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Schrodinger Equation in a Lattice : The equation

The equation:

h2
IOV + 5= AW = Qper (X) V¥ = Qext () = 0, (2,x) € R x RY,

W)o = Vg € L*(RY),

where Qper is @ potential periodic with respect to a lattice ' = 7.
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Schrodinger Equation in a Lattice : The equation

The equation:

h2
IOV + 5= AW = Qper (X) V¥ = Qext () = 0, (2,x) € R x RY,

W)o = Vg € L*(RY),

where Qper is @ potential periodic with respect to a lattice ' = 7.

Let € be the ratio between the mean spacing of the lattice and the characteristic
length scale of variation of Qext.
ekl

= Change of units and rescaling the external potential and the wave function !
(see [Poupaud & Ringhofer 96]).
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Schrodinger Equation in a Lattice : The scaled equation

The equation:

) e 1 c 1 X e e d
007 + S8 = 5 Ver (2) 07 = V(X0 =0, (t,x) R x RY,
wft:O = ws € Lz(Rd)a

where V., is a potential periodic with respect to 7.
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Schrodinger Equation in a Lattice : The scaled equation

The equation:
1 1
06" + 550" — =5 Voer (g) W — V()0 =0, (t,x) € R x RY,
wft:O = ws € Lz(Rd)a

where V., is a potential periodic with respect to 7.

Question: Effective Mass Theory consists in showing situations where 1)°(t) can
be approximated by the solution of a Effective Mass Equation:

00(t, ) + 3 (M D, D68, x) — V(x)o(t, x) = 0.

M is a d x d matrix called the effective mass tensor.
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Schrodinger Equation in a Lattice : Our purpose

The two main questions of the literature :
@ Finding initial conditions for which the previous analysis holds,

@ Finding the corresponding M.

[Bensoussan, Lions & Papanicolaou 78], [Poupaud & Ringhofer 96], [Allaire & Piatniski 05], [Hoefer &Weinstein 11], [Barletti
& Ben Abdallah 11].
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Schrodinger Equation in a Lattice : Our purpose

The two main questions of the literature :
@ Finding initial conditions for which the previous analysis holds,

@ Finding the corresponding M.

[Bensoussan, Lions & Papanicolaou 78], [Poupaud & Ringhofer 96], [Allaire & Piatniski 05], [Hoefer &Weinstein 11], [Barletti
& Ben Abdallah 11].

= Our purpose :
@ Getting rid of assumptions on the initial conditions,

@ Clarifying the dependence of M on the parameter of the equation.
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Schrodinger Equation in a Lattice : our strategy

REETL

If v& solves the semiclassical Schrodinger equation

2
ie0 v + 6?AXV‘E = Vo (g) ve — g2 V(x)ve =0, v|i—o = 5.

Then, °(t,x) = v° (g,x> .

[Gérard], [GMMP] [Poupaud & Ringhofer], [Bechouche, Mauser & Poupaud], [Spohn & Teufel] [Panati, Spohn &Teufel],

[Dimassi, Guillot & Ralston] [Allaire &Palombaro] [Carles &Sparber]
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If v& solves the semiclassical Schrodinger equation

2
ie0 v + 6?AXV‘E = Vo (g) ve — g2 V(x)ve =0, v|i—o = 5.

Then, °(t,x) = v° (g,x> .

[Gérard], [GMMP] [Poupaud & Ringhofer], [Bechouche, Mauser & Poupaud], [Spohn & Teufel] [Panati, Spohn &Teufel],
[Dimassi, Guillot & Ralston] [Allaire &Palombaro] [Carles &Sparber]

= Perform simultaneously the s.c. limit ¢ — 0 with the limit t/e — +o0.

[Macia and his collaborators Anantharaman, Léautaud, Riviere & C.F.K.] (without periodic potential).
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Schrodinger Equation in a Lattice : our strategy

REETL

If v& solves the semiclassical Schrodinger equation

2
ie0 v + 6?AXV‘E = Vo (g) ve — g2 V(x)ve =0, v|i—o = 5.

Then, °(t,x) = v° (g,x> .

