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Consider a Klein–Gordon operator on a globally hyper-
bolic spacetime M

P := |g|−
1
2(x)

(
i∂µ − Aµ(x)

)
gµν|g|

1
2(x)

(
i∂ν − Aν(x)

)
+m2(x).



We say that G is a bisolution of P if

GP = PG = 0.

We say that G is an inverse (Green’s function or a fun-
damental solution) if

GP = PG = 1l.

We are looking for distinguished bisolutions and inverses.
We will call them propagators. (This word is often used
in this context in quantum field theory).



The following “classical propagators” are well known and
well defined under general conditions

• the forward/retarded inverse/propagator G+,

• the backward/advanced inverse/propagator G−,

• the Pauli-Jordan bisolution, also called the causal prop-
agator or the commutator function GPJ := G+ −G−.



We are however more interested in “non-classical prop-
agators”, typical for quantum field theory. They are less
known to pure mathematicians and more difficult to de-
fine. They are the Feynman and anti-Feynman inverse
and the positive and negative frequency bisolutions.



There exists a well-known paper of Duistermat-Hörmander,
which defined Feynman parametrices (a parametrix is
an approximate inverse in appropriate sense). There ex-
ists large literature devoted to the so-called Hadamard
states, which can be interpreted as bisolutons with ap-
proximately positive frequencies. These are however
large classes. We would like to have distinguished choices.



It is helpful to introduce a time variable t, so that the
spacetime is M = R × Σ. Assume that there are no
time-space cross terms, so that

P =
1

β
(∂t + iV )2 + L,

L = −|g|−
1
2(∂i + i ~Ai)|g|

1
2g
ij
Σ (∂j + i ~Aj) + m2.



We rewrite the Klein-Gordon equation as a 1st order
equation given by

P1 := i∂t −B(t),

where

B(t) :=

(
V (t) β(t)

L(t) V (t)

)



Denote by U(t, t′) the dynamics defined by B(t), that is

∂tU(t, t′) = −iB(t)U(t, t′),

U(t, t) = 1l.

Note that if E is a bisolution/inverse of P1, then E12 is a
bisolution/inverse of P .



The classical propagators can be easily expressed in
terms of the dynamics defined by P1:

EPJ(t, t′) := U(t, t′), EPJ
12 = GPJ

E+(t, t′) := θ(t− t′)U(t, t′), E+
12 = G+

E−(t, t′) := −θ(t′ − t)U(t, t′), E−12 = G−.



We introduce the charge matrix

Q :=

(
0 1l

1l 0

)
.

and the classical Hamiltonian

H(t) := QB(t) =

(
L(t) V (t)

V (t) β(t)

)
.

We will assume that H(t) is strictly positive.



Assume now that the problem is static, so that β, L, V ,
B, H do not depend on time t. Clearly,

U(t, t′) = e−i(t−t′)B.

The quadratic formH defines the so-called energy scalar
product. It is easy to see that B is Hermitian in this prod-
uct. Under appropriate assumptions B has a gap in its
spectrum around 0. Let Π(±) be the projections onto the
positive/negative part of the spectrum of B.



We define the Feynman and anti-Feynman inverse and
the positive and negative frequency bisolutions on the
level of P1:

E(±)(t, t′) := ±e−i(t−t′)BΠ(±),

EF(t, t′) := θ(t− t′) e−i(t−t′)BΠ(+) − θ(t′ − t) e−i(t−t′)BΠ(−),

EF(t, t′) := θ(t− t′) e−i(t−t′)BΠ(−) − θ(t′ − t) e−i(t−t′)BΠ(+).



They lead to corresponding propagators on the level of
P :

G(±) := E
(±)
12 ,

GF := EF
12,

GF := EF
12.

They satisfy the relations

GPJ = G(+) −G(−),

GF = G(+) + G− = G(−) + G+,

GF = −G(+) + G+ = −G(−) + G−.



