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Inverse problem for the conductivity equation
Conductivity equation

∇·σ(x)∇u(x) = 0 on Ω ⊂ Rd , d = 2.

Inverse problem: Do the measurements made on the boundary
determine the conductivity, that is, does the voltage-to-current map
or the Dirichlet-to-Neumann operator Λσ,

Λσ : u|∂Ω 7→ ν ·σ∇u|∂Ω

determine the conductivity σ(x) in Ω?

Figure: EIT by Isaacson, Mueller, Newell and Siltanen.



Some results on the Electrical Impedance Tomography (EIT)

I Calderón 1980: Linearized problem.
I Sylvester-Uhlmann 1987, Nachman 1988: Smooth

conductivities in 3D.
I Nachman 1996: Smooth conductivities in 2D.
I Isaacson-Mueller-Newell-Siltanen 2004: Numerical

reconstruction algorithm.
I Astala-Päivärinta 2006: Bounded conductivities in 2D,

Astala-L.-Päivärinta 2016: Degenerated conductivities in 2D.
I Lee-Uhlmann 1989, L.-Uhlmann 2001, L.-Taylor-Uhlmann

2003, Dos Santos Ferreira-Kenig-Salo-Uhlmann 2009:
Inverse problem for ∆g on manifolds.

I Greenleaf-L.-Uhlmann 2003: Counterexaples related to
invisibility cloaking.

I Daude-Kamran-Nicoleau 2016: New counterexamples with
smooth conductivities.



Exponentially decaying waves
Let ξ = (a, ib) ∈ C2 where a, b ∈ R, |a| = |b|, and b > 0. Then

u(x) = e iξ· x = e iax1 · e−bx2 , x = (x1, x2) ∈ R× R+

are solutions of ∇ ·∇u(x) = 0 in the half-space R× R+. These
solutions decay as x2 →∞ and oscillate in the x1 direction with the
spatial frequency a.

The vector ξ ∈ C2 is called the complex wave number or the
complex frequency and u a solution of Complex Geometrical Optics.
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Edge detection in Electric Impedance Tomography

Our aim in this talk is to determine jumps of the conductivity
function.
In particular, we want to determine locations of several jump
surfaces in the presence of smooth, unknown background
conductivity.



Why a new edge detection method?

Our main motivation: brain strokes imaging.

• ischemic stroke: lower
conductivity.
Left: MRI image of
ischemia (Hellerhoff 2010)

• haemorrhagic stroke:
higher conductivity.

Challenges:

• low conductive skull layer,

• unknown background.
Some existing work:

• (Shi et al, 2009) experimental study on rhesus monkeys,
• (Malone et al., 2014) simulated multi-frequency data.
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{pR , pI} = 0



Solutions in complex geometrical optics

Let Ω = B(0, 1) ⊂ R2 and

σ : R2 → R,
0 < c0 ≤ σ(x) ≤ c1,

supp (σ) ⊂ Ω.

Let us consider

∇ · (σ(x)∇u(x)) = 0, x = (x1, x2) ∈ R2. (1)

Let
η = ηR + iηI ∈ C2 with |ηR | = |ηI | and τ ∈ R.

We consider solutions of (1) of the form

u(x) = e iτη ·xv(x , τ).



Since u(x) = e iτη ·xv(x , τ) satisfies the conductivity equation,

0 =
1

σ(x)
∇ · (σ(x)∇u(x))

= (∆ +
1
σ

(∇σ) · ∇)(e iτη ·xv(x , τ))

=

(
∆v(x , τ) + 2iτη · ∇v(x , τ) + (

1
σ
∇σ) · (∇+ iτη)v(x , τ)

)
e iτη ·x



Equation in time-domain

Let v̂(x , t) = Fτ→t(v(x , τ)) be the Fourier transform of v(x , τ) in
the τ variable, that is,

v̂(x , t) = Fτ→tv(x , t) =

∫
R
e−itτv(x , τ) dτ.

We say that t is the pseudo-time corresponding to the complex
frequency τ .
The Fourier transform of the equation

∆v(x , τ) + 2iτη · ∇v(x , τ) + (
1
σ
∇σ) · (∇+ iτη)v(x , τ) = 0.

is

∆ŵ(x , t) + 2η
∂

∂t
· ∇v̂(x , t) + (

1
σ
∇σ) · (∇+ η

∂

∂t
)v̂(x , t) = 0.



