On classical and quantum scattering for field equations on the (De Sitter) Kerr metric

Dietrich Häfner
Institut Fourier, Université Grenoble Alpes

Spectral theory and mathematical physics, Cergy Pontoise, June 232016

1．1 Black holes

(\mathcal{M}, g) lorentzian manifold， $\operatorname{sign}(g)=(+,-,-,-)$ ．Einstein equations （1915）：

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R+\wedge g_{\mu \nu}=\kappa T_{\mu \nu} .
$$

－$R_{\mu \nu}$ ：Ricci curvature，
－R ：scalar curvature，
－g ：metric，
－\wedge ：cosmological constant，
－$T_{\mu \nu}$ ：energy momentum tensor，
－$\kappa=\frac{8 \pi G}{c^{4}}$ ：Einstein constant．
－$T_{\mu \nu}=0$ ：Einstein vacuum equations．

The Schwarzschild solution

Schwarzschild (1916). $\mathcal{M}=\mathbb{R}_{t} \times \mathbb{R}_{r>2 M} \times S_{\omega}^{2}$
$g=N d t^{2}-N^{-1} d r^{2}-r^{2} d \omega^{2}$
$N=\left(1-\frac{2 M}{r}\right)(M$: mass of the black hole $)$.
$r=0$: curvature singularity, $r=2 \mathrm{M}$: coordinate singularity.
Regge-Wheeler coordinate : $\frac{d x}{d r}=N^{-1}, x \pm t=$ const. along spherically symmetric null geodescics.

$$
\begin{aligned}
& v=t+x, w=t-x, \quad g=N d v d w-r^{2} d w^{2} . \\
& v^{\prime}=\exp \left(\frac{v}{4 M}\right), w^{\prime}=-\exp \left(-\frac{w}{4 M}\right), t^{\prime}=\frac{v^{\prime}+w^{\prime}}{2}, x^{\prime}=\frac{v^{\prime}-w^{\prime}}{2} \\
& g=\frac{32 M^{2}}{r} \exp \left(\frac{-r}{2 M}\right)\left(\left(d t^{\prime}\right)^{2}-\left(d x^{\prime}\right)^{2}\right)-r^{2}\left(t^{\prime}, x^{\prime}\right) d \sigma^{2} .
\end{aligned}
$$

The (De Sitter) Kerr metric

De Sitter Kerr metric in Boyer-Lindquist coordinates
$\mathcal{M}_{B H}=\mathbb{R}_{t} \times \mathbb{R}_{r} \times S_{\omega}^{2}$, with spacetime metric

$$
\begin{aligned}
g & =\frac{\Delta_{r}-a^{2} \sin ^{2} \theta \Delta_{\theta}}{\lambda^{2} \rho^{2}} d t^{2}+\frac{2 a \sin ^{2} \theta\left(\left(r^{2}+a^{2}\right)^{2} \Delta_{\theta}-a^{2} \sin ^{2} \theta \Delta_{r}\right)}{\lambda^{2} \rho^{2}} d t d \varphi \\
& -\frac{\rho^{2}}{\Delta_{r}} d r^{2}-\frac{\rho^{2}}{\Delta_{\theta}} d \theta^{2}-\frac{\sin ^{2} \theta \sigma^{2}}{\lambda^{2} \rho^{2}} d \varphi^{2} \\
\rho^{2} & =r^{2}+a^{2} \cos ^{2} \theta, \quad \Delta_{r}=\left(1-\frac{\Lambda}{3} r^{2}\right)\left(r^{2}+a^{2}\right)-2 M r \\
\Delta_{\theta} & =1+\frac{1}{3} \Lambda a^{2} \cos ^{2} \theta, \sigma^{2}=\left(r^{2}+a^{2}\right)^{2} \Delta_{\theta}-a^{2} \Delta_{r} \sin ^{2} \theta, \lambda=1+\frac{1}{3} \Lambda a^{2}
\end{aligned}
$$

$\Lambda \geq 0$: cosmological constant ($\Lambda=0$: Kerr), $M>0$: masse, a : angular momentum per unit masse ($|a|<M$).

- $\rho^{2}=0$ is a curvature singularity, $\Delta_{r}=0$ are coordinate singularities. $\Delta_{r}>0$ on some open interval $r_{-}<r<r_{+} . r=r_{-}$: black hole horizon, $r=r_{+}$cosmological horizon.
- ∂_{φ} and ∂_{t} are Killing. There exist $r_{1}(\theta), r_{2}(\theta)$ s. t. ∂_{t} is
- timelike on $\left\{(t, r, \theta, \varphi): r_{1}(\theta)<r<r_{2}(\theta)\right\}$,
- spacelike on

$$
\left\{(t, r, \theta, \varphi): r_{-}<r<r_{1}(\theta)\right\} \cup\left\{\left(t, r, \theta, \varphi: r_{2}(\theta)<r<r_{+}\right\}=: \mathcal{E}_{-} \cup \mathcal{E}_{+}\right.
$$ The regions $\mathcal{E}_{-}, \mathcal{E}_{+}$are called ergospheres.

The Penrose diagram $(\Lambda=0)$

- Kerr-star coordinates :

$$
t^{*}=t+x, r, \theta, \varphi^{*}=\varphi+\Lambda(r), \frac{d x}{d r}=\frac{r^{2}+a^{2}}{\Delta}, \frac{d \Lambda(r)}{d r}=\frac{a}{\Delta}
$$

Along incoming principal null geodesics : $\dot{t}^{*}=\dot{\theta}=\dot{\varphi}^{*}=0, \dot{r}=-1$.

- Form of the metric in Kerr-star coordinates : $g=g_{t t} d t^{* 2}+2 g_{t \varphi} d t^{*} d \varphi^{*}+g_{\varphi \varphi} d \varphi^{* 2}+g_{\theta \theta} d \theta^{2}-2 d t^{*} d r+2 a \sin ^{2} d \varphi^{*} d r$.
- Future event horizon : $\mathfrak{H}^{+}:=\mathbb{R}_{t^{*}} \times\left\{r=r_{-}\right\} \times S_{\theta, \varphi}^{2}$
- The construction of the past event horizon \mathfrak{H}^{-}is based on outgoing principal null geodesics (star-Kerr coordinates). Similar constructions for future and past null infinities \mathfrak{J}^{+}and \mathcal{J}^{-}using the conformally rescaled metric $\hat{g}=\frac{1}{r^{2}} g$.

1.2 The Dirac and Klein-Gordon equation on the (De Sitter) Kerr metric
The Klein-Gordon equation We now consider the unitary transform

$$
U: \begin{aligned}
L^{2}\left(\mathcal{M} ; \frac{\sigma^{2}}{\Delta_{r} \Delta_{\theta}} d r d \omega\right) & \rightarrow L^{2}(\mathcal{M} ; d r d \omega) \\
\psi & \mapsto \frac{\sigma}{\sqrt{\Delta_{r} \Delta_{\theta}}} \psi
\end{aligned}
$$

If ψ fulfills $\left(\square_{g}+m^{2}\right) \psi=0$, then $u=U \psi$ fulfills

$$
\begin{equation*}
\left(\partial_{t}^{2}-2 i k \partial_{t}+h\right) u=0 . \tag{1}
\end{equation*}
$$

with

$$
\begin{aligned}
k & =\frac{a\left(\Delta_{r}-\left(r^{2}+a^{2}\right) \Delta_{\theta}\right)}{\sigma^{2}} D_{\varphi}, \\
h & =-\frac{\left(\Delta_{r}-a^{2} \sin ^{2} \theta \Delta_{\theta}\right)}{\sin ^{2} \theta \sigma^{2}} \partial_{\varphi}^{2}-\frac{\sqrt{\Delta_{r} \Delta_{\theta}}}{\lambda \sigma} \partial_{r} \Delta_{r} \partial_{r} \frac{\sqrt{\Delta_{r} \Delta_{\theta}}}{\lambda \sigma} \\
& -\frac{\sqrt{\Delta_{r} \Delta_{\theta}}}{\lambda \sin \theta \sigma} \partial_{\theta} \sin \theta \Delta_{\theta} \partial_{\theta} \frac{\sqrt{\Delta_{r} \Delta_{\theta}}}{\lambda \sigma}+\frac{\rho^{2} \Delta_{r} \Delta_{\theta}}{\lambda^{2} \sigma^{2}} m^{2} .
\end{aligned}
$$

h is not positive inside the ergospheres. This entails that the natural conserved quantity

$$
\tilde{\mathcal{E}}(u)=\left\|\partial_{t} u\right\|^{2}+(h u \mid u)
$$

is not positive \rightarrow superradiance.

Dirac equation

The situation is easier for the Dirac equation! Weyl equation :

$$
\nabla_{A^{\prime}}^{A} \phi_{A}=0
$$

Conserved current on general globally hyperbolic spacetimes

$$
V^{a}=\phi^{A} \bar{\phi}^{A^{\prime}}, C(t)=\frac{1}{\sqrt{2}} \int_{\Sigma_{t}} V_{a} T^{a} d \sigma_{\Sigma_{t}}=\text { const. }
$$

T^{a} : normal to $\Sigma_{t}, \mathcal{M}=\bigcup_{t} \Sigma_{t}$ foliation of the spacetime.

