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Schrödinger Equation in a Lattice : The equation

The equation:

i~∂tΨ +
~2

2m
∆xΨ− Qper (x) Ψ− Qext(x)Ψ = 0, (t, x) ∈ R× Rd ,

Ψ|t=0 = Ψ0 ∈ L2(Rd),

where Qper is a potential periodic with respect to a lattice Γ = Zd .

Let ε be the ratio between the mean spacing of the lattice and the characteristic
length scale of variation of Qext.

ε� 1.

=⇒ Change of units and rescaling the external potential and the wave function !
(see [Poupaud & Ringhofer 96]).
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Schrödinger Equation in a Lattice : The scaled equation

The equation:

i∂tψ
ε +

1

2
∆xψ

ε − 1

ε2
Vper

(x
ε

)
ψε − V (x)ψε = 0, (t, x) ∈ R× Rd ,

ψε|t=0 = ψε0 ∈ L2(Rd),

where Vper is a potential periodic with respect to Zd .

Question: Effective Mass Theory consists in showing situations where ψε(t) can
be approximated by the solution of a Effective Mass Equation:

i∂tφ(t, x) +
1

2
〈M Dx ,Dx〉φ(t, x)− V (x)φ(t, x) = 0.

M is a d × d matrix called the effective mass tensor.
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Schrödinger Equation in a Lattice : Our purpose

The two main questions of the literature :

Finding initial conditions for which the previous analysis holds,

Finding the corresponding M.

[Bensoussan, Lions & Papanicolaou 78], [Poupaud & Ringhofer 96], [Allaire & Piatniski 05], [Hoefer &Weinstein 11], [Barletti
& Ben Abdallah 11].

=⇒ Our purpose :

Getting rid of assumptions on the initial conditions,

Clarifying the dependence of M on the parameter of the equation.
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Schrödinger Equation in a Lattice : our strategy

Remark

If vε solves the semiclassical Schrödinger equation

iε∂tv
ε +

ε2

2
∆xv

ε − Vper

(x
ε

)
vε − ε2V (x)vε = 0, vε|t=0 = ψε0 .

Then, ψε(t, x) = vε
( t
ε
, x
)
.

[Gérard], [GMMP] [Poupaud & Ringhofer], [Bechouche, Mauser & Poupaud], [Spohn & Teufel] [Panati, Spohn &Teufel],

[Dimassi, Guillot & Ralston] [Allaire &Palombaro] [Carles &Sparber]

=⇒ Perform simultaneously the s.c. limit ε→ 0 with the limit t/ε→ +∞.
[Macia and his collaborators Anantharaman, Léautaud, Rivière & C.F.K.] (without periodic potential).

Our goal : apply this viewpoint to effective mass theory.
=⇒ a generalized effective mass equation of Heisenberg type.
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Floquet-Bloch theory : Bloch waves and energies

We use the Ansatz : ψε(t, x) = Uε
(
t, x ,

x

ε

)
, where Uε(t, x , y) is assumed

to be Zd -periodic in y and solves

iε2∂tU
ε(t, x , y) = P(εD)Uε(t, x , y) + ε2V (x)Uε(t, x , y), Uε|t=0 = ψε0

where P(ξ) =
1

2
(ξ + Dy )2 + VΓ(y), y ∈ Td := Rd\Zd .

The Bloch energies are the eigenvalues of the self-adjoint operator on the
torus P(ξ) :

λ1(ξ) ≤ λ2(ξ) ≤ · · · ≤ λn(ξ)→ +∞.
They are 2πZd periodic and smooth in domain where they are of constant

multiplicity.

The Bloch waves are the orthonormal eigenfunctions of P(ξ)

P(ξ)ϕn(ξ, y) = λn(ξ)ϕn(ξ, y), n ∈ N, y ∈ T2, ∀ξ ∈ Rd .
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Floquet Bloch theory : Bloch decomposition

Consider (Πn(ξ))n∈N a family of projectors on separated Bloch bands and

Uεn (t, x , y) := Πn(εDx)Uε(t, x , y) =

∫
Rd×Rd

Πn(εξ)Uε(t,w , y)eiξ·(x−w) dwdξ

(2π)d
dy ,

so that Uε(t, x , y) =
∑
n∈N

Uεn (t, x , y).

This construction leads to the following representation formula for the
solution of the Schrödinger equation

ψε(t, x) =
∑
n∈N

Uεn

(
t, x ,

x

ε

)
.

