# Few results on the asymptotic of the eigenvalues for the discrete Laplacian 

Sylvain Golénia

Universtité de Bordeaux

Université de Cergy-Pontoise, 21-24 June 2016

Let $A$ be a self-adjoint operator acting on a complex and separable Hilbert space. We set:

- $\sigma_{\mathrm{d}}(A):=\{\lambda \in \mathbb{R}, \lambda$ is a isolated eigenvalue of finite multiplicity $\}$.
- $\sigma_{\text {ess }}(A):=\sigma(A) \backslash \sigma_{\mathrm{d}}(A)$.

The spectrum of $A$ is purely discrete if and only if $\sigma_{\text {ess }}(A)=\emptyset$ and if and only if $(A+\mathrm{i})^{-1}$ is a compact operator.

Question : How to compute the asymptotic of eigenvalues?

Let $A$ be a self-adjoint operator acting on a complex and separable Hilbert space. We set:

- $\sigma_{\mathrm{d}}(A):=\{\lambda \in \mathbb{R}, \lambda$ is a isolated eigenvalue of finite multiplicity $\}$.
- $\sigma_{\text {ess }}(A):=\sigma(A) \backslash \sigma_{\mathrm{d}}(A)$.

The spectrum of $A$ is purely discrete if and only if $\sigma_{\text {ess }}(A)=\emptyset$ and if and only if $(A+\mathrm{i})^{-1}$ is a compact operator.

Question: How to compute the asymptotic of eigenvalues?

Let $\mathscr{V}$ be a countable set and let $\mathscr{E}:=\mathscr{V} \times \mathscr{V} \rightarrow\{0,1\}$ be such that

$$
\mathscr{E}(x, y)=\mathscr{E}(y, x), \quad \text { for all } x, y \in \mathscr{V}
$$

We say that $\mathscr{G}:=(\mathscr{V}, \mathscr{E})$ is an non-oriented graph with edges $\mathscr{E}$ and vertices $\mathscr{V}$.

We say that $x, y \in \mathscr{V}$ are neighbors is $\mathscr{E}(x, y)=1$. We write: $x \sim y$.

The degree of $x \in \mathscr{V}$ is its number of neighbors

Let $\mathscr{V}$ be a countable set and let $\mathscr{E}:=\mathscr{V} \times \mathscr{V} \rightarrow\{0,1\}$ be such that

$$
\mathscr{E}(x, y)=\mathscr{E}(y, x), \quad \text { for all } x, y \in \mathscr{V}
$$

We say that $\mathscr{G}:=(\mathscr{V}, \mathscr{E})$ is an non-oriented graph with edges $\mathscr{E}$ and vertices $\mathscr{V}$.

We say that $x, y \in \mathscr{V}$ are neighbors is $\mathscr{E}(x, y)=1$. We write: $x \sim y$.

The degree of $x \in \mathscr{V}$ is its number of neighbors :

$$
\operatorname{deg}(x):=|\{y \in \mathscr{E} \mid x \sim y\}| .
$$

Hypothesis: $\operatorname{deg}(x)<\infty, \mathscr{E}(x, x)=0$ for all $x \in \mathscr{V}$, and the graph $\mathscr{G}$ is connected.

Let $\mathscr{V}$ be a countable set and let $\mathscr{E}:=\mathscr{V} \times \mathscr{V} \rightarrow\{0,1\}$ be such that

$$
\mathscr{E}(x, y)=\mathscr{E}(y, x), \quad \text { for all } x, y \in \mathscr{V}
$$

We say that $\mathscr{G}:=(\mathscr{V}, \mathscr{E})$ is an non-oriented graph with edges $\mathscr{E}$ and vertices $\mathscr{V}$.

We say that $x, y \in \mathscr{V}$ are neighbors is $\mathscr{E}(x, y)=1$. We write: $x \sim y$.

The degree of $x \in \mathscr{V}$ is its number of neighbors :

$$
\operatorname{deg}(x):=|\{y \in \mathscr{E} \mid x \sim y\}| .
$$

Hypothesis : $\operatorname{deg}(x)<\infty, \mathscr{E}(x, x)=0$ for all $x \in \mathscr{V}$, and the graph $\mathscr{G}$ is connected.

We work on $\ell^{2}(\mathscr{V} ; \mathbb{C})$, endowed with $\langle f, g\rangle=\sum_{x \in \mathscr{V}} \overline{f(x)} g(x)$.

The Laplacian is given by:
for $f \in \mathcal{C}_{C}(\mathscr{Y}):=\{f: \mathscr{V} \rightarrow \mathbb{C}$ such that the support of $f$ is finite $\}$

The Laplacian is essentially self-adjoint.

We work on $\ell^{2}(\mathscr{V} ; \mathbb{C})$, endowed with $\langle f, g\rangle=\sum_{x \in \mathscr{V}} \overline{f(x)} g(x)$.

The Laplacian is given by:

$$
\Delta f(x)=\sum_{y \sim x}(f(x)-f(y)),
$$

for $f \in \mathcal{C}_{C}(\mathscr{V}):=\{f: \mathscr{V} \rightarrow \mathbb{C}$ such that the support of $f$ is finite $\}$.

The Laplacian is essentially self-adjoint.
(Wojciechowski '07, Jørgensen '08, Colin de Verdière-Torki Hamza-Truc '11, G.'11, G.-Schumacher '11, Milatovic '11, Keller-Lenz'12, Milatovic-Truc'11 ...)

We work on $\ell^{2}(\mathscr{V} ; \mathbb{C})$, endowed with $\langle f, g\rangle=\sum_{x \in \mathscr{V}} \overline{f(x)} g(x)$.

The Laplacian is given by:

$$
\Delta f(x)=\sum_{y \sim x}(f(x)-f(y)),
$$

for $f \in \mathcal{C}_{C}(\mathscr{V}):=\{f: \mathscr{V} \rightarrow \mathbb{C}$ such that the support of $f$ is finite $\}$.

The Laplacian is essentially self-adjoint.
(Wojciechowski '07, Jørgensen '08, Colin de Verdière-Torki Hamza-Truc
G.-Schumacher '11, Milatovic '11, Keller-Lenz'12, Milatovic-Truc'11 ...)

We work on $\ell^{2}(\mathscr{V} ; \mathbb{C})$, endowed with $\langle f, g\rangle=\sum_{x \in \mathscr{V}} \overline{f(x)} g(x)$.

The Laplacian is given by:

$$
\Delta f(x)=\sum_{y \sim x}(f(x)-f(y))
$$

for $f \in \mathcal{C}_{C}(\mathscr{V}):=\{f: \mathscr{V} \rightarrow \mathbb{C}$ such that the support of $f$ is finite $\}$.

The Laplacian is essentially self-adjoint.
(Wojciechowski '07, Jørgensen '08, Colin de Verdière-Torki Hamza-Truc '11, G.'11, G.-Schumacher '11, Milatovic '11, Keller-Lenz'12, Milatovic-Truc'11 ...)

