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Two-body systems

A two-body system, e.g.,

− ∆1

2m1
− ∆2

2m2
− 1

|x1 − x2|

in its center of mass frame takes the form

−∆CM

2M
− ∆Rel

2µ
− 1

|xRel|
,

where M = m1 + m2 (total mass) and µ = m1m2/M (reduced
mass).

If the relative Hamiltonian is in a bound state, e.g.,
ψ0(x) = exp(−µ|x |) (3 dimensions), then the dynamics of the
bound cluster ϕ(xCM)ψ0(xRel) will be described by the free
Hamiltonian

−µ
2
− ∆CM

2M
.
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Dispersive Two-body Systems

If we instead consider two dispersive particles

ω1(p1) + ω2(p2)− V (x1 − x2),

one may still pass to ”center of mass” coordinates:

ω1(pCM/2 + pRel) + ω2(pCM/2− pRel)− V (xRel)

Writing ωξ(k) = ω1(ξ/2 + k) + ω2(ξ/2− k), we find the fibrated
Hamiltonian ∫ ⊕

R3

(
ωξ(p)− V (x)

)
dξ.

If {ψξ}ξ∈R3 is a family of bound states (ωξ − V )ψξ = Σ(ξ)ψξ,

then the dynamics of the cluster
∫ ⊕

ϕ(ξ)ψξdξ is governed by the
operator Σ(pCM).

A A R H U S U N I V E R S I T Y

Department of Mathematics Jacob Schach Møller



Dispersive Two-body Systems

If we instead consider two dispersive particles

ω1(p1) + ω2(p2)− V (x1 − x2),

one may still pass to ”center of mass” coordinates:

ω1(pCM/2 + pRel) + ω2(pCM/2− pRel)− V (xRel)

Writing ωξ(k) = ω1(ξ/2 + k) + ω2(ξ/2− k), we find the fibrated
Hamiltonian ∫ ⊕

R3

(
ωξ(p)− V (x)

)
dξ.

If {ψξ}ξ∈R3 is a family of bound states (ωξ − V )ψξ = Σ(ξ)ψξ,

then the dynamics of the cluster
∫ ⊕

ϕ(ξ)ψξdξ is governed by the
operator Σ(pCM).

A A R H U S U N I V E R S I T Y

Department of Mathematics Jacob Schach Møller



Dispersive Two-body Systems

If we instead consider two dispersive particles

ω1(p1) + ω2(p2)− V (x1 − x2),

one may still pass to ”center of mass” coordinates:

ω1(pCM/2 + pRel) + ω2(pCM/2− pRel)− V (xRel)

Writing ωξ(k) = ω1(ξ/2 + k) + ω2(ξ/2− k), we find the fibrated
Hamiltonian ∫ ⊕

R3

(
ωξ(p)− V (x)

)
dξ.

If {ψξ}ξ∈R3 is a family of bound states (ωξ − V )ψξ = Σ(ξ)ψξ,

then the dynamics of the cluster
∫ ⊕

ϕ(ξ)ψξdξ is governed by the
operator Σ(pCM).

A A R H U S U N I V E R S I T Y

Department of Mathematics Jacob Schach Møller



Isolated Mass Shells

In one dimension, the structure of isolated mass shells is well under
stood, due to Kato’s analytic perturbation theory (provided
k → ωj(k) are real analytic).

In the vicinity of a simple eigenvalue,
mass shells are graphs of real analytic functions, whereas near
degenerate eigenvalues, the shell may split into real analytic
branches meeting at an algebraic singularity (Puisseaux series).

In dimension d , the isolated mass shells are locally the zero set of a
real analytic function of d variables. This implies that the isolated
energy-momentum spectrum is a semi-analytic subset of the
complement of the continuous energy-momentum spectrum.
(Gérard-Nier 1998).

Semi-analytic sets are convenient because they admit Whitney
Stratification into locally finitely many real analytic manifolds.
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Embedded Mass Shell

I am not aware of a concrete example of a dispersive system with
an embedded mass shell, but ruling them out in general (outside a
weak coupling regime) is probably a very difficult problem.

Examples of embedded eigenvalues at a given total momentum ξ
however exists, but they are presumably unstable. Take
ωj(k) = (k · k)2/2, f ∈ C∞0 (Rd) \ {0} with f ≥ 0 and put
u = (−∆ + 1)−1f ∈ S(Rd) and V = 1

u (−∆− 1)f ∈ C∞0 (Rd)
(recall that (−∆ + 1)−1 is positivity improving). Then

(ω0(p)−V )u = ∆2u−(−∆−1)f = ∆2u−(−∆−1)(−∆+1)u = u,

demonstrating that (1, 0) is in the pure point part Σpp of the
energy-momentum spectrum of (H,PCM).
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What can go wrong I

If a mass shell consists of a single point, as in the previous example
(presumably), then we are fine since this will not contribute a
scattering channel.