If RkΠn(ξ) = 1, RangeΠn(ξ) = Vectϕn(ξ, ·), P(ξ)ϕn(ξ) = λn(ξ)ϕn(ξ),

Uεn (t, x , y) = ϕn(εD, y)uεn(t, x) +O(ε|t|),
where uεn solves

iε2∂tu
ε
n = λn(εDx)uεn + ε2V (x)uεn , uεn |t=0 = uεn,0.
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Quantifying the lack of dispersion : a more general
question

Consider equations of the form{
iε2∂tu

ε(t, x) = λ(εDx)uε(t, x) + ε2V (x)uε(t, x), (t, x) ∈ R× Rd ,

uε|t=0 = uε0 .
(1)

This equation ceases to be dispersive as soon as λ(ξ) has critical points
ξ 6= 0, and this is always the case if λ is a Bloch energy.

Heuristically, dispersive time-evolution =⇒ smoothing effect
i.e. regularization of the high-frequency effects developed by the initial data.
[Kato 83], [Sjölin 87], [Vega 88], [Constantin & Saut 88], [Kenig, Ponce & Vega 91], [Ben Artzi & Devinatz 91].

We show that, in the presence of critical points of λ, some of the
high-frequency effects developed by the sequence of initial data persist after
applying the time evolution.
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Quantifying the lack of dispersion : The assumptions

Assumptions:

H0 The sequence (uε0) is uniformly bounded in L2(Rd) and ε-oscillating :

lim sup
ε→0+

∫
|ξ|>R/ε

|ûε0(ξ)|2dξ −→
R→+∞

0.

H1 V ∈ C∞(Rd) and λ ∈ C∞(Rd) grows at most polynomially; i.e. there exist
C ,N > 0 such that:

|λ(ξ)| ≤ C (1 + |ξ|)N , ∀ξ ∈ Rd .

H2 The set Λ :=
{
ξ ∈ Rd : ∇λ(ξ) = 0

}
is a submanifold of Rd of codimension

0 < p ≤ d and the Hessian ∇2λ is of maximal rank over Λ. Moreover, each
connected component of Λ is compact.

Remark

If all critical points of λ are non-degenerate, then Λ is a discrete set in Rd . If
moreover one has that λ is Zd -periodic, this set is finite modulo Zd .
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Quantifying the lack of dispersion : non-degenerate case

Theorem (Obstruction to smoothing effects in presence of critical points)

Assume H0 & H1 and that all critical points of λ are non-degenerate.
Then there exists a subsequence (uεk0 ) such that ∀a < b and ∀φ ∈ Cc(Rd) :

lim
k→∞

∫ b

a

∫
Rd

φ(x)|uεk (t, x)|2dxdt =
∑
ξ∈Λ

∫ b

a

∫
Rd

φ(x)|uξ(t, x)|2dxdt,

where uξ solves the Schrödinger equation:

i∂tuξ(t, x) = ∇2λ(ξ)Dx · Dxuξ(t, x) + V (x)uξ(t, x),

with initial data uξ|t=0 which is the weak limit in L2(Rd) of
(
e−iξ/εk ·xuεk0

)
.

If Λ = ∅ then the right-hand side above is equal to zero.

Example : If uε0(x) =
1

εd/4
ρ

(
x − x0√

ε

)
eiξ0/ε·x , then uξ = 0 for all ξ and the

Theorem yields that (uε) converge to zero in L2
loc(R× Rd).

Related work : [Ruzhanski & Sugimoto 16]

C. Fermanian Kammerer (U.P.E.) Wigner Measures and Eff. Mass Theo. Cergy-Pontoise, 22.6.2016 11 / 21



Quantifying the lack of dispersion : non-degenerate case

Theorem (Obstruction to smoothing effects in presence of critical points)

Assume H0 & H1 and that all critical points of λ are non-degenerate.
Then there exists a subsequence (uεk0 ) such that ∀a < b and ∀φ ∈ Cc(Rd) :

lim
k→∞

∫ b

a

∫
Rd

φ(x)|uεk (t, x)|2dxdt =
∑
ξ∈Λ

∫ b

a

∫
Rd

φ(x)|uξ(t, x)|2dxdt,

where uξ solves the Schrödinger equation:

i∂tuξ(t, x) = ∇2λ(ξ)Dx · Dxuξ(t, x) + V (x)uξ(t, x),

with initial data uξ|t=0 which is the weak limit in L2(Rd) of
(
e−iξ/εk ·xuεk0

)
.

If Λ = ∅ then the right-hand side above is equal to zero.

Example : If uε0(x) =
1

εd/4
ρ

(
x − x0√

ε

)
eiξ0/ε·x , then uξ = 0 for all ξ and the

Theorem yields that (uε) converge to zero in L2
loc(R× Rd).