Proof: Let $f \in \ell^{2}(\mathscr{V})$ such that $\Delta^{*} f=-f$. We infer that for all $x \in \mathscr{V}$ that

$$
(\operatorname{deg}(x)+1) f(x)=\sum_{y \sim x} f(y)
$$

Therefore, if $f \neq 0$, there is a sequence $\left(x_{n}\right)_{n} \in \mathscr{y}^{\mathbb{N}}$, such that

This is a contraction with the fact that $f \in \ell^{2}(\mathscr{V})$.

Proof: Let $f \in \ell^{2}(\mathscr{V})$ such that $\Delta^{*} f=-f$. We infer that for all $x \in \mathscr{V}$ that

$$
(\operatorname{deg}(x)+1) f(x)=\sum_{y \sim x} f(y)
$$

Therefore, if $f \neq 0$, there is a sequence $\left(x_{n}\right)_{n} \in \mathscr{V}^{\mathbb{N}}$, such that

$$
\left|f\left(x_{n}+1\right)\right|>\left|f\left(x_{n}\right)\right|,
$$

for all $n \in \mathbb{N}$.

This is a contraction with the fact that $f \in \ell^{2}(\mathscr{V})$.

Proof: Let $f \in \ell^{2}(\mathscr{V})$ such that $\Delta^{*} f=-f$. We infer that for all $x \in \mathscr{V}$ that

$$
(\operatorname{deg}(x)+1) f(x)=\sum_{y \sim x} f(y)
$$

Therefore, if $f \neq 0$, there is a sequence $\left(x_{n}\right)_{n} \in \mathscr{V}^{\mathbb{N}}$, such that

$$
\left|f\left(x_{n}+1\right)\right|>\left|f\left(x_{n}\right)\right|,
$$

for all $n \in \mathbb{N}$.

This is a contraction with the fact that $f \in \ell^{2}(\mathscr{V})$.
a)

$$
0 \leq\langle f, \Delta f\rangle \leq 2\langle f, \operatorname{deg}(\cdot) f\rangle,
$$

for all $f \in \mathcal{C}_{C}(\mathscr{V})$.
a)

$$
0 \leq\langle f, \Delta f\rangle \leq 2\langle f, \operatorname{deg}(\cdot) f\rangle
$$

for all $f \in \mathcal{C}_{C}(\mathscr{V})$. Indeed:

$$
\begin{aligned}
\langle f, \Delta f\rangle & =\frac{1}{2} \sum_{x \in \mathscr{V}} \sum_{y \sim x}|f(x)-f(y)|^{2} \\
& \leq \sum_{x \in \mathscr{V}} \sum_{y \sim x}\left(|f(x)|^{2}+|f(y)|^{2}\right)=2\langle f, \operatorname{deg}(\cdot) f\rangle .
\end{aligned}
$$

$\Delta$ bounded $\Longleftrightarrow$ deg bounded
a)

$$
0 \leq\langle f, \Delta f\rangle \leq 2\langle f, \operatorname{deg}(\cdot) f\rangle,
$$

for all $f \in \mathcal{C}_{C}(\mathscr{V})$. Indeed:

$$
\begin{aligned}
\langle f, \Delta f\rangle & =\frac{1}{2} \sum_{x \in \mathscr{V}} \sum_{y \sim x}|f(x)-f(y)|^{2} \\
& \leq \sum_{x \in \mathscr{V}} \sum_{y \sim x}\left(|f(x)|^{2}+|f(y)|^{2}\right)=2\langle f, \operatorname{deg}(\cdot) f\rangle .
\end{aligned}
$$

b)
$\Delta$ bounded $\Longleftrightarrow$ deg bounded.
a)

$$
0 \leq\langle f, \Delta f\rangle \leq 2\langle f, \operatorname{deg}(\cdot) f\rangle,
$$

for all $f \in \mathcal{C}_{C}(\mathscr{V})$. Indeed:

$$
\begin{aligned}
\langle f, \Delta f\rangle & =\frac{1}{2} \sum_{x \in \mathscr{V}} \sum_{y \sim x}|f(x)-f(y)|^{2} \\
& \leq \sum_{x \in \mathscr{V}} \sum_{y \sim x}\left(|f(x)|^{2}+|f(y)|^{2}\right)=2\langle f, \operatorname{deg}(\cdot) f\rangle .
\end{aligned}
$$

b)

$$
\Delta \text { bounded } \Longleftrightarrow \text { deg bounded }
$$

Indeed:

$$
\left\langle\delta_{x}, \Delta \delta_{x}\right\rangle=\operatorname{deg}(x)
$$

c) The isoperimetric constant associated to $\mathscr{G}$ (and to deg) is given by:

$$
\alpha(\mathscr{G}):=\inf _{W \subset \mathscr{V}, \sharp W<\infty} \frac{\left\langle\mathbf{1}_{W}, \Delta \mathbf{1}_{W}\right\rangle}{\left\langle\mathbf{1}_{W}, \operatorname{deg}(\cdot) \mathbf{1}_{W}\right\rangle} .
$$

c) The isoperimetric constant associated to $\mathscr{G}$ (and to deg) is given by:

$$
\alpha(\mathscr{G}):=\inf _{W \subset \mathscr{V}, \sharp W<\infty} \frac{\left\langle\mathbf{1}_{W}, \Delta \mathbf{1}_{W}\right\rangle}{\left\langle\mathbf{1}_{W}, \operatorname{deg}(\cdot) \mathbf{1}_{W}\right\rangle} .
$$

We have:

$$
\alpha(\mathscr{G})>0 \Longleftrightarrow \exists c>0, \quad c\langle f, \operatorname{deg}(\cdot) f\rangle \leq\langle f, \Delta f\rangle,
$$

for all $f \in \mathcal{C}_{C}(\mathscr{V})$.
(Dodziuk '84, Dodziuk-Kendal '86, Keller-Lenz '09, Keller '10. . .)

Aim: Find $c_{1}, C_{1}, c_{2}, C_{2}>0$, such that

$$
c_{1}\langle f, \operatorname{deg}(\cdot) f\rangle-C_{1}\|f\|^{2} \leq\langle f, \Delta f\rangle \leq c_{2}\langle f, \operatorname{deg}(\cdot) f\rangle+C_{2}\|f\|^{2} .
$$

## Or equivalently show that

Aim: Find $c_{1}, C_{1}, c_{2}, C_{2}>0$, such that

$$
c_{1}\langle f, \operatorname{deg}(\cdot) f\rangle-C_{1}\|f\|^{2} \leq\langle f, \Delta f\rangle \leq c_{2}\langle f, \operatorname{deg}(\cdot) f\rangle+C_{2}\|f\|^{2} .
$$

Or equivalently show that

$$
\mathcal{D}\left(\operatorname{deg}^{1 / 2}(\cdot)\right)=\mathcal{D}\left(\Delta^{1 / 2}\right)
$$



With $f_{n}:=1_{K_{n, n}}$, we have:

$$
\left\langle f_{n}, \Delta f_{n}\right\rangle=2, \quad\left\|f_{n}\right\|^{2}=2 n, \quad \text { et } \quad\left\langle f_{n}, \operatorname{deg}(\cdot) f_{n}\right\rangle=2 n^{2}+2
$$

Therefore, $\mathcal{D}\left(\operatorname{deg}^{1 / 2}(\cdot)\right) \neq \mathcal{D}\left(\Delta^{1 / 2}\right)$.


