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1.1 Black holes

(M, g) lorentzian manifold, sign(g) = (+,−,−,−). Einstein equations
(1915) :

Rµν −
1
2

gµνR + Λgµν = κTµν .

I Rµν : Ricci curvature,
I R : scalar curvature,
I g : metric,
I Λ : cosmological constant,
I Tµν : energy momentum tensor,
I κ = 8πG

c4 : Einstein constant.
I Tµν = 0 : Einstein vacuum equations.



The Schwarzschild solution
Schwarzschild (1916).M = Rt × Rr>2M × S2

ω

g = Ndt2 − N−1dr 2 − r 2dω2

N = (1− 2M
r ) (M : mass of the black hole).

r = 0 : curvature singularity, r = 2M : coordinate singularity.

Regge-Wheeler coordinate : dx
dr = N−1, x ± t = const . along spherically

symmetric null geodescics.

v = t + x , w = t − x , g = Ndvdw − r 2dω2.
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The (De Sitter) Kerr metric
De Sitter Kerr metric in Boyer-Lindquist coordinates
MBH = Rt × Rr × S2

ω, with spacetime metric

g =
∆r − a2 sin2 θ∆θ

λ2ρ2 dt2 +
2a sin2 θ((r 2 + a2)2∆θ − a2 sin2 θ∆r )

λ2ρ2 dtdϕ

− ρ2

∆r
dr 2 − ρ2

∆θ
dθ2 − sin2 θσ2

λ2ρ2 dϕ2,

ρ2 = r 2 + a2 cos2 θ, ∆r =

(
1− Λ

3
r 2
)

(r 2 + a2)− 2Mr ,

∆θ = 1 +
1
3

Λa2 cos2 θ, σ2 = (r 2 + a2)2∆θ − a2∆r sin2 θ, λ = 1 +
1
3

Λa2.

Λ ≥ 0 : cosmological constant (Λ = 0 : Kerr), M > 0 : masse, a : angular
momentum per unit masse (|a| < M).

I ρ2 = 0 is a curvature singularity, ∆r = 0 are coordinate singularities.
∆r > 0 on some open interval r− < r < r+. r = r− : black hole
horizon, r = r+ cosmological horizon.

I ∂ϕ and ∂t are Killing. There exist r1(θ), r2(θ) s. t. ∂t is
I timelike on {(t , r , θ, ϕ) : r1(θ) < r < r2(θ)},
I spacelike on
{(t , r , θ, ϕ) : r− < r < r1(θ)}∪{(t , r , θ, ϕ : r2(θ) < r < r+} =: E−∪E+.
The regions E−, E+ are called ergospheres.



The Penrose diagram (Λ = 0)
I Kerr-star coordinates :

t∗ = t + x , r , θ, ϕ∗ = ϕ+ Λ(r),
dx
dr

=
r 2 + a2

∆
,

dΛ(r)

dr
=

a
∆
.

.
Along incoming principal null geodesics : ṫ∗ = θ̇ = ϕ̇∗ = 0, ṙ = −1.

I Form of the metric in Kerr-star coordinates :
g = gttdt∗2+2gtϕdt∗dϕ∗+gϕϕdϕ∗2+gθθdθ2−2dt∗dr+2a sin2 dϕ∗dr .

I Future event horizon : H+ := Rt∗ × {r = r−} × S2
θ,ϕ∗ .

I The construction of the past event horizon H− is based on outgoing
principal null geodesics (star-Kerr coordinates). Similar
constructions for future and past null infinities I+ and I− using the
conformally rescaled metric ĝ = 1

r2 g.



