
Introduction Klein-Gordon fields on curved spacetimes The Unruh effect The Hawking effect The Hartle-Hawking-Israel state revisited

Aspects of Quantum Field Theory on black hole
Spacetimes

Christian Gérard
Département of Mathématiques

Université Paris-Sud

QFT on blackhole spacetimes Christian Gérard Département of Mathématiques Université Paris-Sud



Introduction Klein-Gordon fields on curved spacetimes The Unruh effect The Hawking effect The Hartle-Hawking-Israel state revisited

1 Introduction

2 Klein-Gordon fields on curved spacetimes

3 The Unruh effect

4 The Hawking effect

5 The Hartle-Hawking-Israel state revisited

QFT on blackhole spacetimes Christian Gérard Département of Mathématiques Université Paris-Sud



Introduction Klein-Gordon fields on curved spacetimes The Unruh effect The Hawking effect The Hartle-Hawking-Israel state revisited

Quantum Field Theory in curved spacetimes

• describes quantum fields , Klein-Gordon, Dirac, Maxwell fields
etc, propagating in a classical spacetime , described by a
Lorentzian manifold (M, g).

• use: description of quantum phenomena in strong gravitational
fields: cosmological models, neighborhood of a blackhole
horizon.

• gravitation is treated classically: the theory cannot be a
fundamental one.

• peculiarities: the notion of vacuum state becomes problematic:
need for an algebraic framework (no reference Hilbert space).
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Globally hyperbolic spacetimes

- Lorentzian manifold: manifold M equipped with a Lorentzian
metric g , of signature (1, d).
- if v ∈ TpM, v is spacelike, causal, timelike, lightlike if
v · gpv > 0, ≤ 0, < 0, = 0.
- one extends this terminology to vector fields, then to piecewise C 1

curves.
- (M, g) is a spacetime if M is time orientable, i.e. there exists a
continuous timelike vector field on M.
- one writes q ∈ J±(p) if one can join p to q by a future directed
causal curve. For K ⊂ M one sets J±(K ) =

⋃
p∈K J±(p).

- a hypersurface Σ ⊂ M is Cauchy if any inextensible causal curve
in M intersects Σ at one and only one point.
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Globally hyperbolic spacetimes

Definition (M, g) is globally hyperbolic if one of the following
equivalent conditions holds:
1) M has a Cauchy hypersurface.
2) for all p, q ∈ M J+(p) ∩ J−(q) is compact and there are no
closed causal curves.
This definition depends only on the causal structure of (M, g).
Global hyperbolicity has important consequences for the
Klein-Gordon in M:
1) the Cauchy problem is well posed,
2) there exists advanced and retarded Green’s functions.
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Examples of non globally hyperbolic spacetimes

x

t p J±(p) = M

M = S1
t × Rx

x

M = Rt×]a, b[x

t J+(p) ∩ J−(q) non compact

p

q
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The Klein-Gordon equation
Assume (M, g) globally hyperbolic. Let

P = −∇a∇a + m2 = |g |−
1
2∂µg

µν |g |
1
2∂ν + m2,

the Klein-Gordon operator on M. (One can replace m2 by a real
C∞ function).
P is selfadjoint for the scalar product (u|v) =

∫
M ūvdVolg .

Denote by Solsc(KG ) the space of C∞ space compact solutions
(intersection of support with a spacelike hypersurface is compact).
If Σ is a spacelike Cauchy hypersurface and φ1, φ2 ∈ Solsc(KG ),
the quantity:

φ̄1 · σφ2 :=

∫
Σ
nµ∂µφ̄1φ2 − φ̄1n

µ∂µφ2dSg

is independent on the choice of Σ, (SolscKG , σ) is a symplectic
space.
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Green’s functions

Theorem There exist unique linear maps E± : C∞0 (M)→ C∞(M)
such that

P ◦ E± = E± ◦ P = 1,

suppE±f ⊂ J±(suppf ), f ∈ C∞0 (M).

