Aspects of Quantum Field Theory on black hole Spacetimes

Christian Gérard Département of Mathématiques Université Paris-Sud

QFT on blackhole spacetimes

Christian Gérard Département of Mathématiques Université Paris-Sud

1 Introduction

2 Klein-Gordon fields on curved spacetimes

3 The Unruh effect

- 4 The Hawking effect
- 5 The Hartle-Hawking-Israel state revisited

Quantum Field Theory in curved spacetimes

- describes *quantum* fields , Klein-Gordon, Dirac, Maxwell fields etc, propagating in a *classical* spacetime , described by a Lorentzian manifold (*M*, *g*).
- use: description of quantum phenomena in strong gravitational fields: cosmological models, neighborhood of a blackhole horizon.
- gravitation is treated classically: the theory cannot be a fundamental one.
- peculiarities: the notion of vacuum state becomes problematic: need for an algebraic framework (no reference Hilbert space).

- 日本 (語) (語) (語)

Globally hyperbolic spacetimes

- Lorentzian manifold: manifold M equipped with a Lorentzian metric g, of signature (1, d).
- if $v \in T_pM$, v is spacelike, causal, timelike, lightlike if
- $v \cdot g_{p}v > 0, \le 0, < 0, = 0.$
- one extends this terminology to vector fields, then to piecewise C^1 curves.
- (M, g) is a *spacetime* if M is *time orientable*, i.e. there exists a continuous timelike vector field on M.
- one writes $q \in J^{\pm}(p)$ if one can join p to q by a future directed causal curve. For $K \subset M$ one sets $J^{\pm}(K) = \bigcup_{p \in K} J^{\pm}(p)$.
- a hypersurface $\Sigma \subset M$ is *Cauchy* if any inextensible causal curve in *M* intersects Σ at one and only one point.

Globally hyperbolic spacetimes

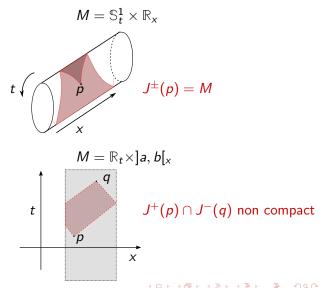
Definition (M, g) is *globally hyperbolic* if one of the following equivalent conditions holds:

- 1) *M* has a Cauchy hypersurface.
- 2) for all $p, q \in M$ $J^+(p) \cap J^-(q)$ is compact and there are no *closed* causal curves.

This definition depends only on the causal structure of (M, g). Global hyperbolicity has important consequences for the Klein-Gordon in M:

- 1) the Cauchy problem is well posed,
- 2) there exists advanced and retarded Green's functions.

Examples of non globally hyperbolic spacetimes



QFT on blackhole spacetimes

Christian Gérard Département of Mathématiques Université Paris-Sud

The Klein-Gordon equation

Assume (M, g) globally hyperbolic. Let

$$P=-
abla^{a}
abla_{a}+m^{2}=|g|^{-rac{1}{2}}\partial_{\mu}g^{\mu
u}|g|^{rac{1}{2}}\partial_{
u}+m^{2},$$

the *Klein-Gordon* operator on *M*. (One can replace m^2 by a real C^{∞} function).

P is selfadjoint for the scalar product $(u|v) = \int_M \bar{u}v d\operatorname{Vol}_g$. Denote by $\operatorname{Sol}_{\operatorname{sc}}(KG)$ the space of C^{∞} space compact solutions (intersection of support with a spacelike hypersurface is compact). If Σ is a spacelike Cauchy hypersurface and $\phi_1, \phi_2 \in \operatorname{Sol}_{\operatorname{sc}}(KG)$, the quantity:

$$\bar{\phi}_1 \cdot \sigma \phi_2 := \int_{\Sigma} n^{\mu} \partial_{\mu} \bar{\phi}_1 \phi_2 - \bar{\phi}_1 n^{\mu} \partial_{\mu} \phi_2 dS_g$$

is independent on the choice of Σ , (Sol_{sc} KG, σ) is a symplectic space.