1.2 The Dirac and Klein-Gordon equation on the (De Sitter)
Kerr metric

The Klein-Gordon equation We now consider the unitary transform

U :
L2(M; σ2

∆r ∆θ
drdω) → L2(M; drdω)

ψ 7→ σ√
∆r ∆θ

ψ

If ψ fulfills (2g + m2)ψ = 0, then u = Uψ fulfills

(∂2
t − 2ik∂t + h)u = 0.(1)

with

k =
a(∆r − (r 2 + a2)∆θ)

σ2 Dϕ,

h = − (∆r − a2 sin2 θ∆θ)

sin2 θσ2
∂2
ϕ −
√

∆r ∆θ

λσ
∂r ∆r∂r

√
∆r ∆θ

λσ

−
√

∆r ∆θ

λ sin θσ
∂θ sin θ∆θ∂θ

√
∆r ∆θ

λσ
+
ρ2∆r ∆θ

λ2σ2 m2.

h is not positive inside the ergospheres. This entails that the natural
conserved quantity

Ẽ(u) = ‖∂tu‖2 + (hu|u)

is not positive→ superradiance.



Dirac equation

The situation is easier for the Dirac equation ! Weyl equation :

∇A
A′φA = 0.

Conserved current on general globally hyperbolic spacetimes

V a = φAφ
A′
, C(t) =

1√
2

∫
Σt

VaT adσΣt = const .

T a : normal to Σt ,M =
⋃

t Σt foliation of the spacetime.

I Newman-Penrose tetrad la, na,ma,ma :
lala = nana = mama = lama = nama = 0.

I Normalization lana = 1 , mama = −1
I la, na : Scattering directions.

I Spin frame oAoA′ = la , ιAιA
′

= na , oAιA
′

= ma

ιAoA′ = ma , oAι
A = 1

I Components in the spin frame : φ0 = φAoA, φ1 = φAι
A

I Weyl equation :{
na∂aφ0 −ma∂aφ1 + (µ− γ)φ0 + (τ − β)φ1 = 0,
la∂aφ1 −ma∂aφ0 + (α− π)φ0 + (ε− ρ̃)φ1 = 0.



Some aspects of the study of field equations on the (De Sitter)
Kerr metric

I Superradiance. Exists for entire spin equations (Klein-Gordon,
Maxwell), no superradiance for half integer spin equations (Dirac,
Rarita Schwinger).

I Local geometry. Trapping. Toy model for Schwarzschild

(∂2
t + P)u = 0, P = −∂2

x − V ∆S2 .

V has a non degenerate maximum at r = 3M (photon sphere).
h−2 = l(l + 1) where l(l + 1) are the eigenvalues of −∆S2 is a good
semiclassical parameter. Similar trapping in (De Sitter) Kerr.
Normally hyperbolic trapping.

I Geometry at infinity. Schwarzschild. Reinterpretation of P as a
perturbation of the Laplacian on a riemannian manifold with two
ends :

I Λ = 0 : one asymptotically euclidean end (corresponding to infinity) and
one asymptotically hyperbolic end (corresponding to the black hole
horizon).

I Λ > 0 : two asymptotically hyperbolic ends.

Consequence : the study of the low frequency behavior is easier in
the De Sitter case (case of positive cosmological constant).
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2 Asymptotic completeness for the Klein-Gordon equation on
the De Sitter Kerr metric (with C. Gérard and V. Georgescu)

2.1 : 3+1 decomposition, energies, Killing fields Let v = e−iktu. Then u is
solution of (1) if and only if v is solution of

(∂2
t + h(t))v = 0, h(t) = e−ikth0eikt , h0 = h + k2 ≥ 0.

Natural energy :
‖∂tv‖2 + (h(t)v |v).

Rewriting for u :
Ė(u) = ‖(∂t − ik)u‖2 + (h0u|u).

This energy is positive, but may grow in time→ superradiance.

Remark
k = ΩDϕ and Ω has finite limits Ω−/+ when r → r∓. These limits are
called angular velocities of the horizons. The Killing fields ∂t − Ω−/+∂ϕ
on the De Sitter Kerr metric are timelike close to the black hole (-) resp.
cosmological (+) horizon. Working with these Killing fields rather than
with ∂t leads to the conserved energies :

Ẽ−/+(u) = ‖(∂t − Ω−/+∂ϕ)u‖2 + (h0 − (k − Ω−/+Dϕ)2u|u).

Note that in the limit k → Ω−/+Dϕ the expressions of Ė(u) and Ẽ−/+(u)
coincide.



