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Introduction

Quantum Field Theory in curved spacetimes

e describes quantum fields , Klein-Gordon, Dirac, Maxwell fields
etc, propagating in a classical spacetime , described by a
Lorentzian manifold (M, g).

e use: description of quantum phenomena in strong gravitational
fields: cosmological models, neighborhood of a blackhole
horizon.

e gravitation is treated classically: the theory cannot be a
fundamental one.

e peculiarities: the notion of vacuum state becomes problematic:
need for an algebraic framework (no reference Hilbert space).
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Klein-Gordon fields on curved spacetimes

Globally hyperbolic spacetimes

- Lorentzian manifold: manifold M equipped with a Lorentzian
metric g, of signature (1, d).

- if ve Tp,M, v is spacelike, causal, timelike, lightlike if

v-gpv >0, <0 <0, =0.

- one extends this terminology to vector fields, then to piecewise C!
curves.

- (M, g) is a spacetime if M is time orientable, i.e. there exists a
continuous timelike vector field on M.

- one writes g € J*(p) if one can join p to g by a future directed
causal curve. For K C M one sets J*(K) = Upek JE(p).

- a hypersurface ¥ C M is Cauchy if any inextensible causal curve
in M intersects ¥ at one and only one point.
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Klein-Gordon fields on curved spacetimes

Globally hyperbolic spacetimes

Definition (M, g) is globally hyperbolic if one of the following
equivalent conditions holds:

1) M has a Cauchy hypersurface.

2) for all p,g € M J™(p) N J~(q) is compact and there are no
closed causal curves.

This definition depends only on the causal structure of (M, g).
Global hyperbolicity has important consequences for the
Klein-Gordon in M:

1) the Cauchy problem is well posed,

2) there exists advanced and retarded Green's functions.
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Klein-Gordon fields on curved spacetimes

Examples of non globally hyperbolic spacetimes
M = St x Ry

t/ JE(p) =M

X

M = R;x]a, b[x
-4

t JT(p) N J~(q) non compact
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Klein-Gordon fields on curved spacetimes

The Klein-Gordon equation
Assume (M, g) globally hyperbolic. Let

P=—VV,+m’ = |g| 20,8"|g|20, + m*,

the Klein-Gordon operator on M. (One can replace m? by a real
C*° function).

P is selfadjoint for the scalar product (u|v) = [, GvdVol,.

Denote by Sols.(KG) the space of C*° space compact solutlons
(intersection of support with a spacelike hypersurface is compact).

If ¥ is a spacelike Cauchy hypersurface and ¢1, ¢2 € Sols.(KG),
the quantity:

?El CoQp = /): ”“aucgmﬁz - &ln“amzdsg

is independent on the choice of X, (SolscKG, o) is a symplectic
space.
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Klein-Gordon fields on curved spacetimes

Green's functions

Theorem There exist unique linear maps E* : C§°(M) — C®(M)
such that

PoEt=E*oP =1,

suppE*f C JE(suppf), f € C°(M).

One has (E*)* = ET, E := E* — E~, called Pauli-Jordan
distribution is anti-selfadjoint.
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Klein-Gordon fields on curved spacetimes

Green's functions

Theorem
e RanE = Sols.(KG), KerE = PC5°(M),
e Euy-0Euy = —(u1|Ewp), ur,up € Cse(M).
One deduces that (C§°(M)/PC5° (M), —E) is symplectic and

E: (C°(M)/PC5* (M), —E) — (Sols(KG), 0)

is a symplectomorphism.
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Klein-Gordon fields on curved spacetimes

CCR algebras

To each u € C§°(M) we associate 'operators’ aka quantum fields
¥(u), ¥*(u) subject to the following rules:

e the map Cg°(M) > u — ¢*(u) resp. t(u) is linear, resp.
anti-linear.

e the canonical commutation relations hold:

[1b(u1), P(w2)] = [¥"(u1), ¥*(u2)] = 0,
[¥(n), ¥ (u2)] = i H(u1|Eur)l, w2 € G3°(M),
P(u)* = ¢*(u).
- The *—algebra generated by the ¢/(*)(u) for u € C§°(M) is
denoted CCR(KG). lts is interpreted as the algebra of observables

for a Klein-Gordon field.
- locality: if suppu; and suppus, are causally disjoint, then

[ (1), ™) (u2)] = 0.
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Klein-Gordon fields on curved spacetimes

Klein-Gordon field

- Set formally
v() = [ D(a()dvel,

since the map u — 1(*)(u) should pass to the quotient by
PC§°(M), one should have:

¥(Pu) =0 = Py(x) =0.