[Gérard], [GMMP] [Poupaud & Ringhofer], [Bechouche, Mauser & Poupaud], [Spohn & Teufel] [Panati, Spohn &Teufel],
[Dimassi, Guillot & Ralston] [Allaire &Palombaro] [Carles &Sparber]

= Perform simultaneously the s.c. limit ¢ — 0 with the limit t/e — +o0.

[Macia and his collaborators Anantharaman, Léautaud, Riviere & C.F.K.] (without periodic potential).

Our goal : apply this viewpoint to effective mass theory.
— a generalized effective mass equation of Heisenberg type.
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Floquet-Bloch theory : Bloch waves and energies

@ We use the Ansatz : ¢°(t,x) = U* (t,x, i) , where U¢(t, x, y) is assumed
€

to be Z9-periodic in y and solves
ie20,U(t,x, y) = P(eD)U(t, x,y) + 2 V(x)U(t,x,y),  Ulemo = ¥
1
where P(€) = 5 (E+ Dy + Vi(y), yeT:=RNZ.
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Floquet-Bloch theory : Bloch waves and energies

@ We use the Ansatz : ¢°(t,x) = U* (t,x, g) , where U¢(t, x, y) is assumed
to be Z9-periodic in y and solves
ie20cU%(t, x,y) = P(eD)U"(t,x,y) + 2 V(x)U*(t, x,y),  Uli=o = ¥
1
where P(€) = 5 (E+ Dy + Vi(y), yeT:=RNZ.

@ The Bloch energies are the eigenvalues of the self-adjoint operator on the
torus P() :

M(€) < Xa(€) < -+ < An(€) = +oo.

They are 27Z9 periodic and smooth in domain where they are of constant
multiplicity.
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Floquet-Bloch theory : Bloch waves and energies

@ We use the Ansatz : ¢°(t,x) = U* (t,x, g) , where U¢(t, x, y) is assumed
to be Z9-periodic in y and solves
ie20cU%(t, x,y) = P(eD)U"(t,x,y) + 2 V(x)U*(t, x,y),  Uli=o = ¥
1
where P(€) = 5 (E+ Dy + Vi(y), yeT:=RNZ.

@ The Bloch energies are the eigenvalues of the self-adjoint operator on the
torus P() :
A1(€) < A2(8) < - < Ap(€) = oo

They are 27Z9 periodic and smooth in domain where they are of constant
multiplicity.

@ The Bloch waves are the orthonormal eigenfunctions of P(¢)

P(&)en(&y) = M(&en(&y), n€EN, y e T?, VEeR
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Floquet Bloch theory : Bloch decomposition

@ Consider (M,(£)),cn a family of projectors on separated Bloch bands and
US(t, x, y) == Np(eDy ) U (t, x, y) :/ () UF (£, w,y )/ tx) DS
RY X R4

(2r)®
so that US(t,x,y)= ZU t, X, y).
neN
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Floquet Bloch theory : Bloch decomposition

@ Consider (M,(£)),cn a family of projectors on separated Bloch bands and
US(t, x, y) == Np(eDy ) U (t, x, y) :/ () UF (£, w,y )/ tx) DS
RY X R4

(2r)®
so that US(t,x,y)= ZU t, X, y).
neN

@ This construction leads to the following representation formula for the
solution of the Schrddinger equation

X) = ZUE (t,x,?).

neN
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Floquet Bloch theory : Bloch decomposition

@ Consider (M,(£)),cn a family of projectors on separated Bloch bands and
US(t, x, y) == Np(eDy ) U (t, x, y) :/ () UF (£, w,y )/ tx) DS
RY X R4

(2r)®
so that US(t,x,y)= ZU t, X, y).
neN

@ This construction leads to the following representation formula for the
solution of the Schrddinger equation

X) = U; t,x,f .
> (2 7)
o If RkM,(€) =1, Rangel,(§) = Vect (€, -), P(€)¢n(&) = An(€)¢n(S),
Un(t,x,y) = wn(eD, y)uy(t, x) + O(elt]),
where u;; solves

ie20eus = M\p(eD)UE + 2V(X) S, US|i—o = Upo-
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Quantifying the lack of dispersion : a more general

question

@ Consider equations of the form

{ ie20puf (t, x) = MeDy)uf (t, x) + e2V(x)us(t, x), (t,x) € R x RY,

Ut |i—o = U§.
(1)
This equation ceases to be dispersive as soon as A(§) has critical points
&€ # 0, and this is always the case if A is a Bloch energy.