- Newman-Penrose tetrad $I^{a}, n^{a}, m^{a}, \bar{m}^{a}$:
$l_{a} I^{a}=n_{a} n^{a}=m_{a} m^{a}=l_{a} m^{a}=n_{a} m^{a}=0$.
- Normalization $l_{a} n^{a}=1, m_{a} \bar{m}^{a}=-1$
- I^{a}, n^{a} : Scattering directions.
- Spin frame $o^{A} \bar{o}^{A^{\prime}}=l^{a}, \iota^{A} \bar{\iota}^{A^{\prime}}=n^{a}, o^{A} \bar{\iota}^{A^{\prime}}=m^{a}$

$$
\iota^{A} \bar{O}^{A^{\prime}}=\bar{m}^{a}, O_{A} \iota^{A}=1
$$

- Components in the spin frame : $\phi_{0}=\phi_{A} O^{A}, \phi_{1}=\phi_{A} \iota^{A}$
- Weyl equation :

$$
\left\{\begin{array}{c}
n^{a} \partial_{a} \phi_{0}-m^{a} \partial_{a} \phi_{1}+(\mu-\gamma) \phi_{0}+(\tau-\beta) \phi_{1}=0 \\
l^{a} \partial_{a} \phi_{1}-\bar{m}^{a} \partial_{a} \phi_{0}+(\alpha-\pi) \phi_{0}+(\epsilon-\tilde{\rho}) \phi_{1}=0
\end{array}\right.
$$

Some aspects of the study of field equations on the（De Sitter） Kerr metric
－Superradiance．Exists for entire spin equations（Klein－Gordon， Maxwell），no superradiance for half integer spin equations（Dirac， Rarita Schwinger）．

```
* Local geometry. Trapping. Toy model for Schwarzschild
(\partialt}\mp@subsup{\partial}{t}{2}+P)u=0,P=-\mp@subsup{\partial}{x}{2}-V\mp@subsup{\Delta}{\mp@subsup{S}{}{2}}{}
    V has a non degenerate maximum at r = 3NM (photon sphere).
    h-2}=I(I+1)\mathrm{ where I(I+1) are the eigenvalues of }-\mp@subsup{\Delta}{\mp@subsup{S}{}{2}}{}\mathrm{ is a good
    semiclassical parameter. Similar trapping in (De Sitter) Kerr.
    Normally hyperbolic trapping.
* Geometry at infinity. Schwarzschild. Reinterpretation of P as a
perturbation of the Laplacian on a riemannian manifold with two
ends
    * }\Lambda=0\mathrm{ : one asymptotically euclidean end (corresponding to infinity) and
    one asymptotically hyperbolic end (corresponding to the black hole
    horizon)
    - }\Lambda>0\mathrm{ : two asymptotically hyperbolic ends.
Consequence : the study of the low frequency behavior is easier in
the De Sitter case (case of positive cosmological constant).
```

Some aspects of the study of field equations on the (De Sitter) Kerr metric

- Superradiance. Exists for entire spin equations (Klein-Gordon, Maxwell), no superradiance for half integer spin equations (Dirac, Rarita Schwinger).
- Local geometry. Trapping. Toy model for Schwarzschild

$$
\left(\partial_{t}^{2}+P\right) u=0, P=-\partial_{x}^{2}-V \Delta_{S^{2}}
$$

V has a non degenerate maximum at $r=3 M$ (photon sphere). $h^{-2}=I(I+1)$ where $I(I+1)$ are the eigenvalues of $-\Delta_{S^{2}}$ is a good semiclassical parameter. Similar trapping in (De Sitter) Kerr. Normally hyperbolic trapping.

Some aspects of the study of field equations on the (De Sitter) Kerr metric

- Superradiance. Exists for entire spin equations (Klein-Gordon, Maxwell), no superradiance for half integer spin equations (Dirac, Rarita Schwinger).
- Local geometry. Trapping. Toy model for Schwarzschild

$$
\left(\partial_{t}^{2}+P\right) u=0, P=-\partial_{x}^{2}-V \Delta_{S^{2}}
$$

V has a non degenerate maximum at $r=3 M$ (photon sphere). $h^{-2}=I(I+1)$ where $I(I+1)$ are the eigenvalues of $-\Delta_{S^{2}}$ is a good semiclassical parameter. Similar trapping in (De Sitter) Kerr. Normally hyperbolic trapping.

- Geometry at infinity. Schwarzschild. Reinterpretation of P as a perturbation of the Laplacian on a riemannian manifold with two ends :
- $\Lambda=0$: one asymptotically euclidean end (corresponding to infinity) and one asymptotically hyperbolic end (corresponding to the black hole horizon).
- $\Lambda>0$: two asymptotically hyperbolic ends.

Consequence : the study of the low frequency behavior is easier in the De Sitter case (case of positive cosmological constant).

2 Asymptotic completeness for the Klein-Gordon equation on the De Sitter Kerr metric (with C. Gérard and V. Georgescu)
2.1 : 3+1 decomposition, energies, Killing fields Let $v=e^{-i k t} u$. Then u is solution of (1) if and only if v is solution of

$$
\left(\partial_{t}^{2}+h(t)\right) v=0, \quad h(t)=e^{-i k t} h_{0} e^{i k t}, \quad h_{0}=h+k^{2} \geq 0
$$

Natural energy :

$$
\left\|\partial_{t} v\right\|^{2}+(h(t) v \mid v)
$$

Rewriting for u :

$$
\dot{\mathcal{E}}(u)=\left\|\left(\partial_{t}-i k\right) u\right\|^{2}+\left(h_{0} u \mid u\right)
$$

This energy is positive, but may grow in time \rightarrow superradiance.

Remark

$k=\Omega D_{\varphi}$ and Ω has finite limits $\Omega_{-/+}$when $r \rightarrow r_{\mp}$. These limits are called angular velocities of the horizons. The Killing fields $\partial_{t}-\Omega_{-/+} \partial_{\varphi}$ on the De Sitter Kerr metric are timelike close to the black hole (-) resp. cosmological (+) horizon. Working with these Killing fields rather than with ∂_{t} leads to the conserved energies :

$$
\tilde{\mathcal{E}}_{-/+}(u)=\left\|\left(\partial_{t}-\Omega_{-/+} \partial_{\varphi}\right) u\right\|^{2}+\left(h_{0}-\left(k-\Omega_{-/+} D_{\varphi}\right)^{2} u \mid u\right) .
$$

Note that in the limit $k \rightarrow \Omega_{-/+} D_{\varphi}$ the expressions of $\dot{\mathcal{E}}(u)$ and $\tilde{\mathcal{E}}_{-/+}(u)$ coincide.

2.2 The abstract equation

\mathcal{H} Hilbert space. h, k selfadjoint, $k \in \mathcal{B}(\mathcal{H})$.

$$
\left\{\begin{align*}
\left(\partial_{t}^{2}-2 i k \partial_{t}+h\right) u & =0 \tag{2}\\
\left.u\right|_{t=0} & =u_{0} \\
\left.\partial_{t} u\right|_{t=0} & =u_{1}
\end{align*}\right.
$$

Hyperbolic equation

$$
\begin{equation*}
h_{0}:=h+k^{2} \geq 0 \tag{A1}
\end{equation*}
$$

Formally $u=e^{i z t} v$ solution if and only if

$$
p(z) v=0
$$

with $p(z)=h_{0}-(k-z)^{2}=h+z(2 k-z), z \in \mathbb{C} . p(z)$ is called the quadratic pencil.

Conserved quantities

$$
\langle u \mid u\rangle_{\ell}:=\left\|u_{1}-\ell u_{0}\right\|^{2}+\left(p(\ell) u_{0} \mid u_{0}\right)
$$

where $p(\ell)=h_{0}-(k-\ell)^{2}$. Conserved by the evolution, but in general not positive definite, because none of the operators $p(\ell)$ is in general positive.

Spaces and operators

\mathcal{H}^{i} : scale of Sobolev spaces associated to h_{0}.

$$
\begin{equation*}
0 \notin \sigma_{p p}\left(h_{0}\right) ; h_{0}^{1 / 2} k h_{0}^{-1 / 2} \in \mathcal{B}(\mathcal{H}) \tag{A2}
\end{equation*}
$$

Homogeneous energy spaces

$$
\dot{\mathcal{E}}=\Phi(k) h_{0}^{-1 / 2} \mathcal{H} \oplus \mathcal{H}, \quad \Phi(k)=\left(\begin{array}{ll}
\mathbb{1} & 0 \\
k & \mathbb{1}
\end{array}\right) .
$$

where $\dot{\mathcal{E}}$ is equipped with the norm $\left\|\left(u_{0}, u_{1}\right)\right\|_{\dot{\mathcal{E}}}^{2}=\left\|u_{1}-k u_{0}\right\|^{2}+\left(h_{0} u_{0} \mid u_{0}\right)$. Klein Gordon operator

$$
\begin{aligned}
\psi & =\left(u, \frac{1}{i} \partial_{t} u\right), \quad\left(\partial_{t}-i H\right) \psi=0, \quad H=\left(\begin{array}{cc}
0 & \mathbb{1} \\
h & 2 k
\end{array}\right) \\
(H-z)^{-1} & =p^{-1}(z)\left(\begin{array}{cc}
z-2 k & \mathbb{1} \\
h & z
\end{array}\right)
\end{aligned}
$$

We note \dot{H} the Klein-Gordon operator on the homogeneous energy space.

2.3 Results in the De Sitter Kerr case

Uniform boundedness of the evolution

$$
\begin{equation*}
\mathcal{H}^{n}=\left\{u \in L^{2}\left(\mathbb{R} \times S^{2}\right):\left(D_{\varphi}-n\right) u=0\right\}, n \in \mathbb{Z} . \tag{3}
\end{equation*}
$$

We construct the homogeneous energy space $\dot{\mathcal{E}}^{n}$ as well as the Klein-Gordon operator \dot{H}^{n} as in Sect. 3.2.

