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Inverse problem for the conductivity equation
Conductivity equation

V-o(x)Vu(x) =0 onQCR? d=2

Inverse problem: Do the measurements made on the boundary
determine the conductivity, that is, does the voltage-to-current map
or the Dirichlet-to-Neumann operator A,

Ao : ulpq — v-oVu|sa

determine the conductivity o(x) in Q7

//\\
U A

Figure: EIT by Isaacson, Mueller, Newell and Siltanen.



Some results on the Electrical Impedance Tomography (EIT)

» Calderén 1980: Linearized problem.

» Sylvester-Uhlmann 1987, Nachman 1988: Smooth
conductivities in 3D.

» Nachman 1996: Smooth conductivities in 2D.

» Isaacson-Mueller-Newell-Siltanen 2004: Numerical
reconstruction algorithm.

» Astala-P3ivarinta 2006: Bounded conductivities in 2D,
Astala-L.-Pdivarinta 2016: Degenerated conductivities in 2D.

» Lee-Uhlmann 1989, L.-Uhlmann 2001, L.-Taylor-Uhlmann
2003, Dos Santos Ferreira-Kenig-Salo-Uhlmann 2009:
Inverse problem for A, on manifolds.

» Greenleaf-L.-Uhlmann 2003: Counterexaples related to
invisibility cloaking.

» Daude-Kamran-Nicoleau 2016: New counterexamples with
smooth conductivities.



Exponentially decaying waves
Let ¢ = (a, ib) € C? where a,b € R, |a] = |b|, and b > 0. Then

—bxo

i1 emhe x— (x1,x0) € R x Ry

ux) =€ =e
are solutions of V- Vu(x) = 0 in the half-space R x Ry. These
solutions decay as xo — 0o and oscillate in the x; direction with the
spatial frequency a.

¥ direction i

[Lad]

The vector ¢ € C? is called the complex wave number or the
complex frequency and v a solution of Complex Geometrical Optics.
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Edge detection in Electric Impedance Tomography

Our aim in this talk is to determine jumps of the conductivity
function.
In particular, we want to determine locations of several jump

surfaces in the presence of smooth, unknown background
conductivity.

u]
o)
I
i
it




Why a new edge detection method?

Our main motivation: brain strokes imaging.

e ischemic stroke: lower
conductivity.
Left: MRI image of
ischemia (Hellerhoff 2010)

e haemorrhagic stroke:
higher conductivity.

Challenges:

e low conductive skull layer,

e unknown background.

Some existing work:

e (Shi et al, 2009) experimental study on rhesus monkeys,
e (Malone et al., 2014) simulated multi-frequency data.
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Solutions in complex geometrical optics

Let Q = B(0,1) Cc R? and

o:R? 5 R,
0<c<o(x)<a,
supp (o) C Q.
Let us consider
V- (0(x)Vu(x)) =0, x=(x1,x)cR> (1)

Let
n=ng + in; € C? with |ng| = |m| and 7 € R.

We consider solutions of (1) of the form

u(x) = €™ >v(x, ).



Since u(x) = €™ *v(x, T) satisfies the conductivity equation,

1
0= %V (o(x)Vu(x))

— (8 -+ L(Vo)- V(7))

= (AV(X, ) +2itn- Vv(x,T) + (%VU) A(V +itn)v(x, T)) e x



Equation in time-domain

Let V(x,t) = Fr¢(v(x, 7)) be the Fourier transform of v(x, 7) in
the 7 variable, that is,

(. 8) = Frevi(x, t) = / et y(x, 7) dr.
R

We say that t is the pseudo-time corresponding to the complex
frequency 7.
The Fourier transform of the equation

1
Av(x,7)+2itn-Vv(x,7) + (;VO‘) (V+itn)v(x,7) =0.
is

. J .. 1 d -
Aw(x,t) + 27)5 -VVv(x, t) + (;VU) (V+ na)v(x, t)=0.