@ Heuristically, dispersive time-evolution = smoothing effect
i.e. regularization of the high-frequency effects developed by the initial data.
[Kato 83], [Sjolin 87], [Vega 88], [Constantin & Saut 88], [Kenig, Ponce & Vega 91], [Ben Artzi & Devinatz 91].
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Quantifying the lack of dispersion : a more general

question

@ Consider equations of the form
{ ie20puf (t, x) = MeDy)uf (t, x) + e2V(x)us(t, x), (t,x) € R x RY,

Ut |i—o = U§.
(1)
This equation ceases to be dispersive as soon as A(§) has critical points
&€ # 0, and this is always the case if A is a Bloch energy.

@ Heuristically, dispersive time-evolution = smoothing effect
i.e. regularization of the high-frequency effects developed by the initial data.
[Kato 83], [Sjolin 87], [Vega 88], [Constantin & Saut 88], [Kenig, Ponce & Vega 91], [Ben Artzi & Devinatz 91].

@ We show that, in the presence of critical points of A\, some of the
high-frequency effects developed by the sequence of initial data persist after
applying the time evolution.
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Quantifying the lack of dispersion : The assumptions

Assumptions:
HO The sequence (u§) is uniformly bounded in L?(R9) and e-oscillating :

Iimsup/ lus(€)[2de — 0.
€I>R /e

e—0t R—+o00

H1 V € C>®(R9) and A € C*°(R?) grows at most polynomially; i.e. there exist
C, N > 0 such that:

IMNE)| < C(A+]eN, veeR

H2 The set A := {¢ € R?: VA(£) = 0} is a submanifold of R¥ of codimension
0 < p < d and the Hessian V2 is of maximal rank over A. Moreover, each

connected component of A is compact.
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Quantifying the lack of dispersion : The assumptions

Assumptions:
HO The sequence (u§) is uniformly bounded in L?(R9) and e-oscillating :

Iimsup/ lus(€)[2de — 0.
€I>R /e

e—0t R—+o00

H1 V € C>®(R9) and A € C*°(R?) grows at most polynomially; i.e. there exist
C, N > 0 such that:

IMNE)| < C(A+]eN, veeR

H2 The set A := {¢ € R?: VA(£) = 0} is a submanifold of R¥ of codimension
0 < p < d and the Hessian V2 is of maximal rank over A. Moreover, each

connected component of A is compact.

If all critical points of A are non-degenerate, then A is a discrete set in RY. If
moreover one has that \ is Zd-periodic, this set is finite modulo Z.
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Quantifying the lack of dispersion : non-degenerate case

Theorem (Obstruction to smoothing effects in presence of critical points)

Assume HO & H1 and that all critical points of A are non-degenerate.
Then there exists a subsequence (ug*) such that Va < b and V¢ € C.(RY) :

b b
|' Ek 2 — 2
k;mw/a /]R ()| u (¢, x)2dxdlt Z/a /R 160 (et

gen

where ug¢ solves the Schrédinger equation:

i0sug (t,x) = V2A(E)Dx - Dyug(t,x) + V(x)ug(t, x),

with initial data u¢|.—o which is the weak limit in L2(R?) of (e=i¢/skxy5k).
If A = () then the right-hand side above is equal to zero.
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Quantifying the lack of dispersion : non-degenerate case

Theorem (Obstruction to smoothing effects in presence of critical points)

Assume HO & H1 and that all critical points of A are non-degenerate.
Then there exists a subsequence (ug*) such that Va < b and V¢ € C.(RY) :

b b
|' Ek 2 — 2
k;mw/a /]R ()| u (¢, x)2dxdlt Z/a /R 160 (et
gen
where ug¢ solves the Schrédinger equation:
i0sug (t,x) = V2A(E)Dx - Dyug(t,x) + V(x)ug(t, x),

with initial data u¢|.—o which is the weak limit in L2(R?) of (e=i¢/skxy5k).
If A = () then the right-hand side above is equal to zero.