Related work : [Ruzhanski & Sugimoto 16]

C. Fermanian Kammerer (U.P.E.) Wigner Measures and Eff. Mass Theo. Cergy-Pontoise, 22.6.2016 11 / 21



Quantifying the lack of dispersion : degenerate case

When the non-degeneracy of the critical points is replaced by H2, we obtain
a similar result which requires some geometric preliminaries.

Define the tangent bundle of Λ as the union of all tangent spaces to Λ,

TΛ := {(x , ξ) ∈ Rd × Λ : x ∈ TξΛ}.

The normal bundle of Λ is the union of linear subspaces normal to Λ:

NΛ := {(y , ξ) ∈ Rd × Λ : y ∈ NξΛ = (TξΛ)⊥}.

Every point x ∈ Rd can be uniquely written as x = z + y , where z ∈ TξΛ
and y ∈ NξΛ.

Given a function φ ∈ L∞(Rd), we write mφ(z , ξ), where z ∈ TξΛ, to denote
the operator acting on L2(NξΛ) by multiplication by φ(z + ·).

We use the notation ∆E to denote the Laplacian acting on functions defined
on a linear subspace E ⊂ Rd .
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Quantifying the lack of dispersion : degenerate case
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Quantifying the lack of dispersion : degenerate case

Theorem

Assume H0, H1 & H2. Then there exist a subsequence (uεk0 ), a positive measure
γ ∈M+(TΛ) and a measurable fami. of s.-adj., positive, trace-class operators

M0 : TξΛ 3 (z , ξ) 7−→ M0(z , ξ) ∈ L1
+(L2(NξΛ)), TrL2(NξΛ)M0(z , ξ) = 1,

such that for every a < b and every φ ∈ Cc(Rd) one has:

lim
k→∞

∫ b

a

∫
Rd

φ(x)|uεk (t, x)|2dxdt

=

∫ b

a

∫
TΛ

TrL2(NξΛ) [mφ(z , ξ)M(t, z , ξ)] γ(dz , dξ)dt,

where M(·, z , ξ) ∈ C(R;L1
+(L2(NξΛ)) solves the following Heisenberg equation:

i∂tM(t, z , ξ) +

[
1

2
∆NξΛ + mV (z , ξ),M(t, z , ξ)

]
= 0, M|t=0 = M0.
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Quantifying the lack of dispersions : comments

The measure γ and the family of operators M0(z , ξ), for z ∈ TξΛ, only
depend on the subsequence of initial data (uεk0 ).

When Λ is a set of isolated critical points, both Theorems are equivalent :
TΛ = {0} × Λ and

γ =
∑
ξ∈Λ

γξδξ, where γξ = ||uξ|t=0||2L2(Rd ).

In addition, NξΛ = Rd and M(t, ξ) is the orth. proj. onto uξ(t, ·).

A consequence of this Theorem is that the weak-? limit of the densities
|uεk |2 is absolutely continuous with respect to the Lebesgue measure dxdt
and can be expressed as a superposition of position densities associated to
solutions to the family of p-dimensional Schrödinger evolutions:

i∂tvz,ξ(t, y) +
1

2
∆yvz,ξ(t, y) + V (z + y)vz,ξ(t, y) = 0, (t, y) ∈ R× NξΛ.
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Strategy of the proof : phase space analysis

Phase space analysis: Let W (uε) be the Wigner transform of (uε),

W ε(t, x , ξ) = (2π)−d
∫
Rd

uε
(
t, x + ε

v

2

)
uε
(
t, x − εv

2

)
eiv ·ξdv .

The Wigner transform plays the role of a generalised energy density since

|uε(t, x)|2 =

∫
Rd

W ε(t, x , ξ)dξ.

Wigner measures of (uε) are positive measures µ(t) satisfying for some
subsequence εk and for all a < b, c ∈ C∞0 (R2d) ,

lim
k→∞

∫ b

a

∫
R2d

c(x , ξ)W εk (t, x , ξ)dxdξdt =

∫ b

a

∫
R2d

c(x , ξ)µ(t, dx , dξ)dt.

Besides, ε-oscillation =⇒

lim
k→∞

∫ b

a

∫
Rd

φ(x)|uεk (t, x)|2dxdt =

∫ b

a

∫
R2d

φ(x)µ(t, dx , dξ)dt.
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Strategy of the proof : localisation of Wigner measures

Set for χ ∈ C0(R) and c ∈ C∞0 (R2d) ,

I ε(χ, c) =

∫
R

∫
R2d

χ(t)c(x , ξ)W εk (t, x , ξ)dxdξdt.