One has (E±)∗ = E∓, E := E+ − E−, called Pauli-Jordan
distribution is anti-selfadjoint.
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Green’s functions

Theorem
• RanE = Solsc(KG ), KerE = PC∞0 (M),
• Eu1 · σEu2 = −(u1|Eu2), u1, u2 ∈ C∞0 (M).

One deduces that (C∞0 (M)/PC∞0 (M),−E ) is symplectic and

E : (C∞0 (M)/PC∞0 (M),−E )→ (Solsc(KG ), σ)

is a symplectomorphism.
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CCR algebras
To each u ∈ C∞0 (M) we associate ’operators’ aka quantum fields
ψ(u), ψ∗(u) subject to the following rules:
• the map C∞0 (M) 3 u 7→ ψ∗(u) resp. ψ(u) is linear, resp.

anti-linear.
• the canonical commutation relations hold:

[ψ(u1), ψ(u2)] = [ψ∗(u1), ψ∗(u2)] = 0,

[ψ(u1), ψ∗(u2)] = i−1(u1|Eu2)1, u1, u2 ∈ C∞0 (M),

ψ(u)∗ = ψ∗(u).

- The ∗−algebra generated by the ψ(∗)(u) for u ∈ C∞0 (M) is
denoted CCR(KG ). Its is interpreted as the algebra of observables
for a Klein-Gordon field.
- locality: if suppu1 and suppu2 are causally disjoint, then
[ψ(∗)(u1), ψ(∗)(u2)] = 0.
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Klein-Gordon field

- Set formally

ψ(u) =:

∫
M
ψ(x)ū(x)dVolg ,

since the map u 7→ ψ(∗)(u) should pass to the quotient by
PC∞0 (M), one should have:

ψ(Pu) = 0⇒ Pψ(x) = 0.

Hence we obtain ’operator valued solutions’ of the Klein-Gordon
equation.
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Quasi-free states

The states of the quantized Klein-Gordon field are given by linear
functionals on CCR(KG ) with:

ω : CCR(KG )→ C, ω(1) = 1, ω(A∗A) ≥ 0, ∀A ∈ CCR(KG ).

A natural class of states is given by the quasi-free states, analogs in
the non-commutative case of gaussian measures.

Definition
A state ω on CCR(KG ) is quasi-free if:

ω(
∏n

1 ψ
∗(ui )

∏p
1 ψ(vi )) = 0, n 6= p,

ω(
∏n

1 ψ
∗(ui )

∏n
1 ψ(vi )) =

∑
σ∈Sn

∏n
1 ω(ψ∗(ui )ψ(vσ(i))).
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Quasi-free states
The quasi-free states are completely determined by their ’two-point
functions’ or covariances:

ū · Λ−v := ω(ψ∗(v)ψ(u)), u, v ∈ C∞0 (M),

- it is useful to consider also

ū · Λ+v := ω(ψ(u)ψ∗(v)).

The covariances Λ± are sesquilinear forms on C∞0 (M),with two
properties:

1) Λ+ − Λ− = i−1E , commutation relations

2) Λ± ≥ 0, positivity.

Conversely a pair of covariances Λ± such that 1) et 2) hold
determines a unique quasi-free state ω.
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Quasi-free states

- continuity hypothesis: one assumes that Λ± are continuous on
C∞0 (M):
- consequence: there exist Λ± ∈ D ′(M ×M) such that:

1) PxΛ±(x , y) = PyΛ±(x , y) = 0,
2+) ω(ψ(u)ψ∗(v)) =

∫
M×M Λ+(x , y)ū(x)v(y)dxdy ,

2−) ω(ψ∗(v)ψ(u)) =
∫
M×M Λ−(x , y)ū(x)v(y)dxdy .

One has again Λ+ − Λ− = −iE , Λ± ≥ 0.
Important consequence of 1): Λ± are entirely determined by their
restriction to an arbitrary neighborhood of Σ× Σ, where Σ ⊂ M is
a Cauchy surface (“time-slice axiom”).
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Cauchy surface covariances
One can replace the symplectic space E : (C∞0 (M)/PC∞0 (M),−E )
by (Solsc(KG ), σ) or also, using the Cauchy problem by

(C∞0 (Σ)⊕ C∞0 (Σ), σ),

for

f̄ · σf =
∫

Σ f̄1f0 − f̄0f1dsΣ, f = ρφ =

(
φ�Σ

i−1∂νφ�Σ

)
.