Theorem
There exists $a_{0}>0$ such that for $|a|<a_{0}$ the following holds: for all $n \in \mathbb{Z}$, there exists $C_{n}>0$ such that

$$
\begin{equation*}
\left\|e^{-i t \dot{H}^{n}} u\right\|_{\dot{\mathcal{E}}^{n}} \leq C_{n}\|u\|_{\dot{\mathcal{E}}^{n}}, u \in \dot{\mathcal{E}}^{n}, t \in \mathbb{R} . \tag{4}
\end{equation*}
$$

Remark

1. Note that for $n=0$ the Hamiltonian $\dot{H}^{n}=\dot{H}^{0}$ is selfadjoint, therefore the only issue is $n \neq 0$.
2. Different from uniform boundedness on Cauchy surfaces crossing the horizon.

Asymptotic dynamics

$x \pm t=$ const. along principal null geodesics. Asymptotic equations:

$$
\begin{array}{r}
\left(\partial_{t}^{2}-2 \Omega_{-/+} \partial_{\varphi} \partial_{t}+h_{-/+}\right) u_{-/+}=0 \tag{5}\\
h_{-/+}=\Omega_{-/+}^{2} \partial_{\varphi}^{2}-\partial_{x}^{2}
\end{array}
$$

The conserved quantities:

$$
\begin{aligned}
& \left\|\left(\partial_{t}-i \Omega_{-/+} D_{\varphi}\right) u_{-/+}\right\|^{2}+\left(\left(h_{-/+}-\Omega_{-/+}^{2} \partial_{\varphi}^{2}\right) u_{-/+} \mid u_{-/+}\right) \\
& \quad=\left\|\left(\partial_{t}-i \Omega_{-/+} D_{\varphi}\right) u_{-/+}\right\|^{2}+\left(-\partial_{x}^{2} u_{-/+} \mid u_{-/+}\right)
\end{aligned}
$$

are positive. Let $\ell_{-/+}=\Omega_{-/+} n$. Also let $i_{-/+} \in C^{\infty}(\mathbb{R}), i_{-}=0$ in a neighborhood of $\infty, i_{+}=0$ in a neighborhood of $-\infty$ and $i_{-}^{2}+i_{+}^{2}=1$. Let

$$
h_{-/+}^{n}=-\partial_{x}^{2}-\ell_{-/+}^{2}, k_{-/+}=\ell_{-/+}, \quad H_{-/+}^{n}=\left(\begin{array}{cc}
0 & \mathbb{1} \\
h_{-/+} & 2 k_{-/+}
\end{array}\right)
$$

acting on \mathcal{H}^{n} defined in (3).
We associate to these operators the natural homogeneous energy spaces $\dot{\mathcal{E}}_{-/+}^{n}$. Let $\mathcal{E}_{-/+}^{\text {fin, } n}$ be the subspace of those functions which have finite momenta with respect to $-\Delta_{S^{2}}$.

Theorem

There exists $a_{0}>0$ such that for all $|a|<a_{0}$ and $n \in \mathbb{Z} \backslash\{0\}$ the following holds :

- i) For all $u \in \mathcal{E}_{-l+}^{\text {fin,n }}$ the limits

$$
W_{-/+} u=\lim _{t \rightarrow \infty} e^{i t t^{n}} i_{-/+}^{2} e^{-i t t_{-/+}^{n}} u
$$

exist in $\dot{\mathcal{E}}^{n}$. The operators $W_{-/+}$extend to bounded operators $W_{-/+} \in \mathcal{B}\left(\dot{\mathcal{E}}_{-/++}^{n} \dot{\mathcal{E}}^{n}\right)$.

- ii) The inverse wave operators

$$
\Omega_{-/+}=s-\lim _{t \rightarrow \infty} e^{i t \dot{H}_{-/+}^{n}} i_{-/+}^{2} e^{-i t i \dot{H}^{n}}
$$

exist in $\mathcal{B}\left(\dot{\mathcal{E}}^{n} ; \dot{\mathcal{E}}_{-/+}^{n}\right)$.
i), ii) also hold for $n=0$ if $m>0$.

Remark

Results uniform in n recently obtained by Dafermos, Rodnianski, Shlapentokh-Rothman for the wave equation on Kerr.
2.4 Remarks on the proof

- 1st step : $\left\|p^{-1}(z) u\right\| \lesssim|z|^{-1}|\operatorname{Im} z|^{-1}\|u\|$, uniformly in $|z| \geq(1+\epsilon)\|k\|_{\mathcal{B}(\mathcal{H})},|\operatorname{Im} z|>0$. Interpretation : superradiance does not occur for $|z| \geq(1+\epsilon)\|k\|$.
- 2nd step : gluing of asymptotic resolvents using different Killing fields. The poles of the resolvent in the upper half plane are all contained in a large ball (first step). Low frequency behavior ok because of asymptotically hyperbolic character (uses classical result of Mazzeo-Melrose).
- 3 rd step : suitable integrated resolvent estimates hold outside some discrete closed set of so called singular points, link with real resonances.
- 4th step : the conserved energy becomes positive and comparable to the energy norm for high frequencies \rightarrow boundedness for high frequencies.
- 5th step No real resonances on the real line for suitable small a (perturbation argument from $a=0$, see Bony-H., Dyatlov).

2.4 Remarks on the proof

- 1st step : $\left\|p^{-1}(z) u\right\| \lesssim|z|^{-1}|\operatorname{Im} z|^{-1}\|u\|$, uniformly in $|z| \geq(1+\epsilon)\|k\|_{\mathcal{B}(\mathcal{H})},|\operatorname{Imz}|>0$. Interpretation : superradiance does not occur for $|z| \geq(1+\epsilon)\|k\|$.
- 2nd step : gluing of asymptotic resolvents using different Killing fields. The poles of the resolvent in the upper half plane are all contained in a large ball (first step). Low frequency behavior ok because of asymptotically hyperbolic character (uses classical result of Mazzeo-Melrose).
- 3 rd step : suitable integrated resolvent estimates hold outside some discrete closed set of so called singular points, link with real resonances.
> 4th step: the conserved energy becomes positive and comparable to the energy norm for high frequencies \rightarrow boundedness for high frequencies.
- 5th step No real resonances on the real line for suitable small a (perturbation argument from $a=0$, see Bony-H., Dyatlov).
- 1st step : $\left\|p^{-1}(z) u\right\| \lesssim|z|^{-1}|\operatorname{Im} z|^{-1}\|u\|$, uniformly in $|z| \geq(1+\epsilon)\|k\|_{\mathcal{B}(\mathcal{H})},|\operatorname{Im} z|>0$. Interpretation : superradiance does not occur for $|z| \geq(1+\epsilon)\|k\|$.
- 2nd step : gluing of asymptotic resolvents using different Killing fields. The poles of the resolvent in the upper half plane are all contained in a large ball (first step). Low frequency behavior ok because of asymptotically hyperbolic character (uses classical result of Mazzeo-Melrose).
- 3 rd step : suitable integrated resolvent estimates hold outside some discrete closed set of so called singular points, link with real resonances.
- 4th step : the conserved energy becomes positive and comparable to the energy norm for high frequencies \rightarrow boundedness for high frequencies.
- 5th step No real resonances on the real line for suitable small a (perturbation argument from $a=0$, see Bony-H., Dyatlov).
- 1st step : $\left\|p^{-1}(z) u\right\| \lesssim|z|^{-1}|\operatorname{Im} z|^{-1}\|u\|$, uniformly in $|z| \geq(1+\epsilon)\|k\|_{\mathcal{B}(\mathcal{H})},|\operatorname{Im} z|>0$. Interpretation : superradiance does not occur for $|z| \geq(1+\epsilon)| | k \|$.
- 2nd step : gluing of asymptotic resolvents using different Killing fields. The poles of the resolvent in the upper half plane are all contained in a large ball (first step). Low frequency behavior ok because of asymptotically hyperbolic character (uses classical result of Mazzeo-Melrose).
- 3 rd step : suitable integrated resolvent estimates hold outside some discrete closed set of so called singular points, link with real resonances.
- 4th step : the conserved energy becomes positive and comparable to the energy norm for high frequencies \rightarrow boundedness for high frequencies.
> 5th step No real resonances on the real line for suitable small a (perturbation argument from $a=0$, see Bony-H., Dyatlov).

2.4 Remarks on the proof

- 1st step : $\left\|p^{-1}(z) u\right\| \lesssim|z|^{-1}|\operatorname{Im} z|^{-1}\|u\|$, uniformly in $|z| \geq(1+\epsilon)\|k\|_{\mathcal{B}(\mathcal{H})},|\operatorname{Im} z|>0$. Interpretation : superradiance does not occur for $|z| \geq(1+\epsilon)| | k \|$.
- 2nd step : gluing of asymptotic resolvents using different Killing fields. The poles of the resolvent in the upper half plane are all contained in a large ball (first step). Low frequency behavior ok because of asymptotically hyperbolic character (uses classical result of Mazzeo-Melrose).
- 3 rd step : suitable integrated resolvent estimates hold outside some discrete closed set of so called singular points, link with real resonances.
- 4th step : the conserved energy becomes positive and comparable to the energy norm for high frequencies \rightarrow boundedness for high frequencies.
- 5th step No real resonances on the real line for suitable small a (perturbation argument from $a=0$, see Bony-H., Dyatlov).