QFT on blackhole spacetimes

Green's functions

Theorem There exist unique linear maps $E^{\pm}: C_0^{\infty}(M) \to C^{\infty}(M)$ such that

$$P \circ E^{\pm} = E^{\pm} \circ P = \mathbb{1},$$

 $\operatorname{supp} E^{\pm} f \subset J^{\pm}(\operatorname{supp} f), \ f \in C_0^{\infty}(M).$

One has $(E^{\pm})^* = E^{\mp}$, $E := E^+ - E^-$, called *Pauli-Jordan distribution* is *anti-selfadjoint*.

Green's functions

Theorem

- $\operatorname{Ran} E = \operatorname{Sol}_{\mathrm{sc}}(KG)$, $\operatorname{Ker} E = PC_0^{\infty}(M)$,
- $\overline{Eu}_1 \cdot \sigma Eu_2 = -(u_1|Eu_2), \ u_1, u_2 \in C_0^\infty(M).$

One deduces that $(C_0^\infty(M)/PC_0^\infty(M), -E)$ is symplectic and

$$E: (C_0^\infty(M)/PC_0^\infty(M), -E) \to (\operatorname{Sol}_{\operatorname{sc}}(KG), \sigma)$$

is a symplectomorphism.

・ 同 ト ・ ヨ ト ・ ヨ ト

CCR algebras

To each $u \in C_0^{\infty}(M)$ we associate 'operators' aka quantum fields $\psi(u)$, $\psi^*(u)$ subject to the following rules:

- the map $C_0^{\infty}(M) \ni u \mapsto \psi^*(u)$ resp. $\psi(u)$ is linear, resp. anti-linear.
- the canonical commutation relations hold:

$$\begin{split} & [\psi(u_1), \psi(u_2)] = [\psi^*(u_1), \psi^*(u_2)] = 0, \\ & [\psi(u_1), \psi^*(u_2)] = i^{-1}(u_1 | E u_2) \mathbb{1}, \ u_1, u_2 \in C_0^\infty(M), \\ & \psi(u)^* = \psi^*(u). \end{split}$$

- The *-algebra generated by the $\psi^{(*)}(u)$ for $u \in C_0^{\infty}(M)$ is denoted $\operatorname{CCR}(KG)$. Its is interpreted as the algebra of *observables* for a Klein-Gordon field.

- *locality*: if $\operatorname{supp} u_1$ and $\operatorname{supp} u_2$ are causally disjoint, then $[\psi^{(*)}(u_1), \psi^{(*)}(u_2)] = 0.$

QFT on blackhole spacetimes

Christian Gérard Département of Mathématiques Université Paris-Sud

Klein-Gordon field

- Set formally

$$\psi(u) =: \int_M \psi(x) \bar{u}(x) dVol_g,$$

since the map $u \mapsto \psi^{(*)}(u)$ should pass to the quotient by $PC_0^{\infty}(M)$, one should have:

$$\psi(Pu) = 0 \Rightarrow P\psi(x) = 0.$$

Hence we obtain 'operator valued solutions' of the Klein-Gordon equation.

Quasi-free states

The *states* of the quantized Klein-Gordon field are given by linear functionals on CCR(KG) with:

$$\omega : \operatorname{CCR}(\mathcal{K}\mathcal{G}) \to \mathbb{C}, \ \omega(\mathbb{1}) = 1, \ \omega(\mathcal{A}^*\mathcal{A}) \ge 0, \ \forall \mathcal{A} \in \operatorname{CCR}(\mathcal{K}\mathcal{G}).$$

A natural class of states is given by the *quasi-free states*, analogs in the non-commutative case of *gaussian measures*.