The principal part of the equation

∆v̂(x , t) + 2η
∂

∂t
· ∇v̂(x , t) +

1
σ

(∇σ) · (∇+ η
∂

∂t
)v̂(x , t) = 0

is given by the operator

�̃ = PR + iPI = ∆ + 2η
∂

∂t
· ∇

where η = ηR + iηI and

PR = ∆ + 2ηR
∂

∂t
· ∇

PI = 2ηI
∂

∂t
· ∇

They have symbols

pR(x , t, ξ, τ) = ξ21 + ξ22 + 2τηR · ξ
pI (x , t, ξ, τ) = 2τηI · ξ



Complex principal type operator

Let p(x , t, ξ, τ) = pR + ipI be the symbol of �̃ = PR + iPI .
The characteristic variety of p is

Σ = {(x , t, ξ, τ) ∈ T ∗R3 \ 0; p(x , t, ξ, τ) = 0}.

On Σ the Poisson brackets of pR(x , t, ξ, τ) and pI (x , t, ξ, τ) satisfy

{pR , pI} = (∂xpR · ∂ξpI+∂tpR · ∂τpI )−( ∂ξpR · ∂xpI+∂τpR · ∂tpI ) = 0

and the differentials dpR and dpI are linearly independent on Σ.

This implies that �̃ = PR + iPI is a complex principal type
operator.



Propagation of singularities
By Hörmander-Duistermaat 1972, for a real principal type operator,
e.g the wave operator �g , there are invertible Fourier Integral
Operators A1 and A2 such that

�g = A1
∂

∂y1
A2, (y1, y2, . . . , y2d) ∈ R2d .

For the wave equation the light-like singularities propagate along
light rays.
For the complex principal type operator �̃ = PR + iPI there are
invertible Fourier integral operators A1 and A2 such that

�̃ = A1(
∂

∂y1
+ i

∂

∂y2
)A2, (y1, y2, . . . , y2d) ∈ R2d .

For �̃, singularities propagate along two dimensional surfaces,
called strips.
For example, if �̃G (x , t) = δ(x , t) then G (x , t) is singular on
planes t = 0 and 2ηR · x + t = 0.



In this talk, our aim is to consider propagation and reflection of
singularities in Complex Geometric Optics.
In figure below the magenta plane wave hits to the blue surface and
causes reflected light blue waves.

Next we explain this in detail for equation ∇ ·σ∇u = 0.
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∂z = 1
2( ∂
∂x + i ∂∂y ), ∂z = 1

2( ∂
∂x − i ∂∂y ), z = x + iy ∈ C



Complex formulation of conductivity equation
We denote z = x1 + ix2 ∈ C and identify R2 with C.
We use complex frequency k = τθ where τ ∈ R and θ ∈ C, |θ| = 1.
In Astala-Päivärinta 2006, solutions for ∇ ·σ∇u = 0 are written
using the real-linear Beltrami equation,

∂z fµ(z , k) = µ(z) ∂z fµ(z , k), z ∈ C,
fµ(z , k) = e ikz(1 +O(|z |−1)) as |z | → ∞.

Here, the Beltrami coefficient µ(z) is defined by

µ(z) =
1− σ(z)

1 + σ(z)
.

µ is a supported in Ω and ‖µ‖L∞(C) < 1.

The function u = Re (fµ) + i Im (f−µ) satisfies ∇ ·σ∇u = 0.

The map Λσ determines f±µ(z , k) for z ∈ C \ Ω.



Notations

Let us write the Complex Geometrical Optics solutions of the
Beltrami equation

∂z fµ = µ∂z fµ

in the form of f = ‘incident wave’ + ‘scattered wave’,

fµ(z , k) = e ikzv(z , k),

v(z , k) = 1 + vsc(z , k),

vsc(z , k) = O(|z |−1), as z →∞.

Let
ek(z) = e i(kz+kz) = e i 2Re (kz),

so that |ek(z)| = 1 and ek(z) = e−k(z).



The solid Cauchy transform ∂
−1
z is

∂
−1
z f (z) =

1
π

∫
C

f (z ′)

z − z ′
d2z ′,

For any k ∈ C, the scattered wave vsc(z , k) satisfies

∂zvsc − µe−k (∂z + ik)vsc = −ike−kµ, vsc(z , k) = O(|z |−1)

that yields the Lippmann-Schwinger type equation(
I −A

)
vsc = −ik ∂−1

z (e−kµ),

where
Av = ∂

−1
z (ekµρ(∂z + ik)v)

and ρ(f ) := f denotes complex conjugation.



Neumann series

Using
(
I −A

)
vsc = −ik ∂−1

z (e−kµ) we can write

vsc ∼
∞∑
n=1

vn, v1 = −ik ∂−1
z (e−kµ), vn+1 = Avn.

More precisely, vn is the n:th Frechect derivative of the map
Vk : µ→ vsc( · , k), that is, vn = DnVk |0[µ, µ, . . . , µ].
Next we consider the term corresponding to single scattering,

v1 = −ik ∂−1
z (e−kµ).

The Dirichlet-to-Neumann map Λσ determines vsc(z , k) for
z ∈ ∂Ω.