Scattering theory for massless Dirac fields on the Kerr metric (with J.-P. Nicolas)
3.1 The Dirac equation and the Newman-Penrose formalism Weyl equation :

$$
\nabla_{A^{\prime}}^{A} \phi_{A}=0
$$

Conserved current :

$$
V^{a}=\phi^{A} \bar{\phi}^{A^{\prime}}, C(t)=\frac{1}{\sqrt{2}} \int_{\Sigma_{t}} V_{a} T^{a} d \sigma_{\Sigma_{t}}=\text { const. }
$$

T^{a} : normal to Σ_{t}.

- Newman-Penrose tetrad $I^{a}, n^{a}, m^{a}, \bar{m}^{a}$:
$l_{a} I^{a}=n_{a} n^{a}=m_{a} m^{a}=l_{a} m^{a}=n_{a} m^{a}=0$.
- Normalization $l_{a} n^{a}=1, m_{a} \bar{m}^{a}=-1$
- I^{a}, n^{a} : Scattering directions.
- Spin frame $o^{A} \bar{o}^{A^{\prime}}=I^{a}, \iota^{A} \bar{\iota}^{A^{\prime}}=n^{a}, o^{A} \bar{\iota}^{A^{\prime}}=m^{a}$ $\iota^{A} \bar{o}^{A^{\prime}}=\bar{m}^{a}, O_{A} \iota^{A}=1$
- Components in the spin frame : $\phi_{0}=\phi_{A} O^{A}, \phi_{1}=\phi_{A} l^{A}$
- Weyl equation :

$$
\left\{\begin{array}{l}
n^{a} \partial_{a} \phi_{0}-m^{a} \partial_{a} \phi_{1}+(\mu-\gamma) \phi_{0}+(\tau-\beta) \phi_{1}=0 \\
l^{a} \partial_{a} \phi_{1}-\bar{m}^{a} \partial_{a} \phi_{0}+(\alpha-\pi) \phi_{0}+(\epsilon-\tilde{\rho}) \phi_{1}=0
\end{array}\right.
$$

A new Newman Penrose tetrad

Problem : The Kerr metric is at infinity a long range perturbation of the Minkowski metric. In the long range situation asymptotic completeness is generically false without modification of the wave operators.

Dirac equation on Schwarzschild :

$$
i \partial_{t} \Psi=\not \emptyset_{S} \Psi, \not D_{S}=\Gamma^{1} D_{x}+\frac{\left(1-\frac{2 M}{r}\right)^{1 / 2}}{r} \not D_{S^{2}}+V
$$

ok because of spherical symmetry.
Tetrad adapted to the foliation : $I^{a}+n^{a}=T^{a}$. Conserved quantity :

$$
\frac{1}{\sqrt{2}} \int_{\Sigma_{t}}\left(\left|\phi_{0}\right|^{2}+\left|\phi_{1}\right|^{2}\right) d \sigma_{\Sigma_{t}}
$$

$I^{a}, n^{a} \in \operatorname{span}\left\{T^{a}, \partial_{r}\right\} . \Psi$ spinor multiplied by a certain weight :

$$
i \partial_{t} \Psi=\not D_{K} \Psi, \quad \not D_{K}=h \not D_{\text {sym }} h+V_{\varphi} D_{\varphi}+V
$$

Well adapted to time dependent scattering: $h^{2}-1, V_{\varphi}, V$ short range.

3.2 Principal results

Comparison dynamics

$$
\begin{aligned}
& \left.\mathcal{H}=L^{2}\left(\left(\mathbb{R} \times S^{2}\right) ; d x d \omega\right) ; \mathbb{C}^{2}\right), \mathbb{D}_{H}=\gamma D_{x}-\frac{a}{r_{+}^{2}+a^{2}} D_{\varphi}, \mathbb{D}_{\infty}=\gamma D_{x}, \\
& \gamma=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \mathcal{H}^{-}=\left\{\left(\psi_{0}, 0\right) \in \mathcal{H}\right\}\left(\text { resp. } \mathcal{H}^{+}=\left\{\left(0, \psi_{1}\right) \in \mathcal{H}\right\}\right) .
\end{aligned}
$$

Theorem (Asymptotic velocity)
There exist bounded selfadjoint operators s.t. for all $J \in \mathcal{C}_{\infty}(\mathbb{R})$:

$$
\begin{aligned}
J\left(P^{ \pm}\right) & =s-\lim _{t \rightarrow \pm \infty} e^{-i t D_{K}} J\left(\frac{x}{t}\right) e^{i t D_{K}} \\
J(\mp \gamma) & =s-\lim _{t \rightarrow \pm \infty} e^{-i t \mathbb{D}_{H}} J\left(\frac{x}{t}\right) e^{i t \mathbb{D}_{H}} \\
& =s-\lim _{t \rightarrow \pm \infty} e^{-i t \mathbb{D}_{\infty}} J\left(\frac{x}{t}\right) e^{i t \mathbb{D}_{\infty}} .
\end{aligned}
$$

In addition we have :

$$
\sigma\left(P^{+}\right)=\{-1,1\} .
$$

Theorem (Asymptotic completeness)
The classical wave operators defined by the limits

$$
\begin{aligned}
W_{H}^{ \pm} & :=s-\lim _{t \rightarrow \pm \infty} e^{-i t D_{K}} e^{i t \mathbb{D} H} P_{\mathcal{H} \mp} \\
W_{\infty}^{ \pm} & :=s-\lim _{t \rightarrow \pm \infty} e^{-i t \not D_{K}} e^{i t \mathbb{D} D} P_{\mathcal{H}^{ \pm}} \\
\Omega_{H}^{ \pm} & :=s-\lim _{t \rightarrow \pm \infty} e^{-i t \mathbb{D} \mathbb{D}_{H}} e^{i t \not D_{K}} \mathbf{1}_{\mathbb{R}^{-}}\left(P^{ \pm}\right) \\
\Omega_{\infty}^{ \pm} & :=s-\lim _{t \rightarrow \pm \infty} e^{-i t \mathbb{D} \infty} e^{i t D_{K}} \mathbf{1}_{\mathbb{R}^{+}}\left(P^{ \pm}\right)
\end{aligned}
$$

exist.

Remark

1. Proof based on Mourre theory.
2. The same theorem holds with more geometric comparison dynamics.
3. Generalized by Daudé to the massive charged case.
4. Schwarzschild : Nicolas (95), Melnyk (02), Daudé (04).

3.3 Geometric interpretation

Penrose compactification of block /

- $J^{ \pm}$are constructed using the conformally rescaled metric $\hat{g}=\frac{1}{r^{2}} g$.
- The Weyl equation is conformally invariant :
$\hat{\nabla}^{A A^{\prime}} \hat{\phi}_{A}=0$, where $\hat{\phi}_{A}=r \phi_{A}$.

3.3 Geometric interpretation

Penrose compactification of block /

- $\mathcal{J}^{ \pm}$are constructed using the conformally rescaled metric $\hat{g}=\frac{1}{r^{2}} g$.
- The Weyl equation is conformally invariant :
$\hat{\nabla}^{A A^{\prime}} \hat{\phi}_{A}=0$, where $\hat{\phi}_{A}=r \phi_{A}$.
$-\lim _{r \rightarrow r_{+}} \Psi_{0}\left(\gamma_{V, \theta, \varphi^{\sharp}}^{-}(r)\right)=:\left.\Psi_{0}\right|_{\mathfrak{H}^{+}}\left(0, V, \theta, \varphi^{\sharp}\right)$,
$\lim _{r \rightarrow r_{+}} \Psi_{1}\left(\gamma_{V, \theta, \varphi}^{-}(r)\right)=0$.
Ψ is solution of the Dirac equation. $\gamma_{V, \theta, \varphi^{\sharp}}^{-}$is the principal incoming null geodesic meeting \mathfrak{H}^{+}at $\left(0, V, \theta, \varphi^{\sharp}\right)$.
- \mathcal{H} : Hilbert space associated to $\Sigma_{0}, \mathcal{H}_{\mathfrak{H} \pm}$ Hilbert spaces associated

Theorem

The trace operators $\mathcal{T}_{\mathfrak{f}}^{ \pm}$extend in a unique manner to bounded operators from \mathcal{H} to $\mathcal{H}_{\mathfrak{H}^{ \pm}}$

Remark
let $\mathfrak{F}^{ \pm}$be the C^{∞} diffeomorphisms from $5^{ \pm}$onto Σ_{0} defined by
identifying points along incoming (resp. outgoing) principal null geodesics and $\Omega_{H, p n}^{ \pm}$inverse wave operators with comparison dynamics given by
the principal null directions. Then $\mathcal{T}_{\mathfrak{f}}^{ \pm}=\left(\mathfrak{F}_{\mathfrak{f}}^{ \pm}\right)^{*} \Omega_{H . p n}^{ \pm}$. Comparison
dynamics $P_{N}=\gamma D_{r_{*}}$
$-\lim _{r \rightarrow r_{+}} \Psi_{0}\left(\gamma_{V, \theta, \varphi^{\sharp}}^{-}(r)\right)=:\left.\Psi_{0}\right|_{\mathfrak{H}^{+}}\left(0, V, \theta, \varphi^{\sharp}\right)$,
$\lim _{r \rightarrow r_{+}} \Psi_{1}\left(\gamma_{V, \theta, \varphi}^{-}(r)\right)=0$.
Ψ is solution of the Dirac equation. $\gamma_{V, \theta, \varphi^{\sharp}}^{-}$is the principal incoming null geodesic meeting \mathfrak{H}^{+}at $\left(0, V, \theta, \varphi^{\sharp}\right)$.