The covariances corresponding to Λ± are denoted by λ± (2× 2
matrices), called the Cauchy surface covariances.
It is convenient to introduce

c± = ±(iσ)−1 ◦ λ±.

One has c+ + c− = 1, c± are projections iff the state ω is a pure
state.
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The Minkowski vacuum

The basic example is the vacuum state ωvac on Minkowski
spacetime.
Theorem(Minkowski case) there exists a unique (pure) quasi-free
state ωvac with the following properties:
1) ωvac invariant under the Poincaré group SO(R1,d) o R1+d .
2) ūΛ±v =

∫
R1+d×R1+d ū(x)Λ±(x − y)v(y)dxdy , with

Λ̂±(τ, k) supported in ±τ > 0 ( positivity of the energy).
One has:

Λ±(t, x) = (2π)−d
∫

ei(x·k±tε(k))ε(k)−1dk,

where ε(k) = (k2 + m2)
1
2 , energy of a relativistic particle of mass

m.
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What is the vacuum state good for ?

- the vacuum state provides us with
1- a Hilbert space (link with Quantum Mechanics);
2- a notion of particles (excitations of the vacuum state).
Hilbert space: GNS construction: equip CCR(KG ) with the scalar
product

〈A|B〉 := ωvac(A∗B).

- passing to quotient and completion → a Hilbert space H, with a
distinguished vector Ω ∼ 1.
- The space H is a bosonic Fock space build on a one particle space
h.
- Acting with field operators on the vacuum state creates particles:
the GNS representation of CCR(KG ) is a Fock representation.
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What is the vacuum state good for ?

- Working on H one can:
1- rigorously construct interacting models in low dimensions:
(Glimm-Jaffe 1970, P(ϕ)2, ϕ4

3 models).
2- formulate the perturbative renormalization:
emblematic problem : give a meaning to ψ∗(x)ψ(x) (charge
density): ultraviolet problem ∼ multiplication of distributions.
solution: Wick ordering:
one replaces ψ∗(x)ψ(y) by

ψ∗(x)ψ(y)− Λ−vac(x , y)1 = : ψ∗(x)ψ(y) :.

The trace on x = y is well defined as operator valued distribution
on H.
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Hadamard states

- the above characterization of the vacuum state does not extend
to general spacetimes (except stationary ones).
- one would like to find a criterion for states who look at short
distances like a vacuum state.
- leads to the notion of Hadamard states, characterized by the
wavefront set of their two point functions.
For x ∈ M denote by V±(x) ⊂ TxM the future/past lightcones at
x .
Their dual cones V ∗±(x) ⊂ T ∗xM are defined by:

V ∗±(x) = {ξ ∈ T ∗xM : ξ · v > 0 ∀v ∈ V±(x), v 6= 0}.

Interpretation: positive/negative energy cones.
p(x , ξ) = ξµg

µν(x)ξν principal symbol of P(x ,Dx),
N = p−1({0}) characteristic manifold of P
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Hadamard states

N± = {(x , ξ) ∈ N : ξ ∈ V ∗±(x)}, upper/lower energy shell of N ,
N = N+ ∪N−,
For Xi = (xi , ξi ) write X1 ∼ X2 if X1,X2 ∈ N , X1, X2 on the same
Hamiltonian curve for p.
Definition ω is a Hadamard state if

WF (Λ±)′ ⊂ {(X1,X2) : X1 ∼ X2, X1 ∈ N±}.