X — X

1
. € _
Example : If u5(x) = ~ajal ( 7
Theorem yields that (u) converge to zero in L2 (R x RY).
Related work : [Ruzhanski & Sugimoto 16]

> e/€/=% then e = 0 for all & and the
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Quantifying the lack of dispersion : degenerate case

@ When the non-degeneracy of the critical points is replaced by H2, we obtain
a similar result which requires some geometric preliminaries.
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Quantifying the lack of dispersion : degenerate case

@ When the non-degeneracy of the critical points is replaced by H2, we obtain
a similar result which requires some geometric preliminaries.

@ Define the tangent bundle of A as the union of all tangent spaces to A,

TA:={(x,£) €RY x A\ : x € TeA}.
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@ When the non-degeneracy of the critical points is replaced by H2, we obtain
a similar result which requires some geometric preliminaries.

@ Define the tangent bundle of A as the union of all tangent spaces to A,

TA:={(x,£) €RY x A\ : x € TeA}.

@ The normal bundle of A is the union of linear subspaces normal to A:
NA = {(y,€) €RI x A : y € NeA = (TeN)

Every point x € R can be uniquely written as x = z + y, where z € TeN
and y € NeA
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Quantifying the lack of dispersion : degenerate case

@ When the non-degeneracy of the critical points is replaced by H2, we obtain
a similar result which requires some geometric preliminaries.

@ Define the tangent bundle of A as the union of all tangent spaces to A,

TA:={(x,£) €RY x A\ : x € TeA}.

@ The normal bundle of A is the union of linear subspaces normal to A:
NA = {(y,€) €RI x A : y € NeA = (TeN)
Every point x € R can be uniquely written as x = z + y, where z € TeN
and y € NeA

@ Given a function ¢ € L°(RY), we write m4(z, &), where z € T¢A, to denote
the operator acting on L?(N¢A) by multiplication by ¢(z + -).
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Quantifying the lack of dispersion : degenerate case

@ When the non-degeneracy of the critical points is replaced by H2, we obtain
a similar result which requires some geometric preliminaries.

@ Define the tangent bundle of A as the union of all tangent spaces to A,

TA:={(x,£) €RY x A\ : x € TeA}.

@ The normal bundle of A is the union of linear subspaces normal to A:
NA = {(y,€) €RI x A : y € NeA = (TeN)
Every point x € R can be uniquely written as x = z + y, where z € TeN
and y € NeA

@ Given a function ¢ € L°(RY), we write m4(z, &), where z € T¢A, to denote
the operator acting on L?(N¢A) by multiplication by ¢(z + -).

@ We use the notation Ag to denote the Laplacian acting on functions defined
on a linear subspace E C RY.
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Quantifying the lack of dispersion : degenerate case

Assume HO, H1 & H2. Then there exist a subsequence (ug*), a positive measure
v € M4 (TA) and a measurable fami. of s.-adj., positive, trace-class operators

Mo : TeN 5 (2,8) — Mo(z,€) € LY (LP(NeN)), Triz(neayMo(z,€) = 1,

such that for every a < b and every ¢ € C.(RY) one has:

b
lim / B(x)|u (t, x)|* dxdt
a JRI

k—o00
b
- / /TA Tri2(neay [mg (2, §)M(t, 2, §)] v(dz, d€)dt,

where M(-,z,&) € C(R; LY (L?(NgA)) solves the following Heisenberg equation:

. 1
’atM(t7Za£) + |:2AN5/\ aF mV(27€)7 M(t,Z,f):| = 07 M|t:0 = MO-
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Quantifying the lack of dispersions : comments

@ The measure v and the family of operators My(z,&), for z € T¢A, only
depend on the subsequence of initial data (ug*).
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Quantifying the lack of dispersions : comments

@ The measure v and the family of operators My(z,&), for z € T¢A, only
depend on the subsequence of initial data (ug*).