- Trace operators :

$$
\begin{array}{cccc}
\mathcal{T}_{\mathfrak{H}}^{+}: & C_{0}^{\infty}\left(\Sigma_{0}, \mathbb{C}^{2}\right) & \rightarrow & C^{\infty}\left(\mathfrak{H}^{+}, \mathbb{C}\right) \\
& \Psi_{\Sigma_{0}} & \mapsto & \left.\Psi_{0}\right|_{\mathfrak{H}^{+}}
\end{array}
$$

- \mathcal{H} : Hilbert space associated to $\Sigma_{0}, \mathcal{H}_{\mathfrak{j} \pm}$ Hilbert spaces associated

Theorem

The trace onerators T extend in a unique manner to bounded operators from \mathcal{H} to $\mathcal{H}_{n \pm}$

Remark
Let $\mathfrak{u}^{ \pm}$be the C^{∞} diffeomorphisms from $5^{ \pm}$onto Σ_{0} defined by
identifying points along incoming (resp. outgoing) principal null geodesics and $\Omega_{H, p n}^{ \pm}$inverse wave operators with comparison dynamics given by
the principal null directions. Then $\mathcal{T}_{\mathfrak{f}}^{ \pm}=\left(\mathfrak{F}_{\mathfrak{f}}^{ \pm}\right)^{*} \Omega_{H . o n}^{ \pm}$. Comparison
dynamics $P_{N}=\gamma D_{r_{t}}$

$-\lim _{r \rightarrow r_{+}} \Psi_{0}\left(\gamma_{V, \theta, \varphi^{\sharp}}^{-}(r)\right)=:\left.\Psi_{0}\right|_{\mathfrak{H}^{+}}\left(0, V, \theta, \varphi^{\sharp}\right)$,
$\lim _{r \rightarrow r_{+}} \Psi_{1}\left(\gamma_{V, \theta, \varphi}^{-}(r)\right)=0$.
Ψ is solution of the Dirac equation. $\gamma_{V, \theta, \varphi^{\sharp}}^{-}$is the principal incoming null geodesic meeting \mathfrak{H}^{+}at $\left(0, V, \theta, \varphi^{\sharp}\right)$.

- Trace operators :

$$
\begin{array}{cccc}
\mathcal{T}_{\mathfrak{H}}^{+} & : & C_{0}^{\infty}\left(\Sigma_{0}, \mathbb{C}^{2}\right) & \rightarrow \\
C^{\infty}\left(\mathfrak{H}^{+}, \mathbb{C}\right) \\
\Psi_{\Sigma_{0}} & \mapsto & \left.\Psi_{0}\right|_{\mathfrak{H}^{+}}
\end{array}
$$

- \mathcal{H} : Hilbert space associated to $\Sigma_{0}, \mathcal{H}_{\mathfrak{H} \pm}$ Hilbert spaces associated to $\mathfrak{H}^{ \pm}$.

> Theorem
> The trace operators $\mathcal{T}_{\mathfrak{H}}^{ \pm}$extend in a unique manner to bounded operators from \mathcal{H} to $\mathcal{H}_{5} \pm$

> Remark
> Iet $\mathfrak{Z}^{ \pm}$be the C^{∞} diffeomorphisms from $5^{ \pm}$onto Σ_{0} defined by identifying points along incoming (resp. outgoing) principal null geodesics and $\Omega_{H, p n}^{ \pm}$inverse wave operators with comparison dynamics given by the principal null directions. Then $\mathcal{T}_{5}^{ \pm}=\left(\mathfrak{F}_{\mathfrak{F}}^{ \pm}\right)^{*} \Omega_{\stackrel{1}{4}}^{ \pm}$. Comparison dynamics $P_{N}=\gamma D_{r}$
$-\lim _{r \rightarrow r_{+}} \Psi_{0}\left(\gamma_{V, \theta, \varphi^{\sharp}}^{-}(r)\right)=:\left.\Psi_{0}\right|_{\mathfrak{H}^{+}}\left(0, V, \theta, \varphi^{\sharp}\right)$,
$\lim _{r \rightarrow r_{+}} \Psi_{1}\left(\gamma_{V, \theta, \varphi}^{-}(r)\right)=0$.
Ψ is solution of the Dirac equation. $\gamma_{V, \theta, \varphi^{\sharp}}^{-}$is the principal incoming null geodesic meeting \mathfrak{H}^{+}at $\left(0, V, \theta, \varphi^{\sharp}\right)$.

- Trace operators :

$$
\begin{array}{cccc}
\mathcal{T}_{\mathfrak{H}}^{+} & : & C_{0}^{\infty}\left(\Sigma_{0}, \mathbb{C}^{2}\right) & \rightarrow \\
C^{\infty}\left(\mathfrak{H}^{+}, \mathbb{C}\right) \\
\Psi_{\Sigma_{0}} & \mapsto & \left.\Psi_{0}\right|_{\mathfrak{H}^{+}}
\end{array}
$$

- \mathcal{H} : Hilbert space associated to $\Sigma_{0}, \mathcal{H}_{\mathfrak{H} \pm}$ Hilbert spaces associated to $\mathfrak{H}^{ \pm}$.

Theorem

The trace operators $\mathcal{T}_{\mathfrak{H}}^{ \pm}$extend in a unique manner to bounded operators from \mathcal{H} to $\mathcal{H}_{\mathfrak{H}^{ \pm}}$.

Remark

Let $\mathfrak{F}_{5}^{ \pm}$be the \mathcal{C}^{∞} diffeomorphisms from $\mathfrak{H}^{ \pm}$onto Σ_{0} defined by identifying points along incoming (resp. outgoing) principal null geodesics and $\Omega_{H, p n}^{ \pm}$inverse wave operators with comparison dynamics given by the principal null directions. Then $\mathcal{T}_{\mathfrak{h}}^{ \pm}=\left(\mathfrak{F}_{\mathfrak{\xi}}^{ \pm}\right)^{*} \Omega_{H . p n}^{ \pm}$. Comparison dynamics $P_{N}=\gamma D_{r}$
$-\lim _{r \rightarrow r_{+}} \Psi_{0}\left(\gamma_{V, \theta, \varphi^{\sharp}}^{-}(r)\right)=:\left.\Psi_{0}\right|_{\mathfrak{H}^{+}}\left(0, V, \theta, \varphi^{\sharp}\right)$, $\lim _{r \rightarrow r_{+}} \Psi_{1}\left(\gamma_{V, \theta, \varphi^{\sharp}}^{-}(r)\right)=0$.
Ψ is solution of the Dirac equation. $\gamma_{V, \theta, \varphi^{\sharp}}^{-}$is the principal incoming null geodesic meeting \mathfrak{H}^{+}at $\left(0, V, \theta, \varphi^{\sharp}\right)$.

- Trace operators :

$$
\begin{array}{cccc}
\mathcal{T}_{\mathfrak{H}}^{+} & : & C_{0}^{\infty}\left(\Sigma_{0}, \mathbb{C}^{2}\right) & \rightarrow \\
C^{\infty}\left(\mathfrak{H}^{+}, \mathbb{C}\right) \\
\Psi_{\Sigma_{0}} & \mapsto & \left.\Psi_{0}\right|_{\mathfrak{H}^{+}}
\end{array}
$$

- \mathcal{H} : Hilbert space associated to $\Sigma_{0}, \mathcal{H}_{\mathfrak{H}^{ \pm}}$Hilbert spaces associated to $\mathfrak{H}^{ \pm}$.

Theorem

The trace operators $\mathcal{T}_{\mathfrak{H}}^{ \pm}$extend in a unique manner to bounded operators from \mathcal{H} to $\mathcal{H}_{\mathfrak{H}^{ \pm}}$.

Remark

Let $\mathfrak{F}_{\mathfrak{j}}^{ \pm}$be the \mathcal{C}^{∞} diffeomorphisms from $\mathfrak{H}^{ \pm}$onto Σ_{0} defined by identifying points along incoming (resp. outgoing) principal null geodesics and $\Omega_{H, p n}^{ \pm}$inverse wave operators with comparison dynamics given by the principal null directions. Then $\mathcal{T}_{\mathfrak{5}}^{ \pm}=\left(\mathfrak{F}_{\mathfrak{5}}^{ \pm}\right)^{*} \Omega_{H, p n}^{ \pm}$. Comparison dynamics $P_{N}=\gamma D_{r_{*}}-\frac{a^{2}}{r^{2}+a^{2}} D_{\varphi}$.

Same construction for $\mathcal{T}_{\mathcal{J}}^{ \pm}$and $\mathcal{H}_{J \pm} . \mathcal{T}_{\mathcal{J}}^{ \pm}$can be extended to bounded operators from \mathcal{H} to $\mathcal{H}_{\mathcal{J} \pm}$.

$$
\begin{array}{llll}
\Pi_{F}: & \rightarrow \mathcal{H}_{\mathfrak{H}^{+}} \oplus \mathcal{H}_{J^{+}}=: \mathcal{H}_{F} \\
& \Psi_{\Sigma_{0}} & \mapsto & \left(\mathcal{T}_{\mathfrak{H}}^{+} \Psi_{\Sigma_{0}}, \mathcal{T}_{\mathfrak{J}}^{+} \Psi_{\Sigma_{0}}\right)
\end{array}
$$

Theorem (Goursat problem)
Π_{F} is an isometry. In particular for all $\Phi \in \mathcal{H}_{F}$, there exists a unique solution of the Dirac equation $\Psi \in C\left(\mathbb{R}_{t}, \mathcal{H}\right)$ s.t. $\Phi=\Pi_{F} \Psi(0)$.