2.2 The abstract equation

H Hilbert space. h, k selfadjoint, k ∈ B(H). (∂2
t − 2ik∂t + h)u = 0,

u|t=0 = u0,
∂tu|t=0 = u1.

(2)

Hyperbolic equation

(A1) h0 := h + k2 ≥ 0.

Formally u = eiztv solution if and only if

p(z)v = 0

with p(z) = h0 − (k − z)2 = h + z(2k − z), z ∈ C. p(z) is called the
quadratic pencil.

Conserved quantities

〈u|u〉` := ‖u1 − `u0‖2 + (p(`)u0|u0),

where p(`) = h0 − (k − `)2. Conserved by the evolution, but in general
not positive definite, because none of the operators p(`) is in general
positive.



Spaces and operators

Hi : scale of Sobolev spaces associated to h0.

(A2) 0 /∈ σpp(h0); h1/2
0 kh−1/2

0 ∈ B(H).

Homogeneous energy spaces

Ė = Φ(k)h−1/2
0 H⊕H, Φ(k) =

(
1l 0
k 1l

)
.

where Ė is equipped with the norm ‖(u0, u1)‖2
Ė = ‖u1− ku0‖2 + (h0u0|u0).

Klein Gordon operator

ψ = (u,
1
i
∂tu), (∂t − iH)ψ = 0, H =

(
0 1l
h 2k

)
,

(H − z)−1 = p−1(z)

(
z − 2k 1l

h z

)
.

We note Ḣ the Klein-Gordon operator on the homogeneous energy
space.



2.3 Results in the De Sitter Kerr case

Uniform boundedness of the evolution

(3) Hn = {u ∈ L2(R× S2) : (Dϕ − n)u = 0}, n ∈ Z.

We construct the homogeneous energy space Ėn as well as the
Klein-Gordon operator Ḣn as in Sect. 3.2.

Theorem

There exists a0 > 0 such that for |a| < a0 the following holds : for all
n ∈ Z, there exists Cn > 0 such that

(4) ‖e−itḢn
u‖Ėn ≤ Cn‖u‖Ėn , u ∈ Ėn, t ∈ R.

Remark

1. Note that for n = 0 the Hamiltonian Ḣn = Ḣ0 is selfadjoint, therefore
the only issue is n 6= 0.
2. Different from uniform boundedness on Cauchy surfaces crossing the
horizon.



Asymptotic dynamics

x ± t = const . along principal null geodesics. Asymptotic equations :

(∂2
t − 2Ω−/+∂ϕ∂t + h−/+)u−/+ = 0,(5)

h−/+ = Ω2
−/+∂

2
ϕ − ∂2

x .

The conserved quantities :

‖(∂t − iΩ−/+Dϕ)u−/+‖2 + ((h−/+ − Ω2
−/+∂

2
ϕ)u−/+|u−/+)

= ‖(∂t − iΩ−/+Dϕ)u−/+‖2 + (−∂2
x u−/+|u−/+)

are positive. Let `−/+ = Ω−/+n. Also let i−/+ ∈ C∞(R), i− = 0 in a
neighborhood of∞, i+ = 0 in a neighborhood of −∞ and i2

− + i2
+ = 1. Let

hn
−/+ = −∂2

x − `2
−/+, k−/+ = `−/+, Hn

−/+ =

(
0 1l

h−/+ 2k−/+

)
acting on Hn defined in (3).

We associate to these operators the natural homogeneous energy
spaces Ėn

−/+. Let Efin,n
−/+ be the subspace of those functions which have

finite momenta with respect to −∆S2 .



Theorem

There exists a0 > 0 such that for all |a| < a0 and n ∈ Z \ {0} the
following holds :

I i) For all u ∈ Efin,n
−/+ the limits

W−/+u = lim
t→∞

eitḢn
i2
−/+e−itḢn

−/+ u

exist in Ėn. The operators W−/+ extend to bounded operators
W−/+ ∈ B(Ėn

−/+; Ėn).
I ii) The inverse wave operators

Ω−/+ = s- lim
t→∞

eitḢn
−/+ i2

−/+e−itḢn

exist in B(Ėn; Ėn
−/+).

i), ii) also hold for n = 0 if m > 0.