With $f_{n}:=\mathbf{1}_{K_{n, n}}$, we have:

$$
\left\langle f_{n}, \Delta f_{n}\right\rangle=2, \quad\left\|f_{n}\right\|^{2}=2 n, \quad \text { et } \quad\left\langle f_{n}, \operatorname{deg}(\cdot) f_{n}\right\rangle=2 n^{2}+2 .
$$

Therefore, $\mathcal{D}\left(\operatorname{deg}^{1 / 2}(\cdot)\right) \neq \mathcal{D}\left(\Delta^{1 / 2}\right)$.

## Proposition

Let $A, B$ be two non-negative self-adjoint operators. Suppose that

$$
\mathcal{D}\left(A^{1 / 2}\right) \supset \mathcal{D}\left(B^{1 / 2}\right) \text { and } 0 \leq\langle\psi, A \psi\rangle \leq\langle\psi, B \psi\rangle
$$

for all $\psi \in \mathcal{D}\left(B^{1 / 2}\right)$. Then we have $\inf \sigma_{\text {ess }}(A) \leq \inf \sigma_{\text {ess }}(B)$, and

$$
N_{\lambda}(A) \geq N_{\lambda}(B), \text { for } \lambda \in[0, \infty) \backslash\left\{\inf \sigma_{\mathrm{ess}}(B)\right\}
$$

where $N_{\lambda}(A):=\operatorname{dim} \operatorname{Ran} \mathbf{1}_{[0, \lambda]}(A)$.

## Proposition

Let $A, B$ be two non-negative self-adjoint operators. Suppose that

$$
\mathcal{D}\left(A^{1 / 2}\right) \supset \mathcal{D}\left(B^{1 / 2}\right) \text { and } 0 \leq\langle\psi, A \psi\rangle \leq\langle\psi, B \psi\rangle
$$

for all $\psi \in \mathcal{D}\left(B^{1 / 2}\right)$. Then we have $\inf \sigma_{\text {ess }}(A) \leq \inf \sigma_{\text {ess }}(B)$, and

$$
N_{\lambda}(A) \geq N_{\lambda}(B), \text { for } \lambda \in[0, \infty) \backslash\left\{\inf \sigma_{\mathrm{ess}}(B)\right\}
$$

where $N_{\lambda}(A):=\operatorname{dim} \operatorname{Ran} \mathbf{1}_{[0, \lambda]}(A)$.

In particular, if $A$ and $B$ have the same form domain, then $\sigma_{\text {ess }}(A)=\emptyset$ if and only if $\sigma_{\text {ess }}(B)=\emptyset$.

Corollary
We have:

$$
\inf \sigma_{\mathrm{ess}}(\Delta) \leq 2 \inf \sigma_{\mathrm{ess}}(\operatorname{deg}(\cdot)) \text { and } N_{\lambda}(\Delta) \geq N_{\lambda}(2 \operatorname{deg}(\cdot)),
$$

for all $\lambda \in[0, \infty) \backslash\left\{\inf \sigma_{\text {ess }}(\operatorname{deg}(\cdot))\right\}$.

In particular, if $0 \in \sigma_{\text {ess }}(\operatorname{deg}(\cdot))$, then $0 \in \sigma_{\text {ess }}(\Delta)$ and if $\Delta$ with compact resolvant, then $\operatorname{deg}(\cdot)$ is also with compact resolvant.

## Corollary

We have:

$$
\inf \sigma_{\mathrm{ess}}(\Delta) \leq 2 \inf \sigma_{\mathrm{ess}}(\operatorname{deg}(\cdot)) \text { and } N_{\lambda}(\Delta) \geq N_{\lambda}(2 \operatorname{deg}(\cdot)),
$$

for all $\lambda \in[0, \infty) \backslash\left\{\inf \sigma_{\text {ess }}(\operatorname{deg}(\cdot))\right\}$.

In particular, if $0 \in \sigma_{\text {ess }}(\operatorname{deg}(\cdot))$, then $0 \in \sigma_{\text {ess }}(\Delta)$ and if $\Delta$ with compact resolvant, then $\operatorname{deg}(\cdot)$ is also with compact resolvant.

In other words: $\sigma_{\text {ess }}(\operatorname{deg}(\cdot)) \neq \emptyset$ implies $\sigma_{\text {ess }}(\Delta) \neq \emptyset$

Moreover if $\alpha(\mathscr{G})>0$, we also have

## Corollary

We have:

$$
\inf \sigma_{\mathrm{ess}}(\Delta) \leq 2 \inf \sigma_{\mathrm{ess}}(\operatorname{deg}(\cdot)) \text { and } N_{\lambda}(\Delta) \geq N_{\lambda}(2 \operatorname{deg}(\cdot)),
$$

for all $\lambda \in[0, \infty) \backslash\left\{\inf \sigma_{\text {ess }}(\operatorname{deg}(\cdot))\right\}$.

In particular, if $0 \in \sigma_{\text {ess }}(\operatorname{deg}(\cdot))$, then $0 \in \sigma_{\text {ess }}(\Delta)$ and if $\Delta$ with compact resolvant, then $\operatorname{deg}(\cdot)$ is also with compact resolvant.

In other words: $\sigma_{\text {ess }}(\operatorname{deg}(\cdot)) \neq \emptyset$ implies $\sigma_{\text {ess }}(\Delta) \neq \emptyset$.

Moreover if $\alpha(\mathscr{G})>0$, we also have

In particular $\sigma_{\text {ess }}(\Delta)=\emptyset$ if and only if $\sigma_{\text {ess }}(\operatorname{deg}(\cdot))=\emptyset$.

## Corollary

We have:

$$
\inf \sigma_{\mathrm{ess}}(\Delta) \leq 2 \inf \sigma_{\mathrm{ess}}(\operatorname{deg}(\cdot)) \text { and } N_{\lambda}(\Delta) \geq N_{\lambda}(2 \operatorname{deg}(\cdot)),
$$

for all $\lambda \in[0, \infty) \backslash\left\{\inf \sigma_{\text {ess }}(\operatorname{deg}(\cdot))\right\}$.

In particular, if $0 \in \sigma_{\text {ess }}(\operatorname{deg}(\cdot))$, then $0 \in \sigma_{\text {ess }}(\Delta)$ and if $\Delta$ with compact resolvant, then $\operatorname{deg}(\cdot)$ is also with compact resolvant.

In other words: $\sigma_{\text {ess }}(\operatorname{deg}(\cdot)) \neq \emptyset$ implies $\sigma_{\text {ess }}(\Delta) \neq \emptyset$.

Moreover if $\alpha(\mathscr{G})>0$, we also have

$$
\inf \sigma_{\mathrm{ess}}(\Delta) \geq c \inf \sigma_{\mathrm{ess}}(\operatorname{deg}(\cdot)) \text { and } N_{\lambda}(\Delta) \leq N_{\lambda}(c \operatorname{deg}(\cdot))
$$

## Corollary

We have:

$$
\inf \sigma_{\mathrm{ess}}(\Delta) \leq 2 \inf \sigma_{\mathrm{ess}}(\operatorname{deg}(\cdot)) \text { and } N_{\lambda}(\Delta) \geq N_{\lambda}(2 \operatorname{deg}(\cdot)),
$$

for all $\lambda \in[0, \infty) \backslash\left\{\inf \sigma_{\text {ess }}(\operatorname{deg}(\cdot))\right\}$.