Remark

1) First constructions of this type : Friedlander (Minkowski, 80, 01), Bachelot (Schwarzschild, 91).
2) The inverse is possible : Mason, Nicolas (04), Joudioux (10) (asymptotically simple space-times), Dafermos-Rodnianski-Shlapentokh-Rothman (Kerr).

The Hawking effect as a scattering problem
4.1 The collapse of the star

$$
\mathcal{M}_{c o l}=\bigcup_{t} \Sigma_{t}^{c o l}, \Sigma_{t}^{c o l}=\left\{(t, \hat{r}, \omega) \in \mathbb{R}_{t} \times \mathbb{R}_{\hat{r}} \times S_{\omega}^{2} ; \hat{r} \geq \hat{z}(t, \theta)\right\}
$$

Assumptions:

- For $\hat{r}>\hat{z}(t, \theta)$, the metric is the Kerr Newman metric.
- $\hat{z}(t, \theta)$ behaves asymptotically like certain timelike geodesics in the Kerr-Newman metric. We suppose for the conserved quantities L (angular momentum), \mathcal{Q} (Carter constant) and \tilde{E} (rotational energy) : $L=Q=\tilde{E}=0$. We also suppose an asymptotic condition on the surface of the star
> $\kappa_{-}>0$ is the surface gravity of the outer horizon, $\hat{A}(\theta)>0$.

Remarts

1. \hat{r} is a coordinate adapted to simple null geodesics ($t \pm \hat{r}=$ const.
along these geodesics).
2. Dirac in $\mathcal{M}_{\text {col }}$: we add a boundary condition (MIT)
$\rightarrow \Psi(t)=U(t, 0) \Psi_{0}$

The Hawking effect as a scattering problem
4.1 The collapse of the star

$$
\mathcal{M}_{c o l}=\bigcup_{t} \Sigma_{t}^{c o l}, \Sigma_{t}^{c o l}=\left\{(t, \hat{r}, \omega) \in \mathbb{R}_{t} \times \mathbb{R}_{\hat{r}} \times S_{\omega}^{2} ; \hat{r} \geq \hat{z}(t, \theta)\right\}
$$

Assumptions:

- For $\hat{r}>\hat{z}(t, \theta)$, the metric is the Kerr Newman metric.
- $\hat{z}(t, \theta)$ behaves asymptotically like certain timelike geodesics in the Kerr-Newman metric. We suppose for the conserved quantities L (angular momentum), \mathcal{Q} (Carter constant) and \tilde{E} (rotational energy) : $L=\mathcal{Q}=\tilde{E}=0$. We also suppose an asymptotic condition on the surface of the star :

$$
\hat{z}(t, \theta)=-t-\hat{A}(\theta) e^{-2 \kappa-t}+\mathcal{O}\left(e^{-4 \kappa-t}\right), t \rightarrow \infty
$$

$\kappa_{-}>0$ is the surface gravity of the outer horizon, $\hat{A}(\theta)>0$.
Remark

1. \hat{r} is a coordinate adapted to simple null geodesics ($t \pm \hat{r}=$ const. along these geodesics).
2. Dirac in $\mathcal{M}_{\text {col }}$: we add a boundary condition (MIT)
\qquad

The Hawking effect as a scattering problem
4.1 The collapse of the star

$$
\mathcal{M}_{c o l}=\bigcup_{t} \Sigma_{t}^{c o l}, \Sigma_{t}^{c o l}=\left\{(t, \hat{r}, \omega) \in \mathbb{R}_{t} \times \mathbb{R}_{\hat{r}} \times S_{\omega}^{2} ; \hat{r} \geq \hat{z}(t, \theta)\right\}
$$

Assumptions:

- For $\hat{r}>\hat{z}(t, \theta)$, the metric is the Kerr Newman metric.
- $\hat{z}(t, \theta)$ behaves asymptotically like certain timelike geodesics in the Kerr-Newman metric. We suppose for the conserved quantities L (angular momentum), \mathcal{Q} (Carter constant) and \tilde{E} (rotational energy) : $L=\mathcal{Q}=\tilde{E}=0$. We also suppose an asymptotic condition on the surface of the star :

$$
\hat{z}(t, \theta)=-t-\hat{A}(\theta) e^{-2 \kappa-t}+\mathcal{O}\left(e^{-4 \kappa-t}\right), t \rightarrow \infty
$$

$\kappa_{-}>0$ is the surface gravity of the outer horizon, $\hat{A}(\theta)>0$.

Remark

1. \hat{r} is a coordinate adapted to simple null geodesics ($t \pm \hat{r}=$ const. along these geodesics).
2. Dirac in $\mathcal{M}_{\text {col }}$: we add a boundary condition (MIT)
$\rightarrow \Psi(t)=U(t, 0) \Psi_{0}$.

4.2 Dirac quantum fields

Dimock '82.

$$
\mathcal{M}_{c o l}=\bigcup_{t \in \mathbb{R}} \Sigma_{t}^{c o l}, \quad \Sigma_{t}^{c o l}=\{(t, \hat{r}, \theta, \varphi) ; \hat{r} \geq \hat{z}(t, \theta)\}
$$

Dirac quantum field Ψ_{0} and the CAR-algebra $\mathcal{U}\left(\mathcal{H}_{0}\right)$ constructed in the usual way. Fermi-Fock representation.

$$
S_{c o l}: \begin{array}{ccc}
\left(C_{0}^{\infty}\left(\mathcal{M}_{c o l}\right)\right)^{4} & \rightarrow & \mathcal{H}_{0} \\
\Phi & \mapsto & S_{c o l} \Phi:=\int_{\mathbb{R}} U(0, t) \Phi(t) d t
\end{array}
$$

Quantum spin field :

$$
\Psi_{c o l}: \begin{array}{ccc}
\left(C_{0}^{\infty}\left(\mathcal{M}_{c o l}\right)\right)^{4} & \rightarrow & \mathcal{L}\left(\mathcal{F}\left(\mathcal{H}_{0}\right)\right) \\
\Phi & \mapsto & \Psi_{c o l}(\Phi):=\Psi_{0}\left(S_{c o l} \Phi\right)
\end{array}
$$

$\mathcal{U}_{c o l}(\mathcal{O})=$ algebra generated by $\Psi_{c o l}^{*}\left(\Phi^{1}\right) \Psi_{c o l}\left(\Phi^{2}\right), \operatorname{supp} \Phi^{j} \subset \mathcal{O}$.

$$
\mathcal{U}_{c o l}\left(\mathcal{M}_{c o l}\right)=\overline{\bigcup_{\mathcal{O} \subset \mathcal{M}_{c o l}} \mathcal{U}_{c o l}(\mathcal{O})}
$$

Same procedure on $\mathcal{M}_{B H}$:

$$
S: \Phi \in\left(C_{0}^{\infty}\left(\mathcal{M}_{B H}\right)\right)^{4} \mapsto S \Phi:=\int_{\mathbb{R}} e^{-i t H} \Phi(t) d t
$$

States

- $\mathcal{U}_{c o l}\left(\mathcal{M}_{c o l}\right)$

Vacuum state :

$$
\begin{aligned}
\omega_{c o l}\left(\Psi_{c o l}^{*}\left(\Phi_{1}\right) \Psi_{c o l}\left(\Phi_{2}\right)\right) & :=\omega_{v a c}\left(\Psi_{0}^{*}\left(S_{c o l} \Phi_{1}\right) \Psi_{0}\left(S_{c o l} \Phi_{2}\right)\right) \\
& =\left\langle\mathbf{1}_{[0, \infty)}\left(H_{0}\right) S_{c o l} \Phi_{1}, S_{c o l} \Phi_{2}\right\rangle
\end{aligned}
$$

- $\mathcal{U}_{B H}\left(\mathcal{M}_{B H}\right)$
- Vacuum state

$$
\omega_{v a c}\left(\Psi_{B H}^{*}\left(\phi_{1}\right) \Psi_{B H}\left(\phi_{2}\right)\right)=\left\langle\mathbf{1}_{[0, \infty)}(H) S \phi_{1}, S \phi_{2}\right\rangle .
$$

- Thermal Hawking state

States

- $\mathcal{U}_{\text {col }}\left(\mathcal{M}_{\text {col }}\right)$

Vacuum state :

$$
\begin{aligned}
\omega_{c o l}\left(\Psi_{c o l}^{*}\left(\Phi_{1}\right) \Psi_{c o l}\left(\Phi_{2}\right)\right) & :=\omega_{v a c}\left(\Psi_{0}^{*}\left(S_{c o l} \Phi_{1}\right) \Psi_{0}\left(S_{c o l} \Phi_{2}\right)\right) \\
& =\left\langle\mathbf{1}_{[0, \infty)}\left(H_{0}\right) S_{c o l} \Phi_{1}, S_{c o l} \Phi_{2}\right\rangle
\end{aligned}
$$

- $\mathcal{U}_{B H}\left(\mathcal{M}_{B H}\right)$
- Vacuum state

$$
\omega_{v a c}\left(\Psi_{B H}^{*}\left(\Phi_{1}\right) \Psi_{B H}\left(\phi_{2}\right)\right)=\left\langle\mathbf{1}_{[0, \infty)}(H) S_{\phi_{1}}, S_{\phi_{2}}\right\rangle
$$

- Thermal Hawking state

$$
\begin{aligned}
\omega_{\text {Haw }}^{\eta, \sigma}\left(\Psi_{B H}^{*}\left(\Phi_{1}\right) \Psi_{B H}\left(\Phi_{2}\right)\right) & =\left\langle\mu e^{\sigma H}\left(1+\mu e^{\sigma H}\right)^{-1} S \Phi_{1}, S \Phi_{2}\right\rangle_{\mathcal{H}} \\
& =: \omega_{K M S}^{\eta, \sigma}\left(\Psi^{*}\left(S \Phi_{1}\right) \Psi\left(S \Phi_{2}\right)\right), \\
T_{\text {Haw }} & =\sigma^{-1}, \mu=e^{\sigma \eta}, \sigma>0 .
\end{aligned}
$$

$T_{\text {Haw }}$ Hawking temperature, μ chemical potential.