Remark
Results uniform in n recently obtained by Dafermos, Rodnianski,
Shlapentokh-Rothman for the wave equation on Kerr.



2.4 Remarks on the proof

I 1st step : ‖p−1(z)u‖ . |z|−1|Imz|−1‖u‖, uniformly in
|z| ≥ (1 + ε)‖k‖B(H), |Imz| > 0. Interpretation : superradiance does
not occur for |z| ≥ (1 + ε)‖k‖.

I 2nd step : gluing of asymptotic resolvents using different Killing
fields. The poles of the resolvent in the upper half plane are all
contained in a large ball (first step). Low frequency behavior ok
because of asymptotically hyperbolic character (uses classical result
of Mazzeo-Melrose).

I 3 rd step : suitable integrated resolvent estimates hold outside some
discrete closed set of so called singular points, link with real
resonances.

I 4th step : the conserved energy becomes positive and comparable
to the energy norm for high frequencies→ boundedness for high
frequencies.

I 5th step No real resonances on the real line for suitable small a
(perturbation argument from a = 0, see Bony-H., Dyatlov).
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Scattering theory for massless Dirac fields on the Kerr metric
(with J.-P. Nicolas)

3.1 The Dirac equation and the Newman-Penrose formalism Weyl
equation :

∇A
A′φA = 0.

Conserved current :

V a = φAφ
A′
, C(t) =

1√
2

∫
Σt

VaT adσΣt = const .

T a : normal to Σt .
I Newman-Penrose tetrad la, na,ma,ma :

lala = nana = mama = lama = nama = 0.
I Normalization lana = 1 , mama = −1
I la, na : Scattering directions.

I Spin frame oAoA′ = la , ιAιA
′

= na , oAιA
′

= ma

ιAoA′ = ma , oAι
A = 1

I Components in the spin frame : φ0 = φAoA, φ1 = φAι
A

I Weyl equation :{
na∂aφ0 −ma∂aφ1 + (µ− γ)φ0 + (τ − β)φ1 = 0,
la∂aφ1 −ma∂aφ0 + (α− π)φ0 + (ε− ρ̃)φ1 = 0.



A new Newman Penrose tetrad

Problem : The Kerr metric is at infinity a long range perturbation of the
Minkowski metric. In the long range situation asymptotic completeness is
generically false without modification of the wave operators.

Dirac equation on Schwarzschild :

i∂t Ψ = D/SΨ,D/S = Γ1Dx +
(1− 2M

r )1/2

r
D/S2 + V .

ok because of spherical symmetry.

Tetrad adapted to the foliation : la + na = T a. Conserved quantity :

1√
2

∫
Σt

(|φ0|2 + |φ1|2)dσΣt .

la, na ∈ span{T a, ∂r}. Ψ spinor multiplied by a certain weight :

i∂t Ψ = D/K Ψ, D/K = hD/symh + VϕDϕ + V .

Well adapted to time dependent scattering : h2 − 1, Vϕ, V short range.



3.2 Principal results

Comparison dynamics

H = L2((R× S2); dxdω);C2), DH = γDx − a
r2
++a2 Dϕ,D∞ = γDx ,

γ =

(
1 0
0 −1

)
, H− = {(ψ0, 0) ∈ H} (resp.H+ = {(0, ψ1) ∈ H}).

Theorem (Asymptotic velocity)

There exist bounded selfadjoint operators s.t. for all J ∈ C∞(R) :

J(P±) = s − lim
t→±∞

e−itD/K J
(x

t

)
eitD/K ,

J(∓γ) = s − lim
t→±∞

e−itDH J
(x

t

)
eitDH

= s − lim
t→±∞

e−itD∞J
(x

t

)
eitD∞ .

In addition we have :
σ(P+) = {−1, 1} .



Theorem (Asymptotic completeness)

The classical wave operators defined by the limits

W±H := s − lim
t→±∞

e−itD/K eitDH PH∓ ,

W±∞ := s − lim
t→±∞

e−itD/K eitD∞PH± ,

Ω±H := s − lim
t→±∞

e−itDH eitD/K 1R−(P±) ,

Ω±∞ := s − lim
t→±∞

e−itD∞eitD/K 1R+ (P±)

exist.