Hence we obtain 'operator valued solutions’ of the Klein-Gordon
equation.
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Klein-Gordon fields on curved spacetimes

Quasi-free states

The states of the quantized Klein-Gordon field are given by linear
functionals on CCR(KG) with:

w: CCR(KG) = C, w(1) = 1, w(A*A) > 0, VA € CCR(KG).

A natural class of states is given by the quasi-free states, analogs in
the non-commutative case of gaussian measures.
Definition
A state w on CCR(KG) is quasi-free if:
w(I I ¢*(u) [17¥(vi)) =0, n# p,
w([T1 ¥ (u) IT7 ¥ (vi)) = Xges, [T @@ (i) (vo())-
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Klein-Gordon fields on curved spacetimes

Quasi-free states

The quasi-free states are completely determined by their ‘two-point
functions’ or covariances:

G Aoy = (@ (V) u,v € GE(M),
- it is useful to consider also
B Apv = (e () (v)).

The covariances Ay are sesquilinear forms on C§°(M),with two
properties:

1) AL —A_ =i"1E, commutation relations
2) AL >0, positivity.

Conversely a pair of covariances A1 such that 1) et 2) hold
determines a unique quasi-free state w.
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Klein-Gordon fields on curved spacetimes

Quasi-free states

- continuity hypothesis: one assumes that AL are continuous on
Coo(M):
- consequence: there exist Ay € D'(M x M) such that:

1) 'DXA:I:(Xa}/):Py/\:t(Xay):Oa
24) w@(u)y™(v)) = Jypps MO ¥) () v (v ) dxdy,
2.) W@ (V)P()) = fapenm A0 y)E(x)v(y)dxdy.

One has again A, —A_ = —iE, AL > 0.

Important consequence of 1): Ay are entirely determined by their
restriction to an arbitrary neighborhood of ¥ x ¥, where X C M is
a Cauchy surface (“time-slice axiom").
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Klein-Gordon fields on curved spacetimes

Cauchy surface covariances
One can replace the symplectic space E : (C3°(M)/PC3°(M), —E)
by (Solsc(KG), o) or also, using the Cauchy problem by

(G~ (2) ® G° (%), ),

for

A R )]

The covariances corresponding to A* are denoted by A (2 x 2
matrices), called the Cauchy surface covariances.
It is convenient to introduce

ct = +(io) Lo AE

One has ¢t 4+ ¢~ =1, c* are projections iff the state w is a pure
state.
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Klein-Gordon fields on curved spacetimes

The Minkowski vacuum

The basic example is the vacuum state wya. on Minkowski
spacetime.

Theorem(Minkowski case) there exists a unique (pure) quasi-free
state wyac With the following properties:

1) Wyac invariant under the Poincaré group SO(RY?) x R4,

2) iNyv = fR1+d><R1+d d(x)A+(x — y)v(y)dxdy, with

/A\i(T, k) supported in £7 > 0 ( positivity of the energy).

One has:

/\:I:(t,X) = (27-()—(1/ei(x.k:l:te(k))e(k)_ldk7

where (k) = (k% + m2)%, energy of a relativistic particle of mass
m.
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Klein-Gordon fields on curved spacetimes

What is the vacuum state good for ?

- the vacuum state provides us with
1- a Hilbert space (link with Quantum Mechanics);
2- a notion of particles (excitations of the vacuum state).
Hilbert space: GNS construction: equip CCR(KG) with the scalar
product
(A|B) 1= wyac(A*B).

- passing to quotient and completion — a Hilbert space H, with a
distinguished vector Q ~ 1.

- The space H is a bosonic Fock space build on a one particle space
B.
- Acting with field operators on the vacuum state creates particles:
the GNS representation of CCR(KG) is a Fock representation.
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Klein-Gordon fields on curved spacetimes

What is the vacuum state good for ?

- Working on H one can:

1- rigorously construct interacting models in low dimensions:
(Glimm-Jaffe 1970, P()2, ¢§ models).

2- formulate the perturbative renormalization:

emblematic problem : give a meaning to ©*(x)1(x) (charge
density): ultraviolet problem ~ multiplication of distributions.
solution: Wick ordering:

one replaces *(x)y(y) by
P )Y(Y) = Mac(x, ¥)1 = 0" ()Y (y) =

The trace on x = y is well defined as operator valued distribution
on H.
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Klein-Gordon fields on curved spacetimes

Hadamard states

- the above characterization of the vacuum state does not extend
to general spacetimes (except stationary ones).