The Hawking effect

$$
\Phi \in\left(C_{0}^{\infty}\left(\mathcal{M}_{c o l}\right)\right)^{4}, \Phi^{T}(t, \hat{r}, \omega)=\Phi(t-T, \hat{r}, \omega)
$$

Theorem (Hawking effect)
Let $\Phi_{j} \in\left(C_{0}^{\infty}\left(\mathcal{M}_{c o l}\right)\right)^{4}, j=1$, 2. We have

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} \omega_{c o l}\left(\Psi_{c o l}^{*}\left(\Phi_{1}^{T}\right) \Psi_{c o l}\left(\Phi_{2}^{T}\right)\right) \\
& =\omega_{\text {Haw }}^{\eta, \sigma}\left(\Psi_{B H}^{*}\left(\mathbf{1}_{\mathbb{R}^{+}}\left(P^{-}\right) \Phi_{1}\right) \Psi_{B H}\left(\mathbf{1}_{\mathbb{R}^{+}}\left(P^{-}\right) \Phi_{2}\right)\right) \\
& +\omega_{\text {vac }}\left(\Psi_{B H}^{*}\left(\mathbf{1}_{\mathbb{R}^{-}}\left(P^{-}\right) \Phi_{1}\right) \Psi_{B H}\left(\mathbf{1}_{\mathbb{R}^{-}}\left(P^{-}\right) \Phi_{2}\right)\right), \\
T_{\text {Haw }} & =1 / \sigma=\kappa_{-} / 2 \pi, \quad \mu=e^{\sigma \eta}, \eta=\frac{q Q r_{-}}{r_{-}^{2}+a^{2}}+\frac{a D_{\varphi}}{r_{-}^{2}+a^{2}} .
\end{aligned}
$$

4.3 Explanation

Collapse of the star
Change in frequencies : mixing of positive and negative frequencies.

4.4 The analytic problem

asymptotically hyperbolic end
asymptotically euclidean end

$$
\begin{aligned}
& \lim _{T \rightarrow \infty}\left\|\mathbf{1}_{[0, \infty)}\left(\not D_{0}\right) U(0, T) f\right\|_{0}^{2} \\
& \quad=\left\langle\mathbf{1}_{\mathbb{R}^{+}}\left(P^{-}\right) f, \mu e^{\sigma \not \supset}\left(1+\mu e^{\sigma \not D}\right)^{-1} \mathbf{1}_{\mathbb{R}^{+}}\left(P^{-}\right) f\right\rangle \\
& \quad+\left\|\mathbf{1}_{[0, \infty)}(\not D) \mathbf{1}_{\mathbb{R}^{-}}\left(P^{-}\right) f\right\|^{2} .
\end{aligned}
$$

Remark

1) Hawking 1975 ,
2) Bachelot (99), Melnyk (04).

$$
\begin{aligned}
& z(t)=-t-A e^{-2 \kappa t} ; A>0, \kappa>0, \\
& \partial_{t} \psi=i \not D \psi, \\
&\left\{\begin{aligned}
\psi_{1}(t, z(t)) & =\sqrt{\frac{1-\dot{z}}{1+\dot{z}}} \psi_{2}(t, z(t)) \quad, \emptyset=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) D_{x .} . \\
\psi(t=s, .) & =\psi_{s}(.)
\end{aligned}\right.
\end{aligned}
$$

Solution given by a unitary propagator $U(t, s)$. Conserved L^{2} norm :

$$
\|\psi\|_{\mathcal{H}_{t}}^{2}=\int_{z(t)}^{\infty}|\psi|^{2}(t, x) d x .
$$

Explicit calculation :

$$
\begin{aligned}
\lim _{T \rightarrow \infty}\left\|\mathbf{1}_{[0, \infty)}\left(D_{0}\right) U(0, T) f\right\|_{0}^{2} & =\left\langle e^{\frac{2 \pi}{\kappa} p}\left(1+e^{\frac{2 \pi}{\hbar} p}\right)^{-1} P_{2} f, P_{2} f\right\rangle \\
& +\left\|\mathbf{1}_{[0, \infty)}(D) P_{1} f\right\|^{2} .
\end{aligned}
$$

Scattering problem : show that the real system behaves the same way.

4.6 Some remarks on the proof

- We compare to a dynamics for which the radiation can be explicitly computed.
- Can't compare dynamics on Cauchy surfaces \rightarrow characteristic Cauchy problem.
- Three time intervals

4.6 Some remarks on the proof

- We compare to a dynamics for which the radiation can be explicitly computed.
- Can't compare dynamics on Cauchy surfaces \rightarrow characteristic Cauchy problem.
- Three time intervals :

4.6 Some remarks on the proof

- We compare to a dynamics for which the radiation can be explicitly computed.
- Can't compare dynamics on Cauchy surfaces \rightarrow characteristic Cauchy problem.
- Three time intervals :

4.6 Some remarks on the proof

- We compare to a dynamics for which the radiation can be explicitly computed.
- Can't compare dynamics on Cauchy surfaces \rightarrow characteristic Cauchy problem.
- Three time intervals :
- $\left[T / 2+c_{0}, T\right]$ no boundary involved \rightarrow use asymptotic completeness+propagation estimates.
coordinates

4.6 Some remarks on the proof

- We compare to a dynamics for which the radiation can be explicitly computed.
- Can't compare dynamics on Cauchy surfaces \rightarrow characteristic Cauchy problem.
- Three time intervals :
- $\left[T / 2+c_{0}, T\right]$ no boundary involved \rightarrow use asymptotic completeness+propagation estimates.
- $\left[t_{\epsilon}, T / 2+c_{0}\right.$] use Duhamel formula + construction of tetrad and coordinates :

with derivatives only in the angular directions and W is a potential.

4.6 Some remarks on the proof

- We compare to a dynamics for which the radiation can be explicitly computed.
- Can't compare dynamics on Cauchy surfaces \rightarrow characteristic Cauchy problem.
- Three time intervals :
- $\left[T / 2+c_{0}, T\right]$ no boundary involved \rightarrow use asymptotic completeness+propagation estimates.
- $\left[t_{\epsilon}, T / 2+c_{0}\right]$ use Duhamel formula + construction of tetrad and coordinates:
- There exists a coordinate system (t, \hat{r}, ω) such that $\hat{r}=-t+c$ along incoming simple null geodesics $(L=\mathcal{Q}=0)$.
- There exists a Newman Penrose tetrad such that :
$\nabla D=\Gamma D_{\hat{p}}+P_{\omega}+W, \Gamma=\operatorname{Diag}(1,-1,-1,1) . P_{\omega}$ is a differential operator with derivatives only in the angular directions and W is a potential.

4.6 Some remarks on the proof

- We compare to a dynamics for which the radiation can be explicitly computed.
- Can't compare dynamics on Cauchy surfaces \rightarrow characteristic Cauchy problem.
- Three time intervals :
- $\left[T / 2+c_{0}, T\right]$ no boundary involved \rightarrow use asymptotic completeness+propagation estimates.
- $\left[t_{\epsilon}, T / 2+c_{0}\right]$ use Duhamel formula + construction of tetrad and coordinates :
- There exists a coordinate system (t, \hat{r}, ω) such that $\hat{r}=-t+c$ along incoming simple null geodesics ($L=\mathcal{Q}=0$).
- There exists a Newman Penrose tetrad such that : $\not D=\Gamma D_{\hat{r}}+P_{\omega}+W, \Gamma=\operatorname{Diag}(1,-1,-1,1) . P_{\omega}$ is a differential operator with derivatives only in the angular directions and W is a potential.
evolution is essentially given by the group (and not the evolution system). For this

4.6 Some remarks on the proof

- We compare to a dynamics for which the radiation can be explicitly computed.
- Can't compare dynamics on Cauchy surfaces \rightarrow characteristic Cauchy problem.
- Three time intervals :
- $\left[T / 2+c_{0}, T\right]$ no boundary involved \rightarrow use asymptotic completeness+propagation estimates.
- $\left[t_{\epsilon}, T / 2+c_{0}\right]$ use Duhamel formula + construction of tetrad and coordinates :
- There exists a coordinate system (t, \hat{r}, ω) such that $\hat{r}=-t+c$ along incoming simple null geodesics ($L=\mathcal{Q}=0$).
- There exists a Newman Penrose tetrad such that : $\not D=\Gamma D_{\hat{r}}+P_{\omega}+W, \Gamma=\operatorname{Diag}(1,-1,-1,1) . P_{\omega}$ is a differential operator with derivatives only in the angular directions and W is a potential.
- $\left[0, t_{\epsilon}\right]$:
$\left\|\mathbf{1}_{[0, \infty]}\left(\not D_{0}\right) U\left(0, t_{\epsilon}\right) U_{H}\left(t_{\epsilon}, T\right) \Omega_{H}^{-} f\right\| \sim\left\|\mathbf{1}_{[0, \infty)}\left(\mathbb{D}_{H, 0}\right) U_{H}(0, T) \Omega_{H}^{-} f\right\|$ if evolution is essentially given by the group (and not the evolution system). For this
- The hamiltonian flow stays outside the surface of the star for data in the given regime $(|\xi| \gg|\Theta|)$.