Definition

A state ω on CCR(*KG*) is *quasi-free* if:

$$\begin{split} &\omega(\prod_1^n \psi^*(u_i) \prod_1^p \psi(v_i)) = 0, \ n \neq \rho, \\ &\omega(\prod_1^n \psi^*(u_i) \prod_1^n \psi(v_i)) = \sum_{\sigma \in S_n} \prod_1^n \omega(\psi^*(u_i)\psi(v_{\sigma(i)})). \end{split}$$

(D) (A) (A) (A) (A)

Quasi-free states

The quasi-free states are completely determined by their *'two-point functions'* or covariances:

$$\bar{u} \cdot \Lambda_{-} v := \omega(\psi^*(v)\psi(u)), \ u, v \in C_0^{\infty}(M),$$

- it is useful to consider also

$$\bar{u} \cdot \Lambda_+ v := \omega(\psi(u)\psi^*(v)).$$

The covariances Λ_{\pm} are sesquilinear forms on $C_0^{\infty}(M)$, with two properties:

$$\begin{array}{ll} 1) & \Lambda_+ - \Lambda_- = \mathrm{i}^{-1} E, \mbox{ commutation relations} \\ 2) & \Lambda_\pm \geq 0, \mbox{ positivity}. \end{array}$$

Conversely a pair of covariances Λ_{\pm} such that 1) et 2) hold determines a unique quasi-free state ω .

QFT on blackhole spacetimes

Christian Gérard Département of Mathématiques Université Paris-Sud

Quasi-free states

- continuity hypothesis: one assumes that Λ_{\pm} are *continuous* on $C_0^{\infty}(M)$:
- consequence: there exist $\Lambda_{\pm} \in D'(M \times M)$ such that:

1)
$$P_{x}\Lambda_{\pm}(x,y) = P_{y}\Lambda_{\pm}(x,y) = 0,$$

2+)
$$\omega(\psi(u)\psi^{*}(v)) = \int_{M\times M}\Lambda_{+}(x,y)\bar{u}(x)v(y)dxdy,$$

2-)
$$\omega(\psi^{*}(v)\psi(u)) = \int_{M\times M}\Lambda_{-}(x,y)\bar{u}(x)v(y)dxdy.$$

One has again $\Lambda_{+} - \Lambda_{-} = -iE$, $\Lambda_{\pm} \ge 0$. Important consequence of 1): Λ_{\pm} are entirely determined by their restriction to an arbitrary neighborhood of $\Sigma \times \Sigma$, where $\Sigma \subset M$ is a Cauchy surface ("time-slice axiom").

Cauchy surface covariances

One can replace the symplectic space $E : (C_0^{\infty}(M)/PC_0^{\infty}(M), -E)$ by $(Sol_{sc}(KG), \sigma)$ or also, using the Cauchy problem by

$$(C_0^\infty(\Sigma)\oplus C_0^\infty(\Sigma),\sigma),$$

for

$$\bar{f} \cdot \sigma f = \int_{\Sigma} \bar{f}_1 f_0 - \bar{f}_0 f_1 ds_{\Sigma}, f = \rho \phi = \begin{pmatrix} \phi \upharpoonright_{\Sigma} \\ i^{-1} \partial_{\nu} \phi \upharpoonright_{\Sigma} \end{pmatrix}.$$

The covariances corresponding to Λ^{\pm} are denoted by λ^{\pm} (2 × 2 matrices), called the Cauchy surface covariances. It is convenient to introduce

$$c^{\pm} = \pm (\mathrm{i}\sigma)^{-1} \circ \lambda^{\pm}.$$

One has $c^+ + c^- = 1$, c^{\pm} are projections iff the state ω is a pure state.

QFT on blackhole spacetimes

The Minkowski vacuum

The basic example is the *vacuum state* ω_{vac} on Minkowski spacetime.

Theorem (Minkowski case) there exists a unique (pure) quasi-free state ω_{vac} with the following properties:

1) ω_{vac} invariant under the Poincaré group $SO(\mathbb{R}^{1,d}) \rtimes \mathbb{R}^{1+d}$. 2) $\bar{u}\Lambda_{\pm}v = \int_{\mathbb{R}^{1+d} \times \mathbb{R}^{1+d}} \bar{u}(x)\Lambda_{\pm}(x-y)v(y)dxdy$, with $\hat{\Lambda}_{\pm}(\tau, k)$ supported in $\pm \tau > 0$ (*positivity of the energy*). One has:

$$\Lambda_{\pm}(t,\mathbf{x}) = (2\pi)^{-d} \int e^{i(\mathbf{x}\cdot\mathbf{k}\pm\mathbf{t}\epsilon(\mathbf{k}))} \epsilon(\mathbf{k})^{-1} d\mathbf{k},$$

where $\epsilon(k) = (k^2 + m^2)^{\frac{1}{2}}$, energy of a relativistic particle of mass *m*.