@ When A is a set of isolated critical points, both Theorems are equivalent :
TA={0} x A and

v = ede, where ve = ||ug|e=ol[72(ga-
£en

In addition, NeA = R? and M(t, &) is the orth. proj. onto wg(t,-).
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Quantifying the lack of dispersions : comments

@ The measure v and the family of operators My(z,&), for z € T¢A, only
depend on the subsequence of initial data (ug*).

@ When A is a set of isolated critical points, both Theorems are equivalent :
TA={0} x A and

v = ede, where ve = ||ug|e=ol[72(ga-
£en

In addition, NeA = R? and M(t, &) is the orth. proj. onto wg(t,-).

@ A consequence of this Theorem is that the weak-x limit of the densities
|u¥k|? is absolutely continuous with respect to the Lebesgue measure dxdt
and can be expressed as a superposition of position densities associated to
solutions to the family of p-dimensional Schrodinger evolutions:

1

2Ayvz75(t,y) +V(z+y)voe(t,y) =0, (t,y) € R x NeA.

iafvz75(t7y) =+
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Strategy of the proof : phase space analysis

@ Phase space analysis: Let W/(u®) be the Wigner transform of (u€),

W= (¢, x,€) = (2w)—d/

—£ V) e( V) iv-&
t - t,x —e= dv.
Rdu (7x+52 u s X 52 e v
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Strategy of the proof : phase space analysis

@ Phase space analysis: Let W/(u®) be the Wigner transform of (u€),

W= (¢, x,€) = (2w)—d/

R
The Wigner transform plays the role of a generalised energy density since

—£ V) e( V) iv-&
t - t,x —e= dv.
du (7x+52 u s X 52 e v

(£, x)* = | We(t,x,€)dE.
Rd
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Strategy of the proof : phase space analysis

@ Phase space analysis: Let W/(u®) be the Wigner transform of (u€),

W= (¢, x,€) = (2w)—d/

R
The Wigner transform plays the role of a generalised energy density since

—£ V) e( V) iv-&
t - t,x —e= dv.
du (7x+52 u s X 52 e v

(£, x)* = | We(t,x,€)dE.
Rd

@ Wigner measures of (u®) are positive measures p(t) satisfying for some
subsequence ¢ and for all a < b, c € CSO(RM) ,

b b
lim // c(x,g)WEk(t,x7§)dxd§dt:// c(x,&)u(t, dx, d&)dt.
a JR2 2 JRr2d

k—o0
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Strategy of the proof : phase space analysis

@ Phase space analysis: Let W/(u®) be the Wigner transform of (u€),

W= (¢, x,€) = (2w)—d/

R
The Wigner transform plays the role of a generalised energy density since

—£ V) e( V) iv-&
t - t,x —e= dv.
du (7x+52 u s X 52 e v

(£, x)* = | We(t,x,€)dE.
Rd

@ Wigner measures of (u®) are positive measures p(t) satisfying for some
subsequence ¢ and for all a < b, c € CSO(RM) ,

b b
lim // c(x,g)WEk(t,x7§)dxd§dt:// c(x,&)u(t, dx, d&)dt.
a JR2 2 JRr2d

k—o0

@ Besides, c-oscillation —-

b b
Iim/ Rd¢(x)|u5k(t,x)|2dxdt:/ R2d¢(x)u(t,dx,d§)dt.

k—o0
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Strategy of the proof : localisation of Wigner measures

Set for x € Co(R) and ¢ € C§°(R?)

(v, ¢) = /R /R (el )W (8, x, ) ddeat.
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Strategy of the proof : localisation of Wigner measures

Set for x € Co(R) and ¢ € C§°(R?)

(v, ¢) = /R /R (el )W (8, x, ) ddeat.

@ Invariance of Wigner measure : Egorov's theorem —

Proposition

Any w is invariant by the flow ¢l :s— (x +sVA(),£).
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Strategy of the proof : localisation of Wigner measures

Set for x € Co(R) and ¢ € C§°(R?)

(v, ¢) = /R /R (el )W (8, x, ) ddeat.