In particular, if $0 \in \sigma_{\text {ess }}(\operatorname{deg}(\cdot))$, then $0 \in \sigma_{\text {ess }}(\Delta)$ and if $\Delta$ with compact resolvant, then $\operatorname{deg}(\cdot)$ is also with compact resolvant.

In other words: $\sigma_{\text {ess }}(\operatorname{deg}(\cdot)) \neq \emptyset$ implies $\sigma_{\text {ess }}(\Delta) \neq \emptyset$.

Moreover if $\alpha(\mathscr{G})>0$, we also have

$$
\inf \sigma_{\mathrm{ess}}(\Delta) \geq c \inf \sigma_{\mathrm{ess}}(\operatorname{deg}(\cdot)) \text { and } N_{\lambda}(\Delta) \leq N_{\lambda}(c \operatorname{deg}(\cdot))
$$

In particular $\sigma_{\text {ess }}(\Delta)=\emptyset$ if and only if $\sigma_{\text {ess }}(\operatorname{deg}(\cdot))=\emptyset$.

Hardy inequality: For all $m: \mathscr{V} \rightarrow(0, \infty)$, we have:

$$
\left\langle f, V_{m}(\cdot) f\right\rangle \leq\langle f, \Delta f\rangle, \text { for all } f \in \mathcal{C}_{c}(\mathscr{V}),
$$

where

$$
V_{m}(x):=\operatorname{deg}(x)-W_{m}(x)
$$

and where

$$
W_{m}(x):=\sum_{y \sim x} \frac{m(y)}{m(x)}
$$

(Haeseler-Keller '11, Colin de Verdière-Torki Hamza-Truc '11)

The inequality is well-known in the continuous setting. It can be seen as an integrated version of Picone's identity (see for example Allegretto). It also appears in the work of Cattiaux-Guillin-Wang-Wu '09.

Hardy inequality: For all $m: \mathscr{V} \rightarrow(0, \infty)$, we have:

$$
\left\langle f, V_{m}(\cdot) f\right\rangle \leq\langle f, \Delta f\rangle, \text { for all } f \in \mathcal{C}_{c}(\mathscr{V}),
$$

where

$$
V_{m}(x):=\operatorname{deg}(x)-W_{m}(x)
$$

and where

$$
W_{m}(x):=\sum_{y \sim x} \frac{m(y)}{m(x)}
$$

(Haeseler-Keller '11, Colin de Verdière-Torki Hamza-Truc '11)

The inequality is well-known in the continuous setting. It can be seen as an integrated version of Picone's identity (see for example Allegretto). It also appears in the work of Cattiaux-Guillin-Wang-Wu '09.

Proof: Take $f \in \mathcal{C}_{C}(\mathscr{V})$,

$$
\begin{aligned}
\left\langle f, V_{m}(\cdot) f\right\rangle & =\sum_{x} \sum_{y} \mathscr{E}(x, y)\left(|f|^{2}(x)-\frac{m(y)}{m(x)}|f|^{2}(x)\right) \\
& =\sum_{x} \sum_{y} \mathscr{E}(x, y)\left(|f|^{2}(x)-\frac{1}{2}\left(\frac{m(y)}{m(x)}|f|^{2}(x)+\frac{m(x)}{m(y)}|f|^{2}(y)\right)\right) . \\
& \leq \sum_{x} \sum_{y} \mathscr{E}(x, y)\left(|f|^{2}(x)-\Re\left(\bar{f}(x) \sqrt{\frac{m(y)}{m(x)}} \sqrt{\frac{m(x)}{m(y)}} f(y)\right)\right) \\
& =\frac{1}{2} \sum_{x} \sum_{y} \mathscr{E}(x, y)|f(x)-f(y)|^{2}=\langle f, \Delta f\rangle .
\end{aligned}
$$

This is the announced result.

To recover the upper-bound, it is easy if the graph is bi-partite.

We rely on the Upside-Down-Lemma (Bonnefont, G, Keller '14) Lemma Let $\mathscr{G}:=(\%, \mathscr{E})$ be a graph. Assume there are $a \in(0,1), k \geq 0$ such that for all then for all $f \in \mathcal{C}_{C}(\mathscr{V})$, we also have

To recover the upper-bound, it is easy if the graph is bi-partite.

We rely on the Upside-Down-Lemma (Bonnefont, G, Keller '14)
Lemma
Let $\mathscr{G}:=(\mathscr{V}, \mathscr{E})$ be a graph. Assume there are $a \in(0,1), k \geq 0$ such that for all $f \in \mathcal{C}_{C}(\mathscr{V})$,

$$
(1-a)\langle f, \operatorname{deg}(\cdot) f\rangle-k\|f\|^{2} \leq\langle f, \Delta f\rangle,
$$

then for all $f \in \mathcal{C}_{C}(\mathscr{V})$, we also have

$$
\langle f, \Delta f\rangle \leq(1+a)\langle f, \operatorname{deg}(\cdot) f\rangle+k\|f\|^{2} .
$$

Proof: For all $f \in \mathcal{C}_{C}(\mathscr{V})$,

$$
\begin{aligned}
\langle f,(2 \operatorname{deg}(\cdot)-\Delta) f\rangle & \left.=\frac{1}{2} \sum_{x, y \in \mathscr{V}, x \sim y}\left(2|f(x)|^{2}+2|f(y)|^{2}\right)-|f(x)-f(y)|^{2}\right) \\
& =\frac{1}{2} \sum_{x, y, x \sim y}|f(x)+f(y)|^{2} \geq \frac{1}{2} \sum_{x, y, x \sim y} \| f(x)\left|-|f(y)|^{2}\right. \\
& =\langle | f|, \Delta| f| \rangle .
\end{aligned}
$$

Using the assumption gives:

$$
\begin{aligned}
\langle f, \Delta f\rangle-2\langle f, \operatorname{deg}(\cdot) f\rangle & \leq-\langle | f|, \Delta| f| \rangle \\
& \leq-(1-a)\langle | f|, \operatorname{deg}(\cdot)| f| \rangle+k\langle | f|,|f|\rangle \\
& =-(1-a)\langle f, \operatorname{deg}(\cdot) f\rangle+k\langle f, f\rangle,
\end{aligned}
$$

which yields the assertion.

Theorem (G, 2011)
Let $\mathscr{G}$ be a tree, then
a) for all $\varepsilon>0$, there is $C_{\varepsilon}>0$ such that:

$$
(1-\varepsilon)\langle f, \operatorname{deg}(\cdot) f\rangle-C_{\varepsilon}\|f\|^{2} \leq\langle f, \Delta f\rangle \leq(1+\varepsilon)\langle f, \operatorname{deg}(\cdot) f\rangle+C_{\varepsilon}\|f\|^{2}
$$

for all $f \in \mathcal{C}_{C}(\mathscr{V})$.
b) We have $\mathcal{D}\left(\Delta^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}(\cdot)^{1 / 2}\right)$. In particular,
c) In the last case, we have:
where $\lambda_{n}$ is the $n$-th eigenvalue (counted with multiplicity).