Remark
1. Proof based on Mourre theory.
2. The same theorem holds with more geometric comparison dynamics.
3. Generalized by Daudé to the massive charged case.
4. Schwarzschild : Nicolas (95), Melnyk (02), Daudé (04).



3.3 Geometric interpretation

Penrose compactification of block I

I I± are constructed using the conformally rescaled metric ĝ = 1
r2 g.

I The Weyl equation is conformally invariant :
∇̂AA′ φ̂A = 0, where φ̂A = rφA.
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I limr→r+ Ψ0(γ−V ,θ,ϕ](r)) =: Ψ0|H+ (0,V , θ, ϕ]),
limr→r+ Ψ1(γ−V ,θ,ϕ](r)) = 0.
Ψ is solution of the Dirac equation. γ−V ,θ,ϕ] is the principal incoming
null geodesic meeting H+ at (0,V , θ, ϕ]).

I Trace operators :

T +
H :

C∞0 (Σ0,C2) → C∞(H+,C)
ΨΣ0 7→ Ψ0|H+ .

I H : Hilbert space associated to Σ0, HH± Hilbert spaces associated
to H±.

Theorem

The trace operators T ±H extend in a unique manner to bounded operators
from H to HH± .

Remark

Let F±H be the C∞ diffeomorphisms from H± onto Σ0 defined by
identifying points along incoming (resp. outgoing) principal null geodesics
and Ω±H,pn inverse wave operators with comparison dynamics given by
the principal null directions. Then T ±H = (F±H )∗Ω±H,pn. Comparison

dynamics PN = γDr∗ − a2

r2+a2 Dϕ.
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Same construction for T ±I and HI± . T ±I can be extended to bounded
operators from H to HI± .

ΠF :
H → HH+ ⊕HI+ =: HF

ΨΣ0 7→ (T +
H ΨΣ0 , T

+
I ΨΣ0 ).

Theorem (Goursat problem)
ΠF is an isometry. In particular for all Φ ∈ HF , there exists a unique
solution of the Dirac equation Ψ ∈ C(Rt ,H) s.t. Φ = ΠF Ψ(0).

Remark
1) First constructions of this type : Friedlander (Minkowski, 80, 01),
Bachelot (Schwarzschild, 91).
2) The inverse is possible : Mason, Nicolas (04), Joudioux (10)
(asymptotically simple space-times),
Dafermos-Rodnianski-Shlapentokh-Rothman (Kerr).



The Hawking effect as a scattering problem
4.1 The collapse of the star

Mcol =
⋃

t

Σcol
t , Σcol

t = {(t , r̂ , ω) ∈ Rt × Rr̂ × S2
ω; r̂ ≥ ẑ(t , θ)}.

Assumptions :
III For r̂ > ẑ(t , θ), the metric is the Kerr Newman metric.
I ẑ(t , θ) behaves asymptotically like certain timelike geodesics in the

Kerr-Newman metric. We suppose for the conserved quantities L
(angular momentum), Q (Carter constant) and Ẽ (rotational
energy) : L = Q = Ẽ = 0. We also suppose an asymptotic condition
on the surface of the star :

ẑ(t , θ) = −t−Â(θ)e−2κ−t +O(e−4κ− t ), t →∞.

κ− > 0 is the surface gravity of the outer horizon, Â(θ) > 0.

Remark
1. r̂ is a coordinate adapted to simple null geodesics (t ± r̂ = const .
along these geodesics).
2. Dirac inMcol : we add a boundary condition (MIT)
→ Ψ(t) = U(t , 0)Ψ0.
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ω; r̂ ≥ ẑ(t , θ)}.

Assumptions :
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ẑ(t , θ) = −t−Â(θ)e−2κ−t +O(e−4κ− t ), t →∞.

κ− > 0 is the surface gravity of the outer horizon, Â(θ) > 0.

Remark
1. r̂ is a coordinate adapted to simple null geodesics (t ± r̂ = const .
along these geodesics).
2. Dirac inMcol : we add a boundary condition (MIT)
→ Ψ(t) = U(t , 0)Ψ0.