What is the vacuum state good for ?

- the vacuum state provides us with
- 1- a Hilbert space (link with Quantum Mechanics);

2- a notion of particles (excitations of the vacuum state).

Hilbert space: GNS construction: equip CCR(KG) with the scalar product

$$\langle A|B\rangle := \omega_{\mathrm{vac}}(A^*B).$$

- passing to quotient and completion \to a Hilbert space $\mathcal{H},$ with a distinguished vector $\ \Omega \sim \mathbb{1}.$

- The space \mathcal{H} is a bosonic Fock space build on a one particle space \mathfrak{h} .

- Acting with field operators on the vacuum state *creates particles*: the GNS representation of CCR(KG) is a Fock representation.

What is the vacuum state good for ?

- Working on \mathcal{H} one can:

1- rigorously construct interacting models in low dimensions: (Glimm-Jaffe 1970, $P(\varphi)_2$, φ_3^4 models).

2- formulate the perturbative renormalization: emblematic problem : give a meaning to $\psi^*(x)\psi(x)$ (charge

density): ultraviolet problem \sim multiplication of distributions. solution: Wick ordering:

one replaces $\psi^*(x)\psi(y)$ by

$$\psi^*(x)\psi(y) - \Lambda_{\operatorname{vac}}^-(x,y)\mathbb{1} = : \psi^*(x)\psi(y) :.$$

The trace on x = y is well defined as operator valued distribution on \mathcal{H} .

Hadamard states

- the above characterization of the vacuum state does not extend to general spacetimes (except stationary ones).

- one would like to find a criterion for states who look at short distances like a vacuum state.

- leads to the notion of Hadamard states, characterized by the wavefront set of their two point functions.

For $x \in M$ denote by $V^{\pm}(x) \subset T_x M$ the future/past lightcones at x.

Their dual cones $V_{\pm}^*(x) \subset T_x^*M$ are defined by:

$$V^*_{\pm}(x) = \{\xi \in T^*_x M : \xi \cdot v > 0 \ \forall v \in V^{\pm}(x), v \neq 0\}.$$

Interpretation: positive/negative energy cones. $p(x,\xi) = \xi_{\mu}g^{\mu\nu}(x)\xi_{\nu}$ principal symbol of $P(x, D_x)$, $\mathcal{N} = p^{-1}(\{0\})$ characteristic manifold of P

Hadamard states

 $\begin{aligned} \mathcal{N}_{\pm} &= \{(x,\xi) \in \mathcal{N} : \xi \in V_{\pm}^*(x)\}, \text{ upper/lower energy shell of } \mathcal{N}, \\ \mathcal{N} &= \mathcal{N}_+ \cup \mathcal{N}_-, \\ \text{For } X_i &= (x_i,\xi_i) \text{ write } X_1 \sim X_2 \text{ if } X_1, X_2 \in \mathcal{N}, X_1, X_2 \text{ on the same} \\ \text{Hamiltonian curve for } p. \\ \text{Definition } \omega \text{ is a } Hadamard state \text{ if } \end{aligned}$

$$WF(\Lambda_{\pm})' \subset \{(X_1, X_2) : X_1 \sim X_2, X_1 \in \mathcal{N}_{\pm}\}.$$

- Hadamard states exist.
- their covariances are all the same modulo smooth kernels.