## Theorem (G, 2011)

Let $\mathscr{G}$ be a tree, then
a) for all $\varepsilon>0$, there is $C_{\varepsilon}>0$ such that:

$$
(1-\varepsilon)\langle f, \operatorname{deg}(\cdot) f\rangle-C_{\varepsilon}\|f\|^{2} \leq\langle f, \Delta f\rangle \leq(1+\varepsilon)\langle f, \operatorname{deg}(\cdot) f\rangle+C_{\varepsilon}\|f\|^{2}
$$

for all $f \in \mathcal{C}_{C}(\mathscr{V})$.
b) We have $\mathcal{D}\left(\Delta^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}(\cdot)^{1 / 2}\right)$. In particular,

$$
\sigma_{\text {ess }}(\Delta)=\emptyset \Longleftrightarrow \sigma_{\text {ess }}(\operatorname{deg}(\cdot))=\emptyset \Longleftrightarrow \lim _{|x| \rightarrow \infty} \operatorname{deg}(x)=\infty
$$

c) In the last case, we have:
where $\lambda_{n}$ is the $n$-th eigenvalue (counted with multiplicity).

## Theorem (G, 2011)

Let $\mathscr{G}$ be a tree, then
a) for all $\varepsilon>0$, there is $C_{\varepsilon}>0$ such that:

$$
(1-\varepsilon)\langle f, \operatorname{deg}(\cdot) f\rangle-C_{\varepsilon}\|f\|^{2} \leq\langle f, \Delta f\rangle \leq(1+\varepsilon)\langle f, \operatorname{deg}(\cdot) f\rangle+C_{\varepsilon}\|f\|^{2}
$$

for all $f \in \mathcal{C}_{C}(\mathscr{V})$.
b) We have $\mathcal{D}\left(\Delta^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}(\cdot)^{1 / 2}\right)$. In particular,

$$
\sigma_{\text {ess }}(\Delta)=\emptyset \Longleftrightarrow \sigma_{\text {ess }}(\operatorname{deg}(\cdot))=\emptyset \Longleftrightarrow \lim _{|x| \rightarrow \infty} \operatorname{deg}(x)=\infty
$$

c) In the last case, we have:

$$
\lambda_{n}(\Delta) \sim \lambda_{n}(\operatorname{deg}(\cdot)), \quad \text { for } n \rightarrow \infty
$$

where $\lambda_{n}$ is the $n$-th eigenvalue (counted with multiplicity).

Proof: Let $\eta>0$. Denoting by $\omega$ the origin of the tree. We set:

$$
m(\omega):=1 \text { and } m(x):=\eta m(\overleftarrow{x}) \mathrm{deg}^{-1 / 2}(x), \text { for all } x \in \mathscr{V} \backslash\{\omega\}
$$

We obtain

$$
\begin{aligned}
\frac{V_{m}(x)}{\operatorname{deg}(x)} & =1-\frac{1}{\operatorname{deg}(x)}\left(\frac{m(\overleftarrow{x})}{m(x)}+\sum_{y \rightsquigarrow x} \frac{m(y)}{m(x)}\right) \\
& =1-\frac{1}{\eta} \frac{1}{\operatorname{deg}^{1 / 2}(x)}-\frac{\eta}{\operatorname{deg}(x)} \sum_{y \rightsquigarrow x} \operatorname{deg}^{-1 / 2}(y) \\
& \geq 1-\eta-\frac{1}{\eta} \operatorname{deg}^{-1 / 2}(x)
\end{aligned}
$$

Proof: Let $\eta>0$. Denoting by $\omega$ the origin of the tree. We set:

$$
m(\omega):=1 \text { and } m(x):=\eta m(\overleftarrow{x}) \mathrm{deg}^{-1 / 2}(x), \text { for all } x \in \mathscr{V} \backslash\{\omega\}
$$

We obtain

$$
\begin{aligned}
\frac{V_{m}(x)}{\operatorname{deg}(x)} & =1-\frac{1}{\operatorname{deg}(x)}\left(\frac{m(\overleftarrow{x})}{m(x)}+\sum_{y \rightsquigarrow x} \frac{m(y)}{m(x)}\right) \\
& =1-\frac{1}{\eta} \frac{1}{\operatorname{deg}^{1 / 2}(x)}-\frac{\eta}{\operatorname{deg}(x)} \sum_{y \rightsquigarrow x} \operatorname{deg}^{-1 / 2}(y) \\
& \geq 1-\eta-\frac{1}{\eta} \operatorname{deg}^{-1 / 2}(x)
\end{aligned}
$$

For all $\eta>0$ there is $c_{\eta}>0$ such that $t^{1 / 2} \leq \eta t+c_{\eta}$, for all $t \in[0, \infty)$.

Proof: Let $\eta>0$. Denoting by $\omega$ the origin of the tree. We set:

$$
m(\omega):=1 \text { and } m(x):=\eta m(\overleftarrow{x}) \mathrm{deg}^{-1 / 2}(x), \text { for all } x \in \mathscr{V} \backslash\{\omega\}
$$

We obtain

$$
\begin{aligned}
\frac{V_{m}(x)}{\operatorname{deg}(x)} & =1-\frac{1}{\operatorname{deg}(x)}\left(\frac{m(\overleftarrow{x})}{m(x)}+\sum_{y \rightsquigarrow x} \frac{m(y)}{m(x)}\right) \\
& =1-\frac{1}{\eta} \frac{1}{\operatorname{deg}^{1 / 2}(x)}-\frac{\eta}{\operatorname{deg}(x)} \sum_{y \rightsquigarrow x} \operatorname{deg}^{-1 / 2}(y) \\
& \geq 1-\eta-\frac{1}{\eta} \operatorname{deg}^{-1 / 2}(x)
\end{aligned}
$$

For all $\eta>0$ there is $c_{\eta}>0$ such that $t^{1 / 2} \leq \eta t+c_{\eta}$, for all $t \in[0, \infty)$. Therefore, by the Hardy inequality for all $\varepsilon>0$, there is $c_{\varepsilon}>0$ such that:

$$
\begin{aligned}
\langle f, \Delta f\rangle & \geq\left\langle\operatorname{deg}^{1 / 2}(\cdot) f,\left(1-\eta-1 / \operatorname{deg}^{1 / 2}(\cdot) \eta\right) \operatorname{deg}^{1 / 2}(\cdot) f\right\rangle \\
& \geq(1-\varepsilon)\langle f, \operatorname{deg}(\cdot) f\rangle-c_{\varepsilon}\|f\|^{2}
\end{aligned}
$$

for all $f \in \mathcal{C}_{C}(\mathscr{V})$.