The principal part of the equation
DU(x, ) + 202 VO(x, ) + 2(Vo) - (V + 02 )o(x, £) = 0
i nat 9 o nat i -
is given by the operator

ﬁ:PR+/'P,:A+2n§t~V
where n = ng + in; and
PR:A—i—ZnRg‘V
ot
73/:277188t-v

They have symbols

pR(Xa t’gvT) = 5% +€§ + 27—77R g
P/(X, taévT) = 27—77/ 6



Complex principal type operator

Let p(x,t,&,7) = pr + ip; be the symbol of O="Pr+iP.
The characteristic variety of p is

Y = {(x,t,&7)€ TR\ 0; p(x,t,&7) =0}
On X the Poisson brackets of pr(x,t,&,7) and p(x,t,&, ) satisfy
{pPr,pi} = (OxPR - Ocpi+0tpr - Orp1)—( OcpPr - Oxpi+0-pr-0:p) =0

and the differentials dpr and dp; are linearly independent on %.

This implies that O=Pr+iP is a complex principal type
operator.



Propagation of singularities

By Hérmander-Duistermaat 1972, for a real principal type operator,
e.g the wave operator [, there are invertible Fourier Integral
Operators A; and A; such that

Dg _A188A27 (yl,yg,...,de) Gde.
Y1
For the wave equation the light-like singularities propagate along
light rays.
For the complex principal type operator O = Pg + iP; there are
invertible Fourier integral operators A; and A, such that

~ 0

.0
D:A]_( +/7)A27 ()/1,)/2a~w}’2d) €R2d‘

Ay Oy

For O, singularities propagate along two dimensional surfaces,
called strips.

For example, if OG(x, t) = &(x, t) then G(x, t) is singular on
planes t =0 and 2ngr-x+t = 0.



In this talk, our aim is to consider propagation and reflection of
singularities in Complex Geometric Optics.

In figure below the magenta plane wave hits to the blue surface and
causes reflected light blue waves.

Next we explain this in detail for equation V-oVu = 0.
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Complex formulation of conductivity equation

We denote z = xq + ixo € C and identify R? with C.

We use complex frequency k = 70 where 7 € R and 6 € C, |0] = 1.
In Astala-Paivarinta 2006, solutions for V- oV u = 0 are written
using the real-linear Beltrami equation,

ngﬂ(z, k) = w(z)0.f(z,k), zeC,
f(z,k) = e*(1+0(]z|™)) as |z| — oco.
Here, the Beltrami coefficient 1(z) is defined by

_1-0(2)

wz) = 14+ 0(z)
p is a supported in Q and ||p| oo (cy < 1.

The function u = Re (f,) + iIm (f_,) satisfies V-oVu = 0.
The map A, determines fi,(z, k) for z€ C\ Q.



Notations

Let us write the Complex Geometrical Optics solutions of the
Beltrami equation
0zf, = no,f,

in the form of f = ‘incident wave' + ‘scattered wave’,

fu(z, k) = eikzv(z, k),
v(z, k) =1+ vec(z, k),
Vee(z, k) = O(|z] ™), as z — oo.

Let -
kz+kz)

ek(Z) _ ei( ei2Re (kz)

9

so that |ex(z)| = 1 and ex(z) = e_k(2).



The solid Cauchy transform 52_1 is

/
9. f(2) = 1/ f() e
C

T P
For any k € C, the scattered wave vs-(z, k) satisfies
OzVee — pe_i (0z + ik)vse = —ike_yp,  vac(z, k) = O(|z| 1)
that yields the Lippmann-Schwinger type equation
(1 = A)vee = —ik D, (e_kp),

where -
Av =0, (exup(dz + ik)v)

and p(f) := f denotes complex conjugation.



Neumann series

Using (I — A)vse = —iEé;l(e_kp) we can write

0

T a1
Vsc ™~ E Vn, Vi = —ik 82 (e,ku), Vn+1l = .AVn-
n=1

More precisely, v, is the n:th Frechect derivative of the map
Vit o — vee( -, k), thatis, v, = D" Vi|o[u, pt, - - -, 1]
Next we consider the term corresponding to single scattering,

Vi = —izgz_l(e_k,u).

The Dirichlet-to-Neumann map A, determines vsc(z, k) for
z € 09).

The term vi(z, k)|,coq determines singularities of p.
The terms v,(z, k)|,con, n > 2 contribute ‘multiple scattering’,
which explain artifacts in numerics.