- one would like to find a criterion for states who look at short
distances like a vacuum state.

- leads to the notion of Hadamard states, characterized by the
wavefront set of their two point functions.

For x € M denote by V*(x) C T,M the future/past lightcones at
X.

Their dual cones Vi (x) C T;M are defined by:

Vix)={6e€TiM : £-v>0VYv e VE(X),v #0}.
Interpretation: positive/negative energy cones.

p(x,&) = £.8"" (x)&, principal symbol of P(x, Dy),
N = p~1({0}) characteristic manifold of P
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Klein-Gordon fields on curved spacetimes

Hadamard states

Ni={(x,&) e N : £ € Vi(x)}, upper/lower energy shell of AV,
N =N UN_,

For X; = (x;, &) write X1 ~ Xp if X1, X2 € N, X1, Xz on the same
Hamiltonian curve for p.
Definition w is a Hadamard state if

WF(/\i)/ C {(X]_,XQ) X1~ X, X1 € ./V’i}

- Hadamard states exist.
- their covariances are all the same modulo smooth kernels.
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The Unruh effect

The Unruh effect
The Rindler wedge R in RY! is the region {|t| < x}. Equipped with
the metric —dt? + dx? it is a spacetime.
One introduces the new coordinates

T = argth(z),X = |n((x2—t2)%) s t=eXsinh T, x =eXcosh T,
X
R becomes Rt x Rx with the metric:
ds? = XX (—dT? + dX?),

invariant under translations in T.

- the boost:
_( coshs sinhs
@ =\ sinhs coshs )’
in R1! becomes in R the translation in T:
as: (T, X) = (T +s,X).

- The curve {as(To, Xo)}ser: world line of a uniformly accelerated
observer with acceleration e=%o.
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The Unruh effect

The Rindler wedge
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The Unruh effect

- consider the covariance of the vacuum state wyyc:

AJr(ta tlaan/) = fR eiF(t’t,’X’X/’k)G(k)_ldk,
F(t, t’,X,X” k) — G(k)(t _ tl) + k(X o X/).

- passto T, T', X, X’ coordinates:

7\“1‘(7—7 T/,X,X,) = fR ei’;(T,T/,X7X’7k)€(k)_1dk’
F(T, T/, X, X', k) = (X sinh T — X' sinh T)e(k)
+(eX cosh T — X’ cosh k.

- invariance of wy,e under boosts: invariance of F under

1 1
ToT—S(T+T)T =T = (T+T).
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The Unruh effect

The Unruh effect

- conclusion: F(T, T', X, X") =

e(k)(eX +eX')sinh (T — T') + k(eX — eX") cosh 1(T — T7).

- hyperbolic trigonometry:

A(T, T, X, XY= A (T, T +1i2m, X', X),

property which characterizes a thermal state at temperature
(2m)~ L.

-physical interpretation: the vacuum wyac is seen by a uniformly
accelerated observer with acceleration a as a thermal state, with
temperature a/(27).

QFT on blackhole spacetimes Christian Gérard Département of Mathématiques Université Paris-Sud



The Hawking effect

The Hawking effect

Consider a spacetime (M, g) describing a stationary blackhole.
Two essential features:

(M, g) admits a global, complete Killing vector field V2.

(M, g) admits a bifurcate event horizon H = H* UH ™, generated
by the Killing vector field V2.

7—[7 . B /,ﬂ-ﬁ
M F v
N - S/
— Pt
AR/ - D NN
H H
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The Hawking effect

The surface gravity

Important fact: the quantity s defined by:
1
K2 = —S(VIVP)(VaVh)

is constant on H. The constant k is called the surface gravity of
the blackhole.

B =H"NH" is called the bifurcation surface, usually
diffeomorphic to the sphere S?. V vanishes identically on B.
Consider a free Klein-Gordon field on (M, g).

Question: does there exists a state w invariant by V2 and what are
its properties?
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The Hawking effect

The Hartle-Hawking-Israel state

Assume that the Killing vector field V@ is timelike in the exterior
region M.

Note that (M, g) is a globally hyperbolic spacetime, with timelike
Killing vector field V2, ie (M™, g) is stationary.

Theorem [Kay-Wald 1991, Sanders 2013]: Assume that the Killing
vector field is static in MT. Then there exists a unique state wyp;
in (M, g) with the following properties:

1) wypy is invariant under V2, pure in (M, g).