Therefore $\mathcal{D}\left(\Delta^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}^{1 / 2}(\cdot)\right)$ and

$$
\sigma_{\text {ess }}(\Delta)=\emptyset \Longleftrightarrow \sigma_{\text {ess }}(\operatorname{deg}(\cdot))=\emptyset \Longleftrightarrow \lim _{|x| \rightarrow \infty} \operatorname{deg}(x)=\infty .
$$

For the asymptotic of eigenvalues, we apply twice the min-max theorem to get:

$$
1-\varepsilon \leq \liminf _{N \rightarrow \infty} \frac{\lambda_{N}(\Delta)}{\lambda_{N}(\operatorname{deg}(\cdot))} \leq \limsup _{N \rightarrow \infty} \frac{\lambda_{N}(\Delta)}{\lambda_{N}(\operatorname{deg}(\cdot))} \leq 1+\varepsilon .
$$

By letting $\varepsilon$ go to 0 we conclude.

We say that $\mathscr{G}=(\mathscr{V}, \mathscr{E})$ is $k$-sparse if for all $\mathscr{W} \subset \mathscr{V}$

$$
2\left|\mathscr{E}_{\mathscr{C}_{\mathscr{W}}}\right| \leq k|\mathscr{W}|,
$$

where $\mathscr{G}_{\mathscr{W}}$ denotes the induced graph by $\mathscr{G}$ on $\mathscr{W}$.

- Trees are 1-sparse.
- Planar graphs are 3-sparse.
- A graph that can be embedded in a surface of genus $g \geq 1$ is $2 g+1$-sparse.

We say that $\mathscr{G}=(\mathscr{V}, \mathscr{E})$ is $k$-sparse if for all $\mathscr{W} \subset \mathscr{V}$

$$
2\left|\mathscr{E}_{\mathscr{C}_{\mathscr{W}}}\right| \leq k|\mathscr{W}|,
$$

where $\mathscr{G}_{\mathscr{W}}$ denotes the induced graph by $\mathscr{G}$ on $\mathscr{W}$.

## Examples:

- Trees are 1-sparse.
- Planar graphs are 3-sparse.
- A graph that can be embedded in a surface of genus $g \geq 1$ is $2 g+1$-sparse.

Theorem (Bonnefond, G., Keller '13)
If $\mathscr{G}$ is $k$-sparse, then
a) for all $\varepsilon>0$, we have:

$$
(1-\varepsilon)\langle f, \operatorname{deg}(\cdot) f\rangle-\frac{k}{\varepsilon}\|f\|^{2} \leq\langle f, \Delta f\rangle \leq(1+\varepsilon)\langle f, \operatorname{deg}(\cdot) f\rangle+\frac{k}{\varepsilon}\|f\|^{2},
$$

for all $f \in \mathcal{C}_{C}(\mathscr{V})$.
b) We have $\mathcal{D}\left(\Delta^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}(\cdot)^{1 / 2}\right)$. In particular,
c) In the last case, we have:
where $\lambda_{n}$ denotes the $n$-th eigenvalue (counted with multiplicity).

Theorem (Bonnefond, G., Keller '13)
If $\mathscr{G}$ is $k$-sparse, then
a) for all $\varepsilon>0$, we have:

$$
(1-\varepsilon)\langle f, \operatorname{deg}(\cdot) f\rangle-\frac{k}{\varepsilon}\|f\|^{2} \leq\langle f, \Delta f\rangle \leq(1+\varepsilon)\langle f, \operatorname{deg}(\cdot) f\rangle+\frac{k}{\varepsilon}\|f\|^{2}
$$

for all $f \in \mathcal{C}_{C}(\mathscr{V})$.
b) We have $\mathcal{D}\left(\Delta^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}(\cdot)^{1 / 2}\right)$. In particular,

$$
\sigma_{\text {ess }}(\Delta)=\emptyset \Longleftrightarrow \sigma_{\text {ess }}(\operatorname{deg}(\cdot))=\emptyset \Longleftrightarrow \lim _{|x| \rightarrow \infty} \operatorname{deg}(x)=\infty .
$$

c) In the last case, we have:
where $\lambda_{n}$ denotes the $n$-th eigenvalue (counted with multiplicity).

Theorem (Bonnefond, G., Keller '13)
If $\mathscr{G}$ is $k$-sparse, then
a) for all $\varepsilon>0$, we have:

$$
(1-\varepsilon)\langle f, \operatorname{deg}(\cdot) f\rangle-\frac{k}{\varepsilon}\|f\|^{2} \leq\langle f, \Delta f\rangle \leq(1+\varepsilon)\langle f, \operatorname{deg}(\cdot) f\rangle+\frac{k}{\varepsilon}\|f\|^{2}
$$

for all $f \in \mathcal{C}_{C}(\mathscr{V})$.
b) We have $\mathcal{D}\left(\Delta^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}(\cdot)^{1 / 2}\right)$. In particular,

$$
\sigma_{\text {ess }}(\Delta)=\emptyset \Longleftrightarrow \sigma_{\text {ess }}(\operatorname{deg}(\cdot))=\emptyset \Longleftrightarrow \lim _{|x| \rightarrow \infty} \operatorname{deg}(x)=\infty
$$

c) In the last case, we have:

$$
\lambda_{n}(\Delta) \sim \lambda_{n}(\operatorname{deg}(\cdot)), \quad \text { for } n \rightarrow \infty
$$

where $\lambda_{n}$ denotes the $n$-th eigenvalue (counted with multiplicity).

Proof: Let $f \in \mathcal{C}_{C}(\mathscr{V})$ be complex valued. Assume that

$$
\langle f, \operatorname{deg}(\cdot) f\rangle \geq k\|f\|^{2}
$$

Recalling

$$
\operatorname{deg}(\mathscr{W})=2\left|\mathscr{E}_{\mathscr{W}}\right|+|\partial \mathscr{W}| \quad \text { and } \quad\left\langle\mathbf{1}_{\mathscr{W}}, \Delta \mathbf{1}_{\mathscr{W}}\right\rangle=|\partial \mathscr{W}| .
$$

and set

$$
\Omega_{t}:=\left\{\left.x \in \mathscr{V}| | f(x)\right|^{2}>t\right\} .
$$

$$
\begin{aligned}
& 0 \leq\langle f,\operatorname{deg}(\cdot) f\rangle-k| | f \|^{2}=\int_{0}^{\infty}\left(\operatorname{deg}\left(\Omega_{t}\right)-k\left|\Omega_{t}\right|\right) d t \\
&=\int_{0}^{\infty}\left(2\left|\mathscr{E}_{\Omega_{t}}\right|+\left|\partial \Omega_{t}\right|-k\left|\Omega_{t}\right|\right) d t \leq \int_{0}^{\infty}\left|\partial \Omega_{t}\right| d t \\
&= \left.\left.\frac{1}{2} \sum_{x, y, x \sim y}| | f(x)\right|^{2}-|f(y)|^{2} \right\rvert\, \\
& \leq \frac{1}{2} \sum_{x, y, x \sim y}|(f(x)-f(y))(\overline{f(x)}+\overline{f(y)})| \\
& \leq \frac{1}{2}\left(\sum_{x, y, x \sim y}|f(x)-f(y)|^{2}\right)^{1 / 2} \\
& \quad \times\left(\sum_{x, y, x \sim y}|f(x)+f(y)|^{2}\right)^{1 / 2} \\
&=\langle f, \Delta f\rangle^{\frac{1}{2}}(2\langle f, \operatorname{deg}(\cdot) f\rangle-\langle f, \Delta f\rangle)^{\frac{1}{2}},
\end{aligned}
$$