The Unruh effect

The *Rindler wedge* R in $\mathbb{R}^{1,1}$ is the region $\{|t| < x\}$. Equipped with the metric $-dt^2 + dx^2$ it is a spacetime. One introduces the new coordinates

$$T = \operatorname{argth}(\frac{t}{x}), X = \ln((x^2 - t^2)^{\frac{1}{2}}) \Leftrightarrow t = \operatorname{e}^X \operatorname{sinh} T, \ x = \operatorname{e}^X \operatorname{cosh} T,$$

R becomes $\mathbb{R}_T \times \mathbb{R}_X$ with the metric:

$$ds^2 = \mathrm{e}^{2X}(-dT^2 + dX^2),$$

invariant under translations in T.

- the boost:

$$\alpha_{s} = \left(\begin{array}{c} \cosh s & \sinh s \\ \sinh s & \cosh s \end{array} \right),$$

in $\mathbb{R}^{1,1}$ becomes in *R* the translation in *T*:

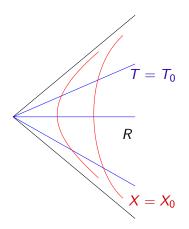
$$\tilde{\alpha}_{s}: (T, X) \mapsto (T + s, X).$$

- The curve $\{\tilde{\alpha}_s(T_0, X_0)\}_{s \in \mathbb{R}}$: world line of a uniformly accelerated observer with acceleration e^{-X_0} .

QFT on blackhole spacetimes

Christian Gérard Département of Mathématiques Université Paris-Sud

The Rindler wedge



QFT on blackhole spacetimes

Christian Gérard Département of Mathématiques Université Paris-Sud

イロト イポト イヨト イヨト

- consider the covariance of the vacuum state $\omega_{\rm vac}$:

$$\begin{split} &\Lambda_+(t,t',x,x') = \int_{\mathbb{R}} \mathrm{e}^{\mathrm{i}F(t,t',x,x',k)} \epsilon(k)^{-1} dk, \\ &F(t,t',x,x',k) = \epsilon(k)(t-t') + k(x-x'). \end{split}$$

- pass to T, T', X, X' coordinates:

$$\begin{split} \tilde{\Lambda}_+(T,T',X,X') &= \int_{\mathbb{R}} e^{i\tilde{F}(T,T',X,X',k)} \epsilon(k)^{-1} dk, \\ \tilde{F}(T,T',X,X',k) &= (e^X \sinh T - e^{X'} \sinh T') \epsilon(k) \\ &+ (e^X \cosh T - e^{X'} \cosh T') k. \end{split}$$

- invariance of $\omega_{\rm vac}$ under boosts: invariance of \tilde{F} under

$$T\mapsto T-rac{1}{2}(T+T'), T'\mapsto T'-rac{1}{2}(T+T').$$

QFT on blackhole spacetimes

The Unruh effect

- conclusion: $\tilde{F}(T, T', X, X') = \epsilon(k)(\mathrm{e}^{X} + \mathrm{e}^{X'})\sinh \frac{1}{2}(T T') + k(\mathrm{e}^{X} \mathrm{e}^{X'})\cosh \frac{1}{2}(T T').$
- hyperbolic trigonometry

$$\hat{\Lambda}_+(T,T',X,X') = \hat{\Lambda}_+(T',T+i2\pi,X',X)$$

property which characterizes a *thermal state* at temperature $(2\pi)^{-1}$.

-physical interpretation: the vacuum ω_{vac} is seen by a uniformly accelerated observer with acceleration *a* as a *thermal state*, with temperature $a/(2\pi)$.

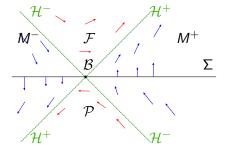
・ 同 ト ・ ヨ ト ・ ヨ ト

The Hawking effect

Consider a spacetime (M, g) describing a stationary blackhole. Two essential features:

(M,g) admits a global, complete Killing vector field V^a .

(M,g) admits a bifurcate event horizon $\mathcal{H} = \mathcal{H}^+ \cup \mathcal{H}^-$, generated by the Killing vector field V^a .