- Hadamard states exist.
- their covariances are all the same modulo smooth kernels.
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The Unruh effect
The Rindler wedge R in R1,1 is the region {|t| < x}. Equipped with
the metric −dt2 + dx2 it is a spacetime.
One introduces the new coordinates

T = argth(
t

x
),X = ln((x2−t2)

1
2 )⇔ t = eX sinhT , x = eX coshT ,

R becomes RT × RX with the metric:

ds2 = e2X (−dT 2 + dX 2),

invariant under translations in T .
- the boost:

αs =

(
cosh s sinh s
sinh s cosh s

)
,

in R1,1 becomes in R the translation in T :
α̃s : (T ,X ) 7→ (T + s,X ).
- The curve {α̃s(T0,X0)}s∈R: world line of a uniformly accelerated
observer with acceleration e−X0 .
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The Rindler wedge

X = X0

T = T0

R
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- consider the covariance of the vacuum state ωvac:

Λ+(t, t ′, x , x ′) =
∫

R eiF (t,t′,x ,x ′,k)ε(k)−1dk,

F (t, t ′, x , x ′, k) = ε(k)(t − t ′) + k(x − x ′).

- pass to T ,T ′,X ,X ′ coordinates:

Λ̃+(T ,T ′,X ,X ′) =
∫

R eiF̃ (T ,T ′,X ,X ′,k)ε(k)−1dk,

F̃ (T ,T ′,X ,X ′, k) = (eX sinhT − eX ′
sinhT ′)ε(k)

+(eX coshT − eX ′
coshT ′)k.

- invariance of ωvac under boosts: invariance of F̃ under

T 7→ T − 1
2

(T + T ′),T ′ 7→ T ′ − 1
2

(T + T ′).
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The Unruh effect

- conclusion: F̃ (T ,T ′,X ,X ′) =
ε(k)(eX + eX ′

) sinh 1
2(T − T ′) + k(eX − eX ′

) cosh 1
2(T − T ′).

- hyperbolic trigonometry:
Λ̃+(T ,T ′,X ,X ′) = Λ̃+(T ′,T + i2π,X ′,X ),
property which characterizes a thermal state at temperature
(2π)−1.
-physical interpretation: the vacuum ωvac is seen by a uniformly
accelerated observer with acceleration a as a thermal state, with
temperature a/(2π).

QFT on blackhole spacetimes Christian Gérard Département of Mathématiques Université Paris-Sud



Introduction Klein-Gordon fields on curved spacetimes The Unruh effect The Hawking effect The Hartle-Hawking-Israel state revisited

The Hawking effect

Consider a spacetime (M, g) describing a stationary blackhole.
Two essential features:
(M, g) admits a global, complete Killing vector field V a.
(M, g) admits a bifurcate event horizon H = H+ ∪H−, generated
by the Killing vector field V a.

Σ

M+M− F

P

H+H−

H−H+

B
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The surface gravity

Important fact: the quantity κ defined by:

κ2 = −1
2

(∇aV b)(∇aVb)

is constant on H. The constant κ is called the surface gravity of
the blackhole.
B = H+ ∩H− is called the bifurcation surface, usually
diffeomorphic to the sphere S2. V vanishes identically on B.
Consider a free Klein-Gordon field on (M, g).
Question: does there exists a state ω invariant by V a and what are
its properties?
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The Hartle-Hawking-Israel state

Assume that the Killing vector field V a is timelike in the exterior
region M+.
Note that (M+, g) is a globally hyperbolic spacetime, with timelike
Killing vector field V a, ie (M+, g) is stationary.
Theorem [Kay-Wald 1991, Sanders 2013]: Assume that the Killing
vector field is static in M+. Then there exists a unique state ωHHI

in (M, g) with the following properties:
1) ωHHI is invariant under V a, pure in (M, g).
2) the restriction of ωHHI to (M+, g) is a thermal state for the
group generated by V a at Hawking temperature TH = κ

2π .
Origin of the notion of temperature of blackholes
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Killing time coordinates i nM+

V is timelike on Σ\B future directed in Σ+, past directed in Σ−.
Consider the right wedge M+. It is globally hyperbolic with Cauchy
surface Σ+. Using the flow of V a, one identifies M+ with R× Σ+

(Killing time) with metric

g = −v2(y)dt2 + hij(y)dy idy j ,

v(y) vanishes to first order on B.
Near B one can introduce Gaussian normal coordinates to B in
(Σ, h): we identify Σ+ with ]0, δ[×B, g takes the form

g = −v2(s, ω)dt2 + ds2 + kαβ(s, ω)dωαdωβ,

where v(s, ω) = κs(1 + O(s2)).
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Wedge reflection