@ Invariance of Wigner measure : Egorov's theorem —

Proposition

Any w is invariant by the flow ¢l :s— (x +sVA(),£).

@ Localization of Wigner measures

Supp(e) C {(x,€) € R*, VA(€) = 0}.
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Strategy of the proof : Two scale observables

We add to the phase space R?? a new variable 7 € RY.
[CK], [Nier], [Miller], [FFK &Gérard], [Laser & Teufel], [Harris, Lukkarinen, Teufel& Theil], [Macia], [Anantharaman & Macia]
With ¢ = c(x, &,1) € C>(R39) satisfying additional properties, which satisfy :

@ there exists a compact K such that for all € RY, (x,£) — c(x,&,7) is a
smooth function compactly supported in K;

@ there exists a function c..(x, &, w) defined on R2¢ x §9~* and Ry > 0 such
that if 1| > Ro, then c(x, &, n) =co(x. & 1/0)).
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Strategy of the proof : Two scale observables

We add to the phase space R?? a new variable 7 € RY.
[CK], [Nier], [Miller], [FFK &Gérard], [Laser & Teufel], [Harris, Lukkarinen, Teufel& Theil], [Macia], [Anantharaman & Macia]
With ¢ = c(x, &,1) € C>(R39) satisfying additional properties, which satisfy :

@ there exists a compact K such that for all € RY, (x,£) — c(x,&,7) is a
smooth function compactly supported in K;

@ there exists a function c..(x, &, w) defined on R?? x S9=1 and Ry > 0 such
that if 1| > Ro, then c(x, &, n) =co(x. & 1/0)).

Assume A\ = & + 2nZ9.
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Strategy of the proof : Two scale observables

We add to the phase space R?? a new variable 7 € RY.
[CK], [Nier], [Miller], [FFK &Gérard], [Laser & Teufel], [Harris, Lukkarinen, Teufel& Theil], [Macia], [Anantharaman & Macia]
With ¢ = c(x, &,1) € C>(R39) satisfying additional properties, which satisfy :

@ there exists a compact K such that for all € RY, (x,£) — c(x,&,7) is a
smooth function compactly supported in K;

@ there exists a function c..(x, &, w) defined on R?? x S9=1 and Ry > 0 such
that if 1| > Ro, then c(x, &, n) =co(x. & 1/0)).

Assume A =&y + 2779, We associate with such ¢, the two-scale observable

citng) = (x6. S22).
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Strategy of the proof : Two scale observables

We add to the phase space R?? a new variable 7 € RY.
[CK], [Nier], [Miller], [FFK &Gérard], [Laser & Teufel], [Harris, Lukkarinen, Teufel& Theil], [Macia], [Anantharaman & Macia]
With ¢ = c(x, &,1) € C>(R39) satisfying additional properties, which satisfy :

@ there exists a compact K such that for all € RY, (x,£) — c(x,&,7) is a
smooth function compactly supported in K;

@ there exists a function c..(x, &, w) defined on R?? x S9=1 and Ry > 0 such
that if 1| > Ro, then c(x, &, n) =co(x. & 1/0)).

Assume A =&y + 2779, We associate with such ¢, the two-scale observable
citng) = (x6. S22).

Remarks : 1) If ¢ € C§°(R??), c is admissible.
2) Wigner transform acts on two-scale observables.
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Strategy of the proof : Two scale Wigner measures

There exist, ¢, — 0ve L®(R, MH(R? x §971)), ® € CO(R, L*(R?)) such
n——+0o0
that

/EH(Xacg,,) - / \(t) (a(X-LO-D)Cb(t)'(b(t))dt"‘/RX(txax('nga')7Vt>dt'

n—+oo,

@ O solves the effective mass equation
i0:® = Hess A(§0)D - D ® + Ve (x)®, @(0) = Py,

where O is a weak limit in [°(IR9) of the sequence x + ¢~ u;(x).

@ vt is invariant by the flow ¢2 : (x,w) > (x + sHess A\(&o)w, w).
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Strategy of the proof : Two scale Wigner measures

There exist, ¢, = 0, v € L®(R, MH(R? x §971)), & € CO(R, L*(R?)) such
n——+0o0

that
/EH(X’ Cg) - / \(t) (a(XLOD)CD(t)(D(t)) dt+/[RX(t)<ax('=€Oa')7Vt>dt'

@ n—+oo.