The term v1(z , k)|z∈∂Ω determines singularities of µ.
The terms vn(z , k)|z∈∂Ω, n ≥ 2 contribute ‘multiple scattering’,
which explain artifacts in numerics.



Analysis of single order scattering in time domain

We use complex frequency k = τθ, θ ∈ S1 = {θ ∈ C : |θ| = 1}
and the Fourier transform

Fτ→tw(z , t) =

∫
R
e−itτw(z , τ) dτ.

The Fourier transform of the single scattering term

v1(z , t, θ) = −ik ∂−1
z (e−kµ),

is

v̂1(z , t, θ) =
2
θ

∫
C

1
z − z ′

δ′(t + 2Re (θz ′))µ(z ′) d2z ′



Generalised Radon transform

Define T1 : E ′(Ω)→ D′(∂Ω× R× S1) by setting

µ(z ′) 7→ (T1µ)(z , t, θ) = v̂1(z , t, θ).

The Schwartz kernel of T1 is

K1(z , t, θ, z ′) =

(
2
θ

1
z − z ′

)
δ′(t + 2Re (θz ′)).

For z ∈ ∂Ω and z ′ ∈ supp(µ) ⊂⊂ Ω the first factor is smooth.
Hence T1 is a generalized Radon transform and thus a Fourier
integral operator (FIO).



Consider the conductivity is σ(x) = 1 + χB(0,r0)(x) and fixed θ.
Then (z , t) 7→ v̂1(z , t, θ) is singular on three planes:

The magenta plane is the singsupp of the incident wave
fθ(z , t) = cδ(t + 2Re (θz)). We have v̂1(z , t, θ) = c∂

−1
z (µ · f ′θ)

where ∂−1
z propagates the singularities of the product µ · f ′θ .



Numerical results (with high resolution data)
Figure shows jumps of σ(z) and singularities of t 7→ v̂sc(z , t, θ).



‘X-ray images’ appear in the EIT measurements

no jump jump down jump up



The filtered back projection formula for EIT

Let us consider the ‘complex average’ of v̂1(z , t, θ) over z ∈ ∂Ω,

v̂a1 (t, θ) =
1
2πi

∫
∂Ω

v̂1(z , t, θ)dz .

Let T a
1 be the operator T a

1 : µ 7→ v̂a1 .

Theorem
(T a

1 )∗T a
1 ∈ Ψ1(C) is a pseudo-differential operator with

σprin((T a
1 )∗T a

1 )(z , ζ) = |ζ|, z ∈ Ω

and

(2π)−
1
2 (−∆)−

1
2 (T a

1 )∗T a
1 = I mod Ψ−1(Ω). (2)

Formula (2) is analogous to the filtered back projection formula for
Radon transform.



Reconstruction algorithm

Algorithm: Given the Dirichlet-to-Neumann map Λσ, we determine
v̂sc(z , t, θ), z ∈ ∂Ω and

v̂asc(t, θ) :=
1
2πi

∫
∂Ω

v̂sc(z , t, θ)dz .

Then the reconstructed conductivity σrec(z) is

µrec(z) = (2π)−
1
2 (−∆)−

1
2 (T a

1 )∗v̂asc ,

σrec(z) =
1− µrec(z)

1 + µrec(z)
.

On the level of single approximation the reconstructed conductivity
σrec(z) has the same singularities as σ(z).
Below, we consider the effect of the higher order scattering.



Numerical results (with high resolution data)
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Numerical results (Dirichlet-to-Neumann data)
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Numerical results (with high resolution data)
Conductivity Filtered back-projection Λ-tomography



Analysis of higher order terms in time domain

Theorem
Assume that σ has jumps on smooth curves γj ⊂ R2,
j = 1, 2, . . . , J having non-zero curvature.
Then the wavefront set of v̂2n+1 consists of singularities of the
plane wave that propagate along char(P) and reflect at most 2n+ 1
times from from discontinuities of σ. Similar results hold for v̂2n.
For example, when singsupp(σ) = ∂B(0, a), we have

Lp = {(z , t, θ) ∈ R2 × R× S1) : t = 2ap}, for p ∈ Z.

Outside the support of µ(z), we see that

singsupp(v̂2n+1) ∩ {(z , t, θ); |z | ≥ 1} ⊂
n⋃

p=1

(L2p−1 ∪ L−(2p−1)).



Numerical results for σ(x) ∈ [1, 10]
Let us consider σ(z) having large jumps.
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Numerical results for σ(x) ∈ [1, 10]

Geometry of the singularities of 1̂ + v̂1 + v̂2, and functions
t 7→ v̂(z , t, θ) and t 7→ v̂1(z , t, θ).
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Numerical results for σ(x) ∈ [0.5, 2]
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The model object.



Numerical results for σ(x) ∈ [0.5, 2]
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The reconstruction, no artefacts from higher order terms are visible.



Thank you for your attention!