4.2 Dirac quantum fields
Dimock ’82.

Mcol =
⋃
t∈R

Σcol
t , Σcol

t = {(t , r̂ , θ, ϕ); r̂ ≥ ẑ(t , θ)}.

Dirac quantum field Ψ0 and the CAR-algebra U(H0) constructed in the
usual way. Fermi-Fock representation.

Scol :
(C∞0 (Mcol ))4 → H0

Φ 7→ Scol Φ :=
∫
R U(0, t)Φ(t)dt

Quantum spin field :

Ψcol :
(C∞0 (Mcol ))4 → L(F(H0))

Φ 7→ Ψcol (Φ) := Ψ0(Scol Φ)

Ucol (O) = algebra generated by Ψ∗col (Φ1)Ψcol (Φ2), suppΦj ⊂ O.

Ucol (Mcol ) =
⋃

O⊂Mcol

Ucol (O).

Same procedure onMBH :

S : Φ ∈ (C∞0 (MBH))4 7→ SΦ :=

∫
R

e−itHΦ(t)dt .



States

II Ucol (Mcol )
Vacuum state :

ωcol (Ψ∗col (Φ1)Ψcol (Φ2)) := ωvac(Ψ∗0 (Scol Φ1)Ψ0(Scol Φ2))

= 〈1[0,∞)(H0)Scol Φ1,Scol Φ2〉.

I UBH(MBH)
I Vacuum state

ωvac(Ψ∗BH (Φ1)ΨBH (φ2)) = 〈1[0,∞)(H)Sφ1,Sφ2〉.
I Thermal Hawking state

ωη,σHaw (Ψ∗BH (Φ1)ΨBH (Φ2)) = 〈µeσH (1 + µeσH )−1SΦ1,SΦ2〉H
=: ωη,σKMS(Ψ∗(SΦ1)Ψ(SΦ2)),

THaw = σ−1, µ = eση , σ > 0.

THaw Hawking temperature, µ chemical potential.
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The Hawking effect

Φ ∈ (C∞0 (Mcol ))4, ΦT (t , r̂ , ω) = Φ(t − T , r̂ , ω).

Theorem (Hawking effect)

Let Φj ∈ (C∞0 (Mcol ))4, j = 1, 2. We have

lim
T→∞

ωcol (Ψ∗col (ΦT
1 )Ψcol (ΦT

2 ))

= ωη,σHaw (Ψ∗BH(1R+ (P−)Φ1)ΨBH(1R+ (P−)Φ2))

+ ωvac(Ψ∗BH(1R−(P−)Φ1)ΨBH(1R−(P−)Φ2)),

THaw = 1/σ = κ−/2π, µ = eση, η =
qQr−

r 2
− + a2

+
aDϕ

r 2
− + a2

.



4.3 Explanation

Collapse of the star
Change in frequencies : mixing of positive and negative frequencies.



4.4 The analytic problem

lim
T→∞

||1[0,∞)(D/0)U(0,T )f ||20

= 〈1R+ (P−)f , µeσD/(1 + µeσD/)−11R+ (P−)f 〉
+ ||1[0,∞)(D/)1R−(P−)f ||2.(6)

Remark
1) Hawking 1975,
2) Bachelot (99), Melnyk (04).
3) Schwarzschild : Moving mirror, equation with potential.



4.5 Toy model : The moving mirror

z(t) = −t − Ae−2κt ; A > 0, κ > 0,
∂tψ = iD/ψ,

ψ1(t , z(t)) =
√

1−ż
1+ż ψ2(t , z(t))

ψ(t = s, .) = ψs(.)

, D/ =

(
1 0
0 −1

)
Dx .

Solution given by a unitary propagator U(t , s). Conserved L2 norm :

||ψ||2Ht =

∫ ∞
z(t)
|ψ|2(t , x)dx .

Explicit calculation :

lim
T→∞

||1[0,∞)(D/0)U(0,T )f ||20 = 〈e
2π
κ

D/
(

1 + e
2π
κ

D/
)−1

P2f ,P2f 〉

+ ||1[0,∞)(D/)P1f ||2.