Analysis of single order scattering in time domain

We use complex frequency k = 70,0 € St ={0c C: |0 =1}
and the Fourier transform

Froew(z, t) = / e Tw(z,7)dr.
R

The Fourier transform of the single scattering term

V1(27 t, 0) = _iﬁgz_l(e—k,u%

2 1
iz, 6,0) = /C ——— 3/(t + 2Re (62))u(2)) &7




Generalised Radon transform

Define T1 : £'(Q) — D'(02 x R x St) by setting
w(2') = (Tip)(z,t,0) = Va(z, t,6).
The Schwartz kernel of T7 is

Ki(z,t,0,7) = (2 ~ _1 z/)d’(t + 2Re (62")).

For z € 9Q and z’ € supp(u) CC Q the first factor is smooth.
Hence T; is a generalized Radon transform and thus a Fourier
integral operator (FIO).



Consider the conductivity is o(x) = 1 + xg(0,r,)(x) and fixed 6.
Then (z,t) — vi(z,t,0) is singular on three planes:

The magenta plane is the singsupp of the incident wave

fy(z,t) = c5(t + 2Re (0z)). We have i (z,t,0) = cd, *(u- £])
=1 . . ,

where 0, ~ propagates the singularities of the product 4 - f;.



Numerical results (with high resolution data)
Figure shows jumps of o(z) and singularities of t — Vi (z, t,0).

T2

4 %('&7*(;’,275) — W (z,2t))
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‘X-ray images’ appear in the EIT measurements

no jump jump down jump up

o 5 = = E 9DAC¢



The filtered back projection formula for EIT

Let us consider the ‘complex average' of vi(z,t,0) over z € 01,

1
2(¢,0) = —— /89 (2, t,0)dz.

2mi
Let T7 be the operator T : pu+— V5.

Theorem
(T7)*T{ € VY(C) is a pseudo-differential operator with

oprin((T1)*T7)(2,¢) = ¢, z€Q

and

NI=

(27r)*%(—A)* (T3Y*TE =1 mod v71(Q). (2)

Formula (2) is analogous to the filtered back projection formula for
Radon transform.



Reconstruction algorithm

Algorithm: Given the Dirichlet-to-Neumann map A, we determine
Vse(z,t,0), z € 00 and

1

ve(t,0) = 271 g

Vsc(z,t,0)dz.

Then the reconstructed conductivity o,ec(2) is

Nrec(z) = (27‘(‘)7%(—A)7%(T13)*V;C,
1_Hrec(z)

O'rec(Z) = 1+Mrec(2).

On the level of single approximation the reconstructed conductivity
0rec(z) has the same singularities as o(z).
Below, we consider the effect of the higher order scattering.



Numerical results (with high resolution data)
Phantom o(x)

Reconstruction from vy

r

N

Sinogram of v (z,t,0) ‘averaged’ on z € 9Q




Numerical results (Dirichlet-to-Neumann data)

Phantom o(x) Reconstruction from vec




Numerical results (with high resolution data)

Conductivity Filtered back-projection A-tomography




Analysis of higher order terms in time domain

Theorem
Assume that o has jumps on smooth curves v; C R?,
j=1,2,...,J having non-zero curvature.

Then the wavefront set of Vo,11 consists of singularities of the
plane wave that propagate along char(P) and reflect at most 2n+ 1
times from from discontinuities of o. Similar results hold for vy,,.

For example, when singsupp(c) = 9B(0, a), we have
L,={(z,t,0) cR*> xR x S'): t =2ap}, forpcZ.

Outside the support of (z), we see that

n

Singsupp(/v\2n+l) N {(27 1.‘,(9); |Z| > 1} - U (L2p71 U L—(2p—1))'
p=1



Numerical results for o(x) € [1, 10]
Let us consider o(z) having large jumps.




Numerical results for o(x) € [1, 10]

Geometry of the singularities of 1+ v1 + v», and functions
t — v(z,t,0) and t — vi(z,t,0).
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Numerical results for o(x) € [0.5, 2]

The model object.




Numerical results for o(x) € [0.5, 2]
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The reconstruction, no artefacts from higher or

600 700

der term

s are visible.



Thank you for your attention!