@ O solves the effective mass equation

i0;® = Hess \(£0)D - D ® + Ve (x)®, &(0) = by,

where O is a weak limit in [°(IR9) of the sequence x + ¢~ u;(x).

@ vt is invariant by the flow ¢2 : (x,w) > (x + sHess A\(&o)w, w).

If Hess A(&o) is non degenerated, then v; = 0 and pu:(x, €)1, = |P(t, x)[>dx.
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Back to effective mass theory : assumptions on the initial

data

Let / C N, a set of indices n such that the multiplicity of the Bloch energy \,(£)
is constant for every ¢ € RY

@ Assume that H2 holds for any A\,, n€ /

@ Assume that 7§ is e-oscillating and

U5 =Y who ¥ho= Ui (0x.2),

nel

where 05(0,5) is in the eigenspace of \,(€).
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Back to effective mass theory : application of the Theorem

Then, if (¢)°) is the solution to the Schrédinger equation issued for data (¢§),
@ For every ¢ € C§°(RY), the family (¢1°(t)) is e-oscillating.

e °( Z¢€ (t,x) with ¢5(t,x) = U; (t,x,g),Foreach neN,

nel

{k%Mﬂmq_M@mwﬂ“”+gVUWﬂnﬂ+§$UxL
||fn5(t7')”L2(Rd) < CE, t€R7.

@ There exist a subsequence ¢ such that, for every a < b, ¢ € C5°(RY),
m//¢IWHﬁM'Z//WF )t
nel

where, for each n € N, the measures i € M, (R x RY) are Wigner
measures of (¥%).
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Conclusion

@ Second microlocalisation along A has led to a complete description of the
mechanism for any (e-oscillating) initial data.
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Conclusion

@ Second microlocalisation along A has led to a complete description of the
mechanism for any (e-oscillating) initial data.

@ In non standard cases (when A is a submanifold with H2), we have
introduced a generalized effective mass equation with an operator-valued
macroscopic item satisfying a Heisenberg equation (instead of a function
satisfying a Schrodinger equation).
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Conclusion

@ Second microlocalisation along A has led to a complete description of the
mechanism for any (e-oscillating) initial data.

@ In non standard cases (when A is a submanifold with H2), we have
introduced a generalized effective mass equation with an operator-valued
macroscopic item satisfying a Heisenberg equation (instead of a function
satisfying a Schrodinger equation).

@ In those non standard cases, the second microlocalisation does not concern
“all the variable " and the remaining part is responsible of the quantum
feature at macroscopic level in the derived effective mass equation which
becomes a Heisenberg equation.
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Conclusion

@ Second microlocalisation along A has led to a complete description of the
mechanism for any (e-oscillating) initial data.

@ In non standard cases (when A is a submanifold with H2), we have
introduced a generalized effective mass equation with an operator-valued
macroscopic item satisfying a Heisenberg equation (instead of a function
satisfying a Schrodinger equation).

@ In those non standard cases, the second microlocalisation does not concern
“all the variable " and the remaining part is responsible of the quantum
feature at macroscopic level in the derived effective mass equation which
becomes a Heisenberg equation.

@ The next step should consist in treating a Bloch band containing two
eigenvalues presenting a conical intersection (work in progress).
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Conclusion

@ Second microlocalisation along A has led to a complete description of the
mechanism for any (e-oscillating) initial data.

@ In non standard cases (when A is a submanifold with H2), we have
introduced a generalized effective mass equation with an operator-valued
macroscopic item satisfying a Heisenberg equation (instead of a function
satisfying a Schrodinger equation).

@ In those non standard cases, the second microlocalisation does not concern
“all the variable " and the remaining part is responsible of the quantum
feature at macroscopic level in the derived effective mass equation which
becomes a Heisenberg equation.

@ The next step should consist in treating a Bloch band containing two
eigenvalues presenting a conical intersection (work in progress).

Thank you for your attention !
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