Reordering the terms, yields

$$
\langle f, \Delta f\rangle^{2}-2\langle f, \operatorname{deg}(\cdot) f\rangle\langle f, \Delta f\rangle+(\langle f,(\operatorname{deg}(\cdot)-k) f\rangle)^{2} \leq 0
$$

Resolving the quadratic expression above gives,

$$
\langle f, \operatorname{deg}(\cdot) f\rangle-\sqrt{\delta} \leq\langle f, \Delta f\rangle \leq\langle f, \operatorname{deg}(\cdot) f\rangle+\sqrt{\delta}
$$

with

$$
\begin{aligned}
\delta & :=\langle f, \operatorname{deg}(\cdot) f\rangle^{2}-(\langle f,(\operatorname{deg}(\cdot)-k) f\rangle)^{2} \\
& =k\|f\|^{2}\langle f,(\operatorname{deg}(\cdot)-k) f\rangle \\
& \leq\left(\varepsilon\langle f, \operatorname{deg}(\cdot) f\rangle+k\left(\frac{1}{\varepsilon}-\varepsilon\right)\|f\|^{2}\right)^{2}
\end{aligned}
$$

for all $\varepsilon \in(0,1)$.

To go further we define :

Let $\mathscr{G}:=(\mathscr{V}, \mathscr{E})$ be a graph.

For given $a \geq 0$ and $k \geq 0$, we say that $\mathscr{G}$ is $(a, k)$-sparse if for any finite set $\mathscr{W} \subseteq \mathscr{V}$ the induced subgraph $\mathscr{G}_{\mathscr{W}}:=(\mathscr{W}, \mathscr{E} \mathscr{W})$ satisfies

$$
2\left|\mathscr{E}_{\mathscr{W}}\right| \leq k|\mathscr{W}|+a|\partial \mathscr{W}| .
$$

## Theorem

Let $\mathscr{G}:=(\mathscr{V}, \mathscr{E})$ be a graph. The following assertions are equivalent:
(i) There are $a, k \geq 0$ such that $(\mathscr{G}, q)$ is $(a, k)$-sparse.
(ii) There are $\tilde{a} \in(0,1)$ and $\tilde{k} \geq 0$ such that on $\mathcal{C}_{c}(\mathscr{V})$

$$
(1-\tilde{a}) \operatorname{deg}(\cdot)-\tilde{k} \leq \Delta \leq(1+\tilde{a}) \operatorname{deg}(\cdot)+\tilde{k} .
$$

(iii) There are $\tilde{a} \in(0,1)$ and $\tilde{k} \geq 0$ such that on $\mathcal{C}_{c}(\mathscr{V})$

$$
(1-\tilde{a}) \operatorname{deg}(\cdot)-\tilde{k} \leq \Delta
$$

(iv) $\mathcal{D}\left(\Delta^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}(\cdot)^{1 / 2}\right)$.

Furthermore, $\Delta$ has purely discrete spectrum if and only if

$$
\liminf _{|x| \rightarrow \infty} \operatorname{deg}(x)=\infty
$$

In this case, we obtain

$$
1-\tilde{a} \leq \liminf _{n \rightarrow \infty} \frac{\lambda_{n}(\Delta)}{\lambda_{n}(\operatorname{deg}(\cdot))} \leq \limsup _{n \rightarrow \infty} \frac{\lambda_{n}(\Delta)}{\lambda_{n}(\operatorname{deg}(\cdot))} \leq 1+\tilde{a} .
$$

- The theory works in the same way with weighted graphs.


## - If the inequality holds true for the Laplacian then it holds also true for the magnetic

 one.- The converse is an open problem.
- The theory works in the same way with weighted graphs.
- If the inequality holds true for the Laplacian then it holds also true for the magnetic one.
- The converse is an open problem.
- The theory works in the same way with weighted graphs.
- If the inequality holds true for the Laplacian then it holds also true for the magnetic one.
- The converse is an open problem.

New aim: Find a magnetic effect which would be specific for

- the asymptotic of eigenvalues
- The form domain

Idea

- Maimic the works of G.-Mororianu'08 and Morame-Truc '09 where one considers manifolds with cups which are "thin at infinity"

New aim: Find a magnetic effect which would be specific for

- the asymptotic of eigenvalues
- The form domain

Idea :

- Mimic the works of G.-Mororianu '08 and Morame-Truc '09 where one considers manifolds with cups which are "thin at infinity"

Let $\mathscr{V}$ be a countable set and let $\mathscr{E}:=\mathscr{V} \times \mathscr{V} \rightarrow[0, \infty)$ be such that

$$
\mathscr{E}(x, y)=\mathscr{E}(y, x), \quad \text { for all } x, y \in \mathscr{V} .
$$

Let $m: \mathscr{V} \rightarrow(0, \infty)$. We say that $\mathscr{G}:=(\mathscr{V}, \mathscr{E}, m)$ is a weighted non-oriented graph with edges $\mathscr{E}$, vertices $\mathscr{V}$, and weight $m$.

We say that $x, y \in \mathscr{V}$ are neighbors is $\mathscr{E}(x, y)>0$

The weighted degree of $x \in \mathscr{V}$ is

We work on $\ell^{2}(\mathscr{V} ; \mathbb{C})$, endowed with $\langle f, g\rangle=\sum_{x \in \mathscr{V}} m(x) \overline{f(x)} g(x)$.

Let $\mathscr{V}$ be a countable set and let $\mathscr{E}:=\mathscr{V} \times \mathscr{V} \rightarrow[0, \infty)$ be such that

$$
\mathscr{E}(x, y)=\mathscr{E}(y, x), \quad \text { for all } x, y \in \mathscr{V}
$$

Let $m: \mathscr{V} \rightarrow(0, \infty)$. We say that $\mathscr{G}:=(\mathscr{V}, \mathscr{E}, m)$ is a weighted non-oriented graph with edges $\mathscr{E}$, vertices $\mathscr{V}$, and weight $m$.

We say that $x, y \in \mathscr{V}$ are neighbors is $\mathscr{E}(x, y)>0$.

The weighted degree of $x \in \mathscr{V}$ is :

$$
\operatorname{deg}(x):=\frac{1}{m(x)} \sum_{y \in \mathscr{V}} \mathscr{E}(x, y)
$$

We work on $\ell^{2}(\mathscr{V} ; \mathbb{C})$, endowed with $\langle f, g\rangle=\sum_{x \in \mathscr{V}} m(x) \overline{f(x)} g(x)$.

Let $\theta:=\mathscr{V} \times \mathscr{V} \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$ such that

$$
\theta(x, y)=-\theta(y, x), \quad \text { for all } x, y \in \mathscr{V}
$$

The magnetic Laplacian is given by:

$$
\Delta_{\theta} f(x):=\frac{1}{m(x)} \sum_{y \in \mathscr{V}} \mathscr{E}(x, y) e^{\mathrm{i} \theta(x, y)}(f(x)-f(y))
$$

It is associated to the magnetic potential $\theta$.