The surface gravity

Important fact: the quantity κ defined by:

$$\kappa^2 = -\frac{1}{2} (\nabla^a V^b) (\nabla_a V_b)$$

is *constant* on \mathcal{H} . The constant κ is called the *surface gravity* of the blackhole.

 $\mathcal{B} = \mathcal{H}^+ \cap \mathcal{H}^-$ is called the bifurcation surface, usually diffeomorphic to the sphere \mathbb{S}^2 . *V* vanishes identically on \mathcal{B} . Consider a free Klein-Gordon field on (M, g). Question: does there exists a state ω invariant by V^a and what are its properties?

The Hartle-Hawking-Israel state

Assume that the Killing vector field V^a is *timelike* in the exterior region M^+ .

Note that (M^+, g) is a globally hyperbolic spacetime, with timelike Killing vector field V^a , ie (M^+, g) is stationary.

Theorem [Kay-Wald 1991, Sanders 2013]: Assume that the Killing vector field is static in M^+ . Then there exists a unique state ω_{HHI} in (M, g) with the following properties:

1) ω_{HHI} is invariant under V^a , pure in (M, g).

2) the restriction of ω_{HHI} to (M^+, g) is a *thermal* state for the group generated by V^a at Hawking temperature $T_H = \frac{\kappa}{2\pi}$. Origin of the notion of temperature of blackholes

Killing time coordinates i nM^+

V is timelike on $\Sigma \setminus \mathcal{B}$ future directed in Σ^+ , past directed in Σ^- . Consider the right wedge M^+ . It is globally hyperbolic with Cauchy surface Σ^+ . Using the flow of V^a , one identifies M^+ with $\mathbb{R} \times \Sigma^+$ (Killing time) with metric

$$g = -v^2(y)dt^2 + h_{ij}(y)dy^i dy^j,$$

v(y) vanishes to first order on \mathcal{B} .

Near \mathcal{B} one can introduce Gaussian normal coordinates to \mathcal{B} in (Σ, h) : we identify Σ^+ with]0, $\delta[\times \mathcal{B}, g]$ takes the form

$$g=-v^2(s,\omega)dt^2+ds^2+k_{lphaeta}(s,\omega)d\omega^lpha d\omega^eta,$$

where $v(s, \omega) = \kappa s(1 + O(s^2))$.

イロト イポト イヨト イヨト

Wedge reflection

The left wedge M^- is always a copy of M^+ : there exists an involution $R: M \to M$ such that:

- R preserves g and V, reverses the time orientation;
- *R* maps M^{\pm} onto M^{\mp} and preserves Σ ;
- $R = \text{Id on } \mathcal{B}$.

R is called a wedge reflection. It implies that $k_{\alpha\beta}(s,\omega)d\omega^{\alpha}d\omega^{\beta}$ and $v(s,\omega)$ are even , resp. odd functions of *s*.

The Wick rotation

Thermal states at temperature $T = \beta^{-1}$ are associated to Wick rotation, amounting to replace t by $i\tau$, $\tau \in S_{\beta}$. - the Lorentzian manifold (M^+, g) is replaced by the Riemannian (M^+, g)

 (N^+, \hat{g}) for

$$N^+ = \mathbb{S}_eta imes \Sigma^+, \ \hat{g} = v^2(y) d au^2 + h_{ij}(y) dy^i dy^j,$$

 \mathbb{S}_{β} is the circle of length β . - the Klein-Gordon operator $P = -\Box_g + m^2$ by the Laplacian $K = -\Delta_{\hat{g}} + m^2$.

The double KMS state

- -the left wedge M^- is a copy of M^+ , one can consider Klein-Gordon fields on $M^+ \cup M^-$.
- if ω_{β}^+ is a thermal state on M^+ , one can add a 'twisted copy' of ω_{β}^+ on M^- and obtain a state ω_{β} on $M^+ \cup M^-$ called a double KMS state (Kay).
- ω_{β} is a pure state in $M^+ \cup M^-$.
- this construction is related to the Araki Woods representation.