Invariance of Wigner measure : Egorov’s theorem =⇒

Proposition

Any µt is invariant by the flow φ1
s : s 7→ (x + s∇λ(ξ), ξ).

Localization of Wigner measures

Corollary

Supp(µt) ⊂ {(x , ξ) ∈ R2d , ∇λ(ξ) = 0}.
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Strategy of the proof : Two scale observables

We add to the phase space R2d a new variable η ∈ Rd .
[CK], [Nier], [Miller], [FFK &Gérard], [Laser & Teufel], [Harris, Lukkarinen, Teufel& Theil], [Macia], [Anantharaman & Macia]

With c = c(x , ξ, η) ∈ C∞(R3d) satisfying additional properties, which satisfy :

1 there exists a compact K such that for all η ∈ Rd , (x , ξ) 7→ c(x , ξ, η) is a
smooth function compactly supported in K ;

2 there exists a function c∞(x , ξ, ω) defined on R2d × Sd−1 and R0 > 0 such
that if |η| > R0, then c(x , ξ, η) =c∞(x , ξ, η/|η|).

Assume Λ = ξ0 + 2πZd . We associate with such c , the two-scale observable

c]ε(x , ξ) = c

(
x , ξ,

ξ − ξ0

ε

)
.

Remarks : 1) If c ∈ C∞0 (R2d), c is admissible.
2) Wigner transform acts on two-scale observables.
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Strategy of the proof : Two scale Wigner measures

Theorem

There exist, εn −→
n→+∞

0, ν ∈ L∞(R,M+(Rd × Sd−1)), Φ ∈ C0(R, L2(Rd)) such

that

I εn(χ, c]εn) −→
n→+∞

∫
R
χ(t) (a(x , ξ0,D)Φ(t),Φ(t)) dt+

∫
R
χ(t)〈a∞(·, ξ0, ·), νt〉dt.

1 Φ solves the effective mass equation

i∂tΦ = Hessλ(ξ0)D · D Φ + Vext(x)Φ, Φ(0) = Φ0,

where Φ0 is a weak limit in L2(Rd) of the sequence x 7→ e
i
ε ξ0·xuε0(x).

2 νt is invariant by the flow φ2
s : (x , ω) 7→ (x + sHessλ(ξ0)ω, ω).

Corollary

If Hessλ(ξ0) is non degenerated, then νt = 0 and µt(x , ξ)1ξ=ξ0 = |Φ(t, x)|2dx .
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Back to effective mass theory : assumptions on the initial
data

Let I ⊂ N, a set of indices n such that the multiplicity of the Bloch energy λn(ξ)
is constant for every ξ ∈ Rd

Assume that H2 holds for any λn, n ∈ I

Assume that ψε0 is ε-oscillating and

ψε0 =
∑
n∈I

ψεn,0, ψεn,0 = Uεn

(
0, x ,

x

ε

)
,

where Ûεn (0, ξ) is in the eigenspace of λn(ξ).
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Back to effective mass theory : application of the Theorem

Then, if (ψε) is the solution to the Schrödinger equation issued for data (ψε0),

For every φ ∈ C∞0 (Rd), the family (φψε(t)) is ε-oscillating.

ψε(t, x) =
∑
n∈I

ψεn(t, x) with ψεn(t, x) = Uεn

(
t, x ,

x

ε

)
, For each n ∈ N,

{
iε2∂tψ

ε
n(t, x) = λn(εDx)ψεn(t, x) + ε2V (x)ψεn(t, x) + ε2f εn (t, x),

||f εn (t, ·)||L2(Rd ) ≤ Cε, t ∈ R, .

There exist a subsequence εk such that, for every a < b, φ ∈ C∞0 (Rd),

lim
k→∞

∫ b

a

∫
Rd

φ(x)|ψε(t, x)|2dxdt =
∑
n∈I

∫ b

a

∫
Rd

|φ(x)|2µn
t (dx)dt,

where, for each n ∈ N, the measures µn
t ∈M+(Rd × Rd) are Wigner

measures of (ψεn).
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Conclusion

Second microlocalisation along Λ has led to a complete description of the
mechanism for any (ε-oscillating) initial data.

In non standard cases (when Λ is a submanifold with H2), we have
introduced a generalized effective mass equation with an operator-valued
macroscopic item satisfying a Heisenberg equation (instead of a function
satisfying a Schrödinger equation).

In those non standard cases, the second microlocalisation does not concern
“all the variable ξ” and the remaining part is responsible of the quantum
feature at macroscopic level in the derived effective mass equation which
becomes a Heisenberg equation.

The next step should consist in treating a Bloch band containing two
eigenvalues presenting a conical intersection (work in progress).

Thank you for your attention !
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