We still have:

Let $\theta:=\mathscr{V} \times \mathscr{V} \rightarrow \mathbb{R} / 2 \pi \mathbb{Z}$ such that

$$
\theta(x, y)=-\theta(y, x), \quad \text { for all } x, y \in \mathscr{V}
$$

The magnetic Laplacian is given by:

$$
\Delta_{\theta} f(x):=\frac{1}{m(x)} \sum_{y \in \mathscr{V}} \mathscr{E}(x, y) e^{\mathrm{i} \theta(x, y)}(f(x)-f(y))
$$

It is associated to the magnetic potential $\theta$.

We still have:

$$
0 \leq\left\langle f, \Delta_{\theta} f\right\rangle \leq 2\langle f, \operatorname{deg}(\cdot) f\rangle
$$

for all $f \in \mathcal{C}_{C}(\mathscr{V})$.


A cusp-like representation of $\mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$ :
The magnetic field traps the particle by spinning it, whereas its absence lets the particle diffuse.

Theorem (G., Truc '15)
Let $a \geq 1$. There exist a graph $\mathscr{G}:=(\mathscr{E}, \mathscr{V}, m)$, a magnetic potential $\theta$, a constant $\nu>0$ such that for all $\kappa \in \mathbb{R}$

$$
\sigma_{\mathrm{ess}}\left(\Delta_{\kappa \theta}\right)=\emptyset \Leftrightarrow \mathcal{D}\left(\Delta_{\kappa \theta}^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}^{1 / 2}(\cdot)\right) \Leftrightarrow \kappa \notin \mathbb{R} / \nu \mathbb{Z} .
$$

Moreover:
) When к $\notin \mathbb{R} / \nu$ Z. we have:
where $N_{\lambda}(H):=\operatorname{dim} \operatorname{Ran} 1_{]-\infty, \lambda]}(H)$ for a self-adjoint operator $H$

## Theorem (G., Truc '15)

Let $a \geq 1$. There exist a graph $\mathscr{G}:=(\mathscr{E}, \mathscr{V}, m)$, a magnetic potential $\theta$, a constant $\nu>0$ such that for all $\kappa \in \mathbb{R}$

$$
\sigma_{\mathrm{ess}}\left(\Delta_{\kappa \theta}\right)=\emptyset \Leftrightarrow \mathcal{D}\left(\Delta_{\kappa \theta}^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}^{1 / 2}(\cdot)\right) \Leftrightarrow \kappa \notin \mathbb{R} / \nu \mathbb{Z} \text {. }
$$

Moreover:

1) When $\kappa \notin \mathbb{R} / \nu \mathbb{Z}$, we have:

$$
\lim _{\lambda \rightarrow \infty} \frac{N_{\lambda}\left(\Delta_{\kappa \theta}\right)}{N_{\lambda}(\operatorname{deg}(\cdot))}=a
$$

where $N_{\lambda}(H):=\operatorname{dim} \operatorname{Ran} 1_{]-\infty, \lambda]}(H)$ for a self-adjoint operator $H$.

Theorem (G., Truc '15)
Let $n \geq 3$ be an integer. There exist a graph $\mathscr{G}:=(\mathscr{E}, \mathscr{V}, m)$, a magnetic potential $\theta$, a constant $\nu>0$ such that for all $\kappa \in \mathbb{R}$

$$
\sigma_{\mathrm{ess}}\left(\Delta_{\kappa \theta}\right)=\emptyset \Leftrightarrow \mathcal{D}\left(\Delta_{\kappa \theta}^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}^{1 / 2}(\cdot)\right) \Leftrightarrow \kappa \notin \mathbb{R} / \nu \mathbb{Z} .
$$

## Moreover:

When \& a R/vZ, we have:
2) When $\kappa \in \mathbb{R} / \nu \mathbb{Z}$, the absolutely continuous part of the $\Delta_{\kappa \theta}$ is
with multiplicity 1 and

where $P_{\mathrm{ac}, \kappa}$ denotes the projection onto the a.c. part of $\Delta_{\kappa \theta}$.

Theorem (G., Truc '15)
Let $n \geq 3$ be an integer. There exist a graph $\mathscr{G}:=(\mathscr{E}, \mathscr{V}, m)$, a magnetic potential $\theta$, a constant $\nu>0$ such that for all $\kappa \in \mathbb{R}$

$$
\sigma_{\mathrm{ess}}\left(\Delta_{\kappa \theta}\right)=\emptyset \Leftrightarrow \mathcal{D}\left(\Delta_{\kappa \theta}^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}^{1 / 2}(\cdot)\right) \Leftrightarrow \kappa \notin \mathbb{R} / \nu \mathbb{Z}
$$

Moreover:

1) When $\kappa \notin \mathbb{R} / \nu \mathbb{Z}$, we have:

$$
\lim _{\lambda \rightarrow \infty} \frac{N_{\lambda}\left(\Delta_{\kappa \theta}\right)}{N_{\lambda}(\operatorname{deg}(\cdot))}=1
$$

2) When $\kappa \in \mathbb{R} / \nu \mathbb{Z}$, the absolutely continuous part of the $\Delta_{\kappa \theta}$ is
with multiplicity 1 and


## Theorem (G., Truc '15)

Let $n \geq 3$ be an integer. There exist a graph $\mathscr{G}:=(\mathscr{E}, \mathscr{V}, m)$, a magnetic potential $\theta$, a constant $\nu>0$ such that for all $\kappa \in \mathbb{R}$

$$
\sigma_{\mathrm{ess}}\left(\Delta_{\kappa \theta}\right)=\emptyset \Leftrightarrow \mathcal{D}\left(\Delta_{\kappa \theta}^{1 / 2}\right)=\mathcal{D}\left(\operatorname{deg}^{1 / 2}(\cdot)\right) \Leftrightarrow \kappa \notin \mathbb{R} / \nu \mathbb{Z} .
$$

Moreover:

1) When $\kappa \notin \mathbb{R} / \nu \mathbb{Z}$, we have:

$$
\lim _{\lambda \rightarrow \infty} \frac{N_{\lambda}\left(\Delta_{\kappa \theta}\right)}{N_{\lambda}(\operatorname{deg}(\cdot))}=1
$$

2) When $\kappa \in \mathbb{R} / \nu \mathbb{Z}$, the absolutely continuous part of the $\Delta_{\kappa \theta}$ is

$$
\sigma_{\mathrm{ac}}\left(\Delta_{\kappa \theta}\right)=\left[e^{1 / 2}+e^{-1 / 2}-2, e^{1 / 2}+e^{-1 / 2}+2\right],
$$

with multiplicity 1 and

$$
\lim _{\lambda \rightarrow \infty} \frac{N_{\lambda}\left(\Delta_{\kappa \theta} P_{\mathrm{ac}, \kappa}^{\perp}\right)}{N_{\lambda}(\operatorname{deg}(\cdot))}=\frac{n-1}{n},
$$

where $P_{\mathrm{ac}, \kappa}$ denotes the projection onto the a.c. part of $\Delta_{\kappa \theta}$.

- Compared with the first point, the constant $(n-1) / n$ that appears in the second point encodes the fact that a part of the wave packet diffuses.
- Switching on the magnetic field is not a gentle perturbation because the form domain of the operator is changed.

Thank you for your attention
and have a great conference diner