・ 同 ト ・ ヨ ト ・ ヨ ト

Calderon projector

Let λ^+ the Cauchy surface covariance of ω_β , acting on $C_0^\infty(\Sigma^+ \cup \Sigma^-) \otimes \mathbb{C}^2$. We map Σ^- onto Σ^+ using the wedge reflection R:

$$C_0^\infty(\Sigma^+\cup\Sigma^-)\otimes \mathbb{C}^2\sim C_0^\infty(\Sigma^+)\otimes \mathbb{C}^2\oplus C_0^\infty(\Sigma^+)\otimes \mathbb{C}^2.$$

The two copies of Σ^+ are the boundary of $\Omega = [0, \beta/2]_{\tau} \times \Sigma^+$. Theorem: $c^+ = (i\sigma)^{-1} \circ \lambda^+$ is the Calderon projector D for $-\Delta_{\hat{g}} + m^2$ on Ω . Proof is a tedious computation.

Calderon projector

Let (N, \hat{g}) a Riemannian manifold, $\Omega \subset N$ open set with smooth boundary $\partial \Omega$, $P = -\Delta_{\hat{g}} + m^2$. -for $u \in C^{\infty}(\overline{\Omega})$ set

$$\gamma u = \left(\begin{array}{c} u \restriction_{\partial \Omega} \\ \partial_{\nu} u \restriction_{\partial \Omega} \end{array}\right)$$

-for $f\in \mathcal{C}^\infty(\partial\Omega)\otimes\mathbb{C}^2$ we have

$$\gamma^* f = \delta_{\partial \Omega} \otimes f_1 + \partial_{\nu} \delta_{\partial \Omega} \otimes f_0.$$

-the Calderon projector is the map

$$D = \gamma \circ P^{-1} \circ \gamma^*.$$

- D is a projector.
- *D* is a matrix of pseudodifferential operators on $\partial \Omega$.

QFT on blackhole spacetimes

Christian Gérard Département of Mathématiques Université Paris-Sud

Extension of ω_{β} to M

We want to extend ω_β to a state for the Klein-Gordon equation on ${\it M},$ i.e. extend

$$c^+$$
 acting on $C_0^\infty(\Sigma ackslash \mathcal{B}) \otimes \mathbb{C}^2$

to

$$c^+_{\mathrm{ext}}$$
 acting on $C^\infty_0(\Sigma)\otimes \mathbb{C}^2$.

We embed $\mathbb{S}_{\beta} \times \Sigma^+$ into $\mathbb{R}^2 \times \mathcal{B}$ as follows:

$$\psi:(au,s,\omega)\mapsto(s\cos(2\pieta^{-1} au),s\sin(2\pieta^{-1} au),\omega).$$

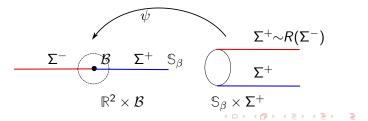
イロト イポト イヨト イヨト

Extension of ω_{β} to M

The Riemannian metric $\psi^* \hat{g}$ extends as a smooth metric \hat{g}_{ext} on $N_{\text{ext}} = \mathbb{R}^2 \times \mathcal{B}$ iff $\beta = (2\pi)/\kappa$. Then

$$T_H := \frac{\kappa}{2\pi}$$
 is the Hawking temperature

For $\beta \neq (2\pi)/\kappa$, \hat{g}_{ext} has a conical singularity on $\{0\} \times \mathcal{B}$.



Christian Gérard Département of Mathématiques Université Paris-Sud

Extension of ω_{β} to M

- if $\beta = (2\pi)/\kappa$ then the Calderon projector D_{ext} acting on $C_0^{\infty}(\Sigma) \oplus C_0^{\infty}(\Sigma)$ is an extension of c^+ .
- one can show that it produces a state on M, the looked for Hartle-Hawking-Israel state ω_{HHI} .
- the fact that ω_{HHI} is pure is obvious (D_{ext} is a projection).
- the fact that ω_{HHI} is a Hadamard state is very easy to prove, using that D_{ext} is pseudodifferential.

Thank you for your attention !

イロト イポト イヨト イヨト