4.6 Some remarks on the proof

- We compare to a dynamics for which the radiation can be explicitly computed.
- Can't compare dynamics on Cauchy surfaces \rightarrow characteristic Cauchy problem.
- Three time intervals :
- $\left[T / 2+c_{0}, T\right]$ no boundary involved \rightarrow use asymptotic completeness+propagation estimates.
- $\left[t_{\epsilon}, T / 2+c_{0}\right]$ use Duhamel formula + construction of tetrad and coordinates :
- There exists a coordinate system (t, \hat{r}, ω) such that $\hat{r}=-t+c$ along incoming simple null geodesics ($L=\mathcal{Q}=0$).
- There exists a Newman Penrose tetrad such that : $\not D=\Gamma D_{\hat{r}}+P_{\omega}+W, \Gamma=\operatorname{Diag}(1,-1,-1,1) . P_{\omega}$ is a differential operator with derivatives only in the angular directions and W is a potential.
- $\left[0, t_{\epsilon}\right]$:
$\left\|\mathbf{1}_{[0, \infty]}\left(\not D_{0}\right) U\left(0, t_{\epsilon}\right) U_{H}\left(t_{\epsilon}, T\right) \Omega_{H}^{-} f\right\| \sim\left\|\mathbf{1}_{[0, \infty)}\left(\mathbb{D}_{H, 0}\right) U_{H}(0, T) \Omega_{H}^{-} f\right\|$ if evolution is essentially given by the group (and not the evolution system). For this
- $U_{H}\left(t_{\epsilon}, T\right) \Omega_{H}^{-} f \rightharpoonup 0$.
- The hamiltonian flow stays outside the surface of the star for data in the
given regime $(|\xi| \gg|\Theta|)$.
Propagation of singularities, compact Sobolev embeddings.

4.6 Some remarks on the proof

- We compare to a dynamics for which the radiation can be explicitly computed.
- Can't compare dynamics on Cauchy surfaces \rightarrow characteristic Cauchy problem.
- Three time intervals :
- $\left[T / 2+c_{0}, T\right]$ no boundary involved \rightarrow use asymptotic completeness+propagation estimates.
- $\left[t_{\epsilon}, T / 2+c_{0}\right]$ use Duhamel formula + construction of tetrad and coordinates :
- There exists a coordinate system (t, \hat{r}, ω) such that $\hat{r}=-t+c$ along incoming simple null geodesics ($L=\mathcal{Q}=0$).
- There exists a Newman Penrose tetrad such that : $\not D=\Gamma D_{\hat{r}}+P_{\omega}+W, \Gamma=\operatorname{Diag}(1,-1,-1,1) . P_{\omega}$ is a differential operator with derivatives only in the angular directions and W is a potential.
- $\left[0, t_{\epsilon}\right]$:
$\left\|\mathbf{1}_{[0, \infty]}\left(\not D_{0}\right) U\left(0, t_{\epsilon}\right) U_{H}\left(t_{\epsilon}, T\right) \Omega_{H}^{-} f\right\| \sim\left\|\mathbf{1}_{[0, \infty)}\left(\mathbb{D}_{H, 0}\right) U_{H}(0, T) \Omega_{H}^{-} f\right\|$ if evolution is essentially given by the group (and not the evolution system). For this
- $U_{H}\left(t_{\epsilon}, T\right) \Omega_{H}^{-} f \rightharpoonup 0$.
- The hamiltonian flow stays outside the surface of the star for data in the given regime $(|\xi| \gg|\Theta|)$.
- Propagation of singularities, compact Sobolev embeddings.

4.6 Some remarks on the proof

- We compare to a dynamics for which the radiation can be explicitly computed.
- Can't compare dynamics on Cauchy surfaces \rightarrow characteristic Cauchy problem.
- Three time intervals :
- $\left[T / 2+c_{0}, T\right]$ no boundary involved \rightarrow use asymptotic completeness+propagation estimates.
- $\left[t_{\epsilon}, T / 2+c_{0}\right]$ use Duhamel formula + construction of tetrad and coordinates :
- There exists a coordinate system (t, \hat{r}, ω) such that $\hat{r}=-t+c$ along incoming simple null geodesics ($L=\mathcal{Q}=0$).
- There exists a Newman Penrose tetrad such that : $\not D=\Gamma D_{\hat{r}}+P_{\omega}+W, \Gamma=\operatorname{Diag}(1,-1,-1,1) . P_{\omega}$ is a differential operator with derivatives only in the angular directions and W is a potential.
- $\left[0, t_{\epsilon}\right]$:
$\left\|\mathbf{1}_{[0, \infty]}\left(\not D_{0}\right) U\left(0, t_{\epsilon}\right) U_{H}\left(t_{\epsilon}, T\right) \Omega_{H}^{-} f\right\| \sim\left\|\mathbf{1}_{[0, \infty)}\left(\mathbb{D}_{H, 0}\right) U_{H}(0, T) \Omega_{H}^{-} f\right\|$ if evolution is essentially given by the group (and not the evolution system). For this
- $U_{H}\left(t_{\epsilon}, T\right) \Omega_{H}^{-} f \rightharpoonup 0$.
- The hamiltonian flow stays outside the surface of the star for data in the given regime (| $|\gg| \Theta \mid$).
- Propagation of singularities, compact Sobolev embeddings.
5.1 Local energy decay for the wave equation on the De Sitter Schwarzschild spacetime ($\mathrm{a}=0$)

Distribution of resonances (Sa Barreto-Zworski '97) :

Modified energy sp̌acê :

$$
\left\|\left(u_{0}, u_{1}\right)\right\|_{\mathcal{E}^{\text {modt })}}^{2}=\left\|u_{1}\right\|^{2}+\left\langle P u_{0}, u_{0}\right\rangle+\left(\int_{0}^{1} \int_{\mathbb{S}^{2}}\left|u_{0}(s, \omega)\right|^{2} d s d \omega\right) .
$$

Theorem (Bony-Ha '08)
Let $\chi \in C_{0}^{\infty}(\mathcal{M})$. There exists $\varepsilon>0$ such that $\chi e^{-i t H} \chi u=$

$$
\gamma\binom{r \chi\left\langle r, \chi u_{2}\right\rangle}{ 0}+R_{2}(t) u, \quad\left\|R_{2}(t) u\right\|_{\mathcal{E}^{\bmod }} \lesssim e^{-\varepsilon t}\left\|-\Delta_{\omega} u\right\|_{\mathcal{E}^{\bmod }} .
$$

Remark

1. No resonance 0 for Klein Gordon equation with positive mass of the field $m>0$.
2. Similar picture in much more general situations, see Vasy '13.

Consequence for asymptotic completeness

Theorem (Alexis Drouot '15)

Consider u solution in \mathcal{M} of $(m>0)$

$$
\left(\square+m^{2}\right) u=0,\left.u\right|_{t}=0=u_{0},\left.\partial_{t} u\right|_{t}=0=u_{1}
$$

with u_{0}, u_{1} in C^{1}. There exists C^{1} functions (called radiation fields of u) $u_{ \pm}^{*}: \mathcal{M} \rightarrow \mathbb{R}$ and $C \in \mathbb{R}$ (depending only on $\operatorname{supp}\left(u_{0} ; u_{1}\right)$) such that

$$
u_{ \pm}^{*}(x, \omega)=0 \text { for } x \leq C ; \quad u_{ \pm}^{*}=\mathcal{O}_{C^{\infty}}\left(e^{-\nu_{0}|x|}\right)
$$

and

$$
u(t, x, \omega)=u_{+}^{*}(-(t+x), \omega)+u_{-}^{*}(-t+x, \omega)+\mathcal{O}_{C^{\infty}\left(\mathcal{M}_{-}\right)}\left(e^{c t}\right)
$$

Proof uses results of Bony-H. '08 and Melrose-Sa-Barreto-Vasy '14.

Convergence rate for the Hawking effect

Theorem (Alexis Drouot '15)

There exists $\Lambda_{0}>0$ such that for all $\Lambda<\Lambda_{0}$ the following is true. Let

$$
\mathbb{E}_{T}\left(u_{0}, u_{1}\right)=\mathbb{E}^{\mathbb{H}_{0}, T_{0}}\left(u(0), \partial_{t} u(0)\right)
$$

where u solves for $m>0$

$$
\left\{\begin{aligned}
\left(\square_{g}+m^{2}\right) & =0, \\
\left.u\right|_{\mathcal{B}} & =0, \\
u(T) & =u_{0}, \\
\partial_{t} u(T) & =u_{1}
\end{aligned}\right.
$$

Then
$\mathbb{E}_{T}\left(u_{0}, u_{1}\right)=\mathbb{E}_{+}^{D_{x}^{2}, T_{0}}\left(u_{+}^{*}, D_{x} u_{+}^{*}\right)+\mathbb{E}_{-}^{D_{x}^{2}, T_{\text {Haw }}}\left(u_{-}^{*}, D_{x} u_{-}^{*}\right)+\mathcal{O}\left(e^{-c T}\right), \quad T \rightarrow \infty$. for some $c>0$.

Comments on the Klein-Gordon case

- Scattering theory
- The fact that the mixed term has two different limits makes it more complicated than for the Klein-Gordon equation coupled to an electric field. Mourre theory on Krein spaces : Georgescu-Gérard-H. '14.
- Time dependent scattering should depend only on the behavior of the resolvent on the real axis.
- Hawking effect
- Proof of a theorem about the Hawking effect for bosons should now work in principle in the same way. Temperature depends on n.
- Highly idealized model.

Thank you for your attention!