Nonclassical propagators are important in quantum field
theory, and they are often called 2-point functions, be-
cause they are vacuum expectation values of free fields:

G(+)(x, y) =
(
Ω|φ̂(x)φ̂(y)Ω

)
,

GF(x, y) =
(
Ω|T

(
φ̂(x)φ̂(y)

)
Ω
)
.

GF is used to evaluate Feynman diagrams.



It is easy to see that on a general spacetime the Klein-
Gordon operator P is Hermitian (symmetric) on C∞c (M)

in the sense of the Hilbert space L2(M). In the static
case, using Nelson’s Commutator Theorem one can show
that it is essentially self-adjoint.

Theorem. For s > 1
2, the operator GF is bounded from

the space 〈t〉−sL2(M) to 〈t〉sL2(M). Besides, in the sense
of these spaces,

s− lim
ε↘0

(P − iε)−1 = GF.



Let 0 ≤ θ ≤ π. Suppose we replace the metric g by

gθ := −e−2iθβ dt2 + gΣ

and the electric potential V by Vθ := e−iθV . This replace-
ment is called Wick rotation. The value θ = π

2 corre-
sponds to the Riemannian metric

gπ/2 = β dt2 + gΣ.



We have the Wick rotated Klein-Gordon operator, which
is elliptic and even invertible:

Pθ =
e−i2θ

β
(∂t + iV )2 + L,

Theorem. For s > 1
2, we have

s− lim
θ↘0

P−1
θ = GF,

in the sense of operators from 〈t〉−sL2(M) to 〈t〉sL2(M).



Can one generalize non-classical propagators to non-
static spacetimes? We will assume that the spacetime is
close to being static and for large times it approaches a
static spacetime sufficiently fast.



It seems that there are 3 natural possibilities:

1. incoming positive/negative frequency bisolution and Feyn-
man propagator;

2. outgoing positive/negative frequency bisolution and Feyn-
man propagator;

3. “canonical” positive/negative frequency bisolution and
Feynman propagator.



The incoming positive frequency bisolution is obtained
by cutting the phase space with the projections Π

(±)
−∞

onto the positive/negative part of the spectrum ofB(−∞).
Then the incoming Feynman propagator is obtained by
the usual relation. One can argue, that this is the most
physical choice, since states are usually prepared in a
distant past.

Analogously, the outgoing propagators are defined using
the projections Π

(±)
∞ onto the positive/negative part of the

spectrum of B(∞).



For spacetimes very close to static, there is a third pos-
sibility, which is in some sense the most “canonical”.
Hence what is obtained we call canonical propagators

Note that the projection Π
(+)
−∞ can be transported by the

dynamics to any time t, obtaining the projection Π
(+)
−∞(t).

Similarly we obtain the projection Π
(−)
∞ (t). We will say

that the Klein-Gordon equation is asymptotically comple-
mentary if for some t (and hence for all t) the subspaces

Ran Π
(+)
−∞(t),Ran Π

(−)
+∞(t)

are complementary.



Assume that asymptotic complementarity holds. Define
Π

(+)
can(t), Π

(−)
can (t) to be the unique pair of projections cor-

responding to

Ran Π
(+)
−∞(t),Ran Π

(−)
+∞(t)

The canonical Feynman propagator is defined as

EF
can(t2, t1) := θ(t2 − t1)U(t2, t1)Π

(+)
can(t1)

−θ(t1 − t2)U(t2, t1)Π
(−)
can (t1),

GF
can := EF

can,12.



In a somewhat different setting, in the case of massless
Klein-Gordon operator GF

can was considered before by
A.Vasy et al. A similar construction can be found in a
recent paper of Gerard-Wrochna.

GF
can has a flaw from the physical point of view: in general

it is not associated with a positive state. However, it also
seems to have advantages.



Conjecture. For small enough, compactly supported per-
turbations of the static case, the following holds:

1. Asymptotic complementarity holds, so that we can de-
fine GF

can.

2. The Klein-Gordon operator P is essentially self-adjoint
on C∞c (M).

3. In the sense of operators from 〈t〉−sL2(M) to 〈t〉sL2(M),

s− lim
ε↘0

(P − iε)−1 = GF.