2) the restriction of wyy; to (M™, g) is a thermal state for the
group generated by V@ at Hawking temperature Ty = 5-.
Origin of the notion of temperature of blackholes
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The Hartle-Hawking-Israel

Killing time coordinates i nM™

V is timelike on T\ B future directed in T, past directed in ¥~
Consider the right wedge M. It is globally hyperbolic with Cauchy
surface . Using the flow of V2, one identifies M with R x ¥+

(Killing time) with metric
g = —v3(y)dt® + hy(y)dy'dy’,

v(y) vanishes to first order on B.
Near B one can introduce Gaussian normal coordinates to B in
(X, h): we identify X* with ]0,d[xB, g takes the form

g = —Vv3(s,w)dt? + ds® + kop(s,w)dwdw®,

where v(s,w) = rs(1+ O(s?)).

Christian Gérard Département of Mathématiques Université Paris-Sud

QFT on blackhole spacetimes



The Hartle-Hawking-Israel

Wedge reflection

The left wedge M~ is always a copy of M™: there exists an
involution R : M — M such that:

- R preserves g and V/, reverses the time orientation;

- R maps M* onto MT and preserves ¥;

-R=1d on B.

R is called a wedge reflection. It implies that k,s(s,w)dw®dw”
and v(s,w) are even , resp. odd functions of s.
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The Hartle-Hawking-Israel

The Wick rotation

Thermal states at temperature T = 37! are associated to Wick
rotation, amounting to replace t by i, 7 € Sg.

- the Lorentzian manifold (M*, g) is replaced by the Riemannian
(N, g) for

Nt =S5 x ¥, & = v3(y)dr® + hy(y)dy'dy’,

Sg is the circle of length 3.
- the Klein-Gordon operator P = —[J, + m? by the Laplacian
K= —Ag + m?.
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The Hartle-Hawking-Israel

The double KMS state

-the left wedge M~ is a copy of M, one can consider
Klein-Gordon fields on M+ U M~.

- if wg is a thermal state on M™, one can add a "twisted copy' of
wE}L on M~ and obtain a state wg on M*™ U M~ called a double
KMS state (Kay).

- wg is a pure state in MT UM~

- this construction is related to the Araki Woods representation.
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The Hartle-Hawking-Israel

Calderon projector

Let AT the Cauchy surface covariance of wg, acting on
CC(Ztur)ecC2
We map ¥~ onto ¥ using the wedge reflection R:

CP(ETUIN)@C? ~ (XN eC? e (X)) @ C2.

The two copies of ¥ are the boundary of Q =[0,3/2], x ©*.
Theorem: ¢ = (ic) ™1 o A* is the Calderon projector D for
—Ag + m? on Q.

Proof is a tedious computation.
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The Hartle-Hawking-Israel

Calderon projector

Let (N, g) a Riemannian manifold, Q C N open set with smooth
boundary 9Q, P = —Ag + m°.

for u € C®(Q) set
= ( 3:][1?29 )
for f € C*°(002) ® C? we have
YF = dpa ® fL + Dudpa ® foy.
-the Calderon projector is the map
D=vyoP loy*

- D is a projector.
- D is a matrix of pseudodifferential operators on 952.
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The Hartle-Hawking-Israel

Extension of ws to M

We want to extend wgs to a state for the Klein-Gordon equation on
M, i.e. extend

cT acting on C§°(X\B) ® C?

to
¢t acting on C§°(X) ® C2.

We embed Sz x T into R2 x B as follows:

Y (7,5,w) = (scos(2mf17), ssin(2nf717), w).
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The Hartle-Hawking-Israel

Extension of ws to M

The Riemannian metric ¢*g extends as a smooth metric gext on
Next = R? x B iff 3 = (271)/x. Then

Ty = ; is the Hawking temperature
0

For 8 # (27)/K, 8ext has a conical singularity on {0} x B.
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The Hartle-Hawking-Israel

Extension of ws to M

- if B = (27)/k then the Calderon projector Dy acting on
C§°(X) ® C§°(X) is an extension of ¢

- one can show that it produces a state on M, the looked for
Hartle-Hawking-Israel state wypy.

- the fact that wyypy is pure is obvious (Deyt, is a projection).

- the fact that wpypy is a Hadamard state is very easy to prove,
using that Dey is pseudodifferential.

Thank you for your attention !
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