The left wedge M− is always a copy of M+: there exists an
involution R : M → M such that:
- R preserves g and V , reverses the time orientation;
- R maps M± onto M∓ and preserves Σ;
- R = Id on B.
R is called a wedge reflection. It implies that kαβ(s, ω)dωαdωβ

and v(s, ω) are even , resp. odd functions of s.
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The Wick rotation

Thermal states at temperature T = β−1 are associated to Wick
rotation, amounting to replace t by iτ , τ ∈ Sβ .
- the Lorentzian manifold (M+, g) is replaced by the Riemannian
(N+, ĝ) for

N+ = Sβ × Σ+, ĝ = v2(y)dτ2 + hij(y)dy idy j ,

Sβ is the circle of length β.
- the Klein-Gordon operator P = −�g + m2 by the Laplacian
K = −∆ĝ + m2.
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The double KMS state

-the left wedge M− is a copy of M+, one can consider
Klein-Gordon fields on M+ ∪M−.
- if ω+

β is a thermal state on M+, one can add a ’twisted copy’ of
ω+
β on M− and obtain a state ωβ on M+ ∪M− called a double

KMS state (Kay).
- ωβ is a pure state in M+ ∪M−.
- this construction is related to the Araki Woods representation.
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Calderon projector

Let λ+ the Cauchy surface covariance of ωβ , acting on
C∞0 (Σ+ ∪ Σ−)⊗ C2.
We map Σ− onto Σ+ using the wedge reflection R :

C∞0 (Σ+ ∪ Σ−)⊗ C2 ∼ C∞0 (Σ+)⊗ C2 ⊕ C∞0 (Σ+)⊗ C2.

The two copies of Σ+ are the boundary of Ω = [0, β/2]τ × Σ+.
Theorem: c+ = (iσ)−1 ◦ λ+ is the Calderon projector D for
−∆ĝ + m2 on Ω.
Proof is a tedious computation.
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Calderon projector
Let (N, ĝ) a Riemannian manifold, Ω ⊂ N open set with smooth
boundary ∂Ω, P = −∆ĝ + m2.
-for u ∈ C∞(Ω) set

γu =

(
u�∂Ω

∂νu�∂Ω

)
-for f ∈ C∞(∂Ω)⊗ C2 we have

γ∗f = δ∂Ω ⊗ f1 + ∂νδ∂Ω ⊗ f0.

-the Calderon projector is the map

D = γ ◦ P−1 ◦ γ∗.

- D is a projector.
- D is a matrix of pseudodifferential operators on ∂Ω.
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Extension of ωβ to M

We want to extend ωβ to a state for the Klein-Gordon equation on
M, i.e. extend

c+ acting on C∞0 (Σ\B)⊗ C2

to
c+
ext acting on C∞0 (Σ)⊗ C2.

We embed Sβ × Σ+ into R2 × B as follows:

ψ : (τ, s, ω) 7→ (s cos(2πβ−1τ), s sin(2πβ−1τ), ω).
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Extension of ωβ to M

The Riemannian metric ψ∗ĝ extends as a smooth metric ĝext on
Next = R2 × B iff β = (2π)/κ. Then

TH :=
κ

2π
is the Hawking temperature

For β 6= (2π)/κ, ĝext has a conical singularity on {0} × B.

Σ+Σ− B Sβ

Σ+∼R(Σ−)

Σ+

Sβ × Σ+R2 × B

ψ
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Extension of ωβ to M

- if β = (2π)/κ then the Calderon projector Dext acting on
C∞0 (Σ)⊕ C∞0 (Σ) is an extension of c+.
- one can show that it produces a state on M, the looked for
Hartle-Hawking-Israel state ωHHI .
- the fact that ωHHI is pure is obvious (Dext is a projection).
- the fact that ωHHI is a Hadamard state is very easy to prove,
using that Dext is pseudodifferential.

Thank you for your attention !
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