Scattering problem : show that the real system behaves the same way.



4.6 Some remarks on the proof

I We compare to a dynamics for which the radiation can be explicitly
computed.

I Can’t compare dynamics on Cauchy surfaces→ characteristic
Cauchy problem.

I Three time intervals :
I [T/2 + c0,T ] no boundary involved→ use asymptotic

completeness+propagation estimates.
I [tε,T/2 + c0] use Duhamel formula + construction of tetrad and

coordinates :
I There exists a coordinate system (t, r̂ , ω) such that r̂ = −t + c along

incoming simple null geodesics (L = Q = 0).
I There exists a Newman Penrose tetrad such that :

D/ = ΓDr̂ + Pω + W , Γ = Diag(1,−1,−1, 1). Pω is a differential operator
with derivatives only in the angular directions and W is a potential.

I [0, tε] :
‖1[0,∞](D/0)U(0, tε)UH (tε,T )Ω−H f‖ ∼ ‖1[0,∞)(DH,0)UH (0,T )Ω−H f‖ if
evolution is essentially given by the group (and not the evolution
system). For this

I UH (tε, T )Ω−H f ⇀ 0.
I The hamiltonian flow stays outside the surface of the star for data in the

given regime (|ξ| >> |Θ|).
I Propagation of singularities, compact Sobolev embeddings.
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5.1 Local energy decay for the wave equation on the De Sitter
Schwarzschild spacetime (a=0)

Distribution of resonances (Sa Barreto-Zworski ’97) :

Modified energy space :
‖(u0, u1)‖2

E(mod) = ‖u1‖2 + 〈Pu0, u0〉+
(∫ 1

0

∫
S2 |u0(s, ω)|2ds dω

)
.

Theorem (Bony-Ha ’08)

Let χ ∈ C∞0 (M). There exists ε > 0 such that χe−itHχu =

γ

(
rχ〈r , χu2〉

0

)
+ R2(t)u, ‖R2(t)u‖Emod . e−εt

∥∥−∆ωu
∥∥
Emod .

Remark
1. No resonance 0 for Klein Gordon equation with positive mass of the
field m > 0.
2. Similar picture in much more general situations, see Vasy ’13.



Consequence for asymptotic completeness

Theorem (Alexis Drouot ’15)
Consider u solution inM of (m > 0)

(2 + m2)u = 0, u|t = 0 = u0, ∂tu|t = 0 = u1

with u0, u1 in C1. There exists C1 functions (called radiation fields of u)
u∗± :M→ R and C ∈ R (depending only on supp(u0; u1)) such that

u∗±(x , ω) = 0 for x ≤ C; u∗± = OC∞(e−ν0|x|),

and

u(t , x , ω) = u∗+(−(t + x), ω) + u∗−(−t + x , ω) +OC∞(M−)(e
ct ).

Proof uses results of Bony-H. ’08 and Melrose-Sa-Barreto-Vasy ’14.



Convergence rate for the Hawking effect

Theorem (Alexis Drouot ’15)
There exists Λ0 > 0 such that for all Λ < Λ0 the following is true. Let

ET (u0, u1) = EH0,T0 (u(0), ∂tu(0)),

where u solves for m > 0
(2g + m2) = 0,

u|B = 0,
u(T ) = u0,

∂tu(T ) = u1

Then

ET (u0, u1) = ED2
x ,T0

+ (u∗+,Dx u∗+)+ED2
x ,THaw
− (u∗−,Dx u∗−)+O(e−cT ), T →∞.

for some c > 0.



Comments on the Klein-Gordon case

I Scattering theory
I The fact that the mixed term has two different limits makes it more

complicated than for the Klein-Gordon equation coupled to an electric
field. Mourre theory on Krein spaces : Georgescu-Gérard-H. ’14.

I Time dependent scattering should depend only on the behavior of the
resolvent on the real axis.

I Hawking effect
I Proof of a theorem about the Hawking effect for bosons should now

work in principle in the same way. Temperature depends on n.
I Highly idealized model.



Thank you for your attention !
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