proof

Low frequency localization in the uncertainty region:

in the regime λ = ε2 → 0, how
to prove ∫

R

∣∣∣∣χ(εr)f (P/ε2)e itPu0

∣∣∣∣2
L2(R;L2∗ )

dtC
∣∣∣∣f (P/ε2)u0

∣∣∣∣2
L2

with C independent of λ (and u0)∣∣∣∣χ(εr)f (P/ε2)e itPu0

∣∣∣∣
L2∗ .

∣∣∣∣∇Gχ(εr)f (P/ε2)e itPu0

∣∣∣∣
L2 (homogeneous Sobolev est.)

.
∣∣∣∣εχ′(εr)f (P/ε2)e itPu0

∣∣∣∣
L2 +

∣∣∣∣χ(εr)∇G f (P/ε2)e itPu0

∣∣∣∣
L2

.
∣∣∣∣〈r〉−1f (P/ε2)e itPu0

∣∣∣∣
L2 +

∣∣∣∣〈εr〉−1P
1
2 f̃ (P/ε2)e itPu0

∣∣∣∣
L2

.
∣∣∣∣〈r〉−1f (P/ε2)e itPu0

∣∣∣∣
L2 +

∣∣∣∣〈r〉−1˜̃f (P/ε2)e itPu0

∣∣∣∣
L2

où f̃ , ˜̃f ∈ C∞0 (0,+∞). One concludes by mean of an optimally weighted resolvent
inequality [B-Royer, 2015]∣∣∣∣〈r〉−1f (P/ε2)e i·Pu0

∣∣∣∣
L2(R;L2)

.
(

1+ sup
|λ|≤2

∣∣∣∣〈r〉−1(P−λ±i0)−1〈r〉−1
∣∣∣∣
L2→L2

)∣∣∣∣u0

∣∣∣∣
L2 .

Rem. For the localization, (1− χ(εr))f (P/ε2), one has “|ξ| ∼ ε” and “|x | & ε−1” ⇒
no problem of uncertainty principle to use microlocal techniques
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où f̃ , ˜̃f ∈ C∞0 (0,+∞). One concludes by mean of an optimally weighted resolvent
inequality [B-Royer, 2015]∣∣∣∣〈r〉−1f (P/ε2)e i·Pu0

∣∣∣∣
L2(R;L2)

.
(

1+ sup
|λ|≤2

∣∣∣∣〈r〉−1(P−λ±i0)−1〈r〉−1
∣∣∣∣
L2→L2

)∣∣∣∣u0

∣∣∣∣
L2 .

Rem. For the localization, (1− χ(εr))f (P/ε2), one has “|ξ| ∼ ε” and “|x | & ε−1” ⇒
no problem of uncertainty principle to use microlocal techniques



A quarter of the proof

Low frequency localization in the uncertainty region:in the regime λ = ε2 → 0, how
to prove ∫

R

∣∣∣∣χ(εr)f (P/ε2)e itPu0

∣∣∣∣2
L2(R;L2∗ )

dtC
∣∣∣∣f (P/ε2)u0

∣∣∣∣2
L2

with C independent of λ (and u0)∣∣∣∣χ(εr)f (P/ε2)e itPu0

∣∣∣∣
L2∗ .

∣∣∣∣∇Gχ(εr)f (P/ε2)e itPu0

∣∣∣∣
L2 (homogeneous Sobolev est.)

.
∣∣∣∣εχ′(εr)f (P/ε2)e itPu0

∣∣∣∣
L2 +

∣∣∣∣χ(εr)∇G f (P/ε2)e itPu0

∣∣∣∣
L2

.
∣∣∣∣〈r〉−1f (P/ε2)e itPu0

∣∣∣∣
L2 +

∣∣∣∣〈εr〉−1P
1
2 f̃ (P/ε2)e itPu0

∣∣∣∣
L2

.
∣∣∣∣〈r〉−1f (P/ε2)e itPu0

∣∣∣∣
L2

+
∣∣∣∣〈r〉−1˜̃f (P/ε2)e itPu0

∣∣∣∣
L2
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où f̃ , ˜̃f ∈ C∞0 (0,+∞). One concludes by mean of an optimally weighted resolvent
inequality [B-Royer, 2015]∣∣∣∣〈r〉−1f (P/ε2)e i·Pu0

∣∣∣∣
L2(R;L2)

.
(

1+ sup
|λ|≤2

∣∣∣∣〈r〉−1(P−λ±i0)−1〈r〉−1
∣∣∣∣
L2→L2

)∣∣∣∣u0

∣∣∣∣
L2 .

Rem. For the localization, (1− χ(εr))f (P/ε2),

one has “|ξ| ∼ ε” and “|x | & ε−1” ⇒
no problem of uncertainty principle to use microlocal techniques



A quarter of the proof

Low frequency localization in the uncertainty region:in the regime λ = ε2 → 0, how
to prove ∫

R

∣∣∣∣χ(εr)f (P/ε2)e itPu0

∣∣∣∣2
L2(R;L2∗ )

dtC
∣∣∣∣f (P/ε2)u0

∣∣∣∣2
L2

with C independent of λ (and u0)∣∣∣∣χ(εr)f (P/ε2)e itPu0

∣∣∣∣
L2∗ .

∣∣∣∣∇Gχ(εr)f (P/ε2)e itPu0

∣∣∣∣
L2 (homogeneous Sobolev est.)

.
∣∣∣∣εχ′(εr)f (P/ε2)e itPu0

∣∣∣∣
L2 +

∣∣∣∣χ(εr)∇G f (P/ε2)e itPu0

∣∣∣∣
L2

.
∣∣∣∣〈r〉−1f (P/ε2)e itPu0

∣∣∣∣
L2 +

∣∣∣∣〈εr〉−1P
1
2 f̃ (P/ε2)e itPu0

∣∣∣∣
L2

.
∣∣∣∣〈r〉−1f (P/ε2)e itPu0

∣∣∣∣
L2 +

∣∣∣∣〈r〉−1˜̃f (P/ε2)e itPu0

∣∣∣∣
L2
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Rest of the proof

At infinity: split f (P/λ)e itP into sums of

Tλ(t) = Lλf (P/λ)e itP

with suitable localization operators Lλ, and show

||Tλ(t)||L2→L2 . 1, ||Tλ(t)Tλ(s)||L1→L∞ . |t − s|−
n
2

by writing
Tλ(t)Tλ(s) = approximation + remainder

I the “approximation” is explicit enough operator to bound sharply its integral

kernel by |t − s|−
n
2 (dispersion bound)

I the remainder is a remainder term in a Duhamel formula in which we combine L2

time decay/propagation estimates (for the time decay) and Sobolev estimates (to
replace L2 → L2 by L1 → L∞) to derive dispersion bounds.
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