There may however be disappearing branches:

Let Hσ = k2 + σP on L2(R), where P is rank one projection onto
the subspace spanned by a single function φ. We choose
φ = φ1 + φ2, such that φ1 is supported inside [−1/2, 1/2] and φ2
is supported on R \ [−1, 1]. Choose φ2 such that |φ2(k)|2 vanishes

like (k2 − 1)n0+
1
2 at k = ±1, and take φ1 such that∫

|φ(k)|2(k2 − 1)−1dk = −1.

Then there exists a strictly increasing function (1− ε, 1] 3 σ → λσ
with λ1 = 1, which is Cn0 but not Cn0+1 and real analytic in
(1− ε, 1), satisfying σ

∫
R |φ(k)|2(k2 − λσ)−1 = −1. Then

Hσψσ = λσPσ, where ψσ = (k2 − λσ)−1φ.
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What can go wrong II

Let

H(g) =

(
0 0
0 −∆− g21[|x | ≤ 1]

)
as an operator on C⊕ L2(R2).

Here 0 is a simple eigenvalue for all g , and for g 6= 0 with |g | small,
the operator has a simple eigenvalue λg < 0 with limg→0 λg = 0.

Note that the local multiplicity of 0 jumps UP from 1 to 2 when g
is perturbed away from g = 0.

Also, λg ' − exp(−1/g2), as g → 0 (Simon 76), demonstrating
that the singularity is not algebraic.
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Dilation

Consider again the fiber operator H(ξ) = ∆2 − 3ξ2

2 ∆ + ξ4

16 − V
with V = u−1(−∆− 1)f and u = (−∆ + 1)−1f > 0. Recall that 1
is an embedded eigenvalue for H(0).

Dilate x → exp(θ)x such that

Hθ(ξ) = e−4θ∆2 − e−2θ
3ξ2

2
∆ +

ξ4

16
− V (eθx)

Ignoring for now that V is not dilation analytic, we observe that
pushing θ up into the upper half-plane will push the positive part
of the continuous spectrum into the lower half-plane. The
embedded eigenvalue for ξ = 0 will remain at 1 and may now use
Kato’s analytic perturbation theory.

A A R H U S U N I V E R S I T Y

Department of Mathematics Jacob Schach Møller



Dilation

Consider again the fiber operator H(ξ) = ∆2 − 3ξ2

2 ∆ + ξ4

16 − V
with V = u−1(−∆− 1)f and u = (−∆ + 1)−1f > 0. Recall that 1
is an embedded eigenvalue for H(0).

Dilate x → exp(θ)x such that

Hθ(ξ) = e−4θ∆2 − e−2θ
3ξ2

2
∆ +

ξ4

16
− V (eθx)

Ignoring for now that V is not dilation analytic, we observe that
pushing θ up into the upper half-plane will push the positive part
of the continuous spectrum into the lower half-plane. The
embedded eigenvalue for ξ = 0 will remain at 1 and may now use
Kato’s analytic perturbation theory.

A A R H U S U N I V E R S I T Y

Department of Mathematics Jacob Schach Møller



Dilation

Consider again the fiber operator H(ξ) = ∆2 − 3ξ2

2 ∆ + ξ4

16 − V
with V = u−1(−∆− 1)f and u = (−∆ + 1)−1f > 0. Recall that 1
is an embedded eigenvalue for H(0).

Dilate x → exp(θ)x such that

Hθ(ξ) = e−4θ∆2 − e−2θ
3ξ2

2
∆ +

ξ4

16
− V (eθx)

Ignoring for now that V is not dilation analytic, we observe that
pushing θ up into the upper half-plane will push the positive part
of the continuous spectrum into the lower half-plane. The
embedded eigenvalue for ξ = 0 will remain at 1 and may now use
Kato’s analytic perturbation theory.

A A R H U S U N I V E R S I T Y

Department of Mathematics Jacob Schach Møller



Generalized Dilation

Let H,A be self-adjoint operators and define

∀θ ∈ R : Hθ = e iθAHe−iθA.

In order to realize Hθ as an operator with domain D(H), we
demand that e iθAD(H) ⊂ D(H) for θ ∈ R (and that
sup−1≤θ≤1 ‖He iθAψ‖ <∞ for ψ ∈ D(H)).

If one formally expands Hθ into a power series in θ one finds

Hθ = H− i [H,A]θ+ (−i)2[[H,A],A]θ2 + · · ·+ (−i)nadnA(H)θn + · · ·

where adnA(H) denotes n-fold commutator of H with A.
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Properties of Hθ

Engelmann-M-Rasmussen 15

The following are equivalent:

There exists R,M > 0, such that for any ψ ∈ D(H), the map
θ → Hθψ extends to an analytic function in the strip
SR = {z ∈ C | |Imz | < R} and for all θ ∈ C with |θ| < R;
‖Hθ(H + i)−1‖ ≤ M.

The iterated commutators adnA(H) exists for all n as
H-bounded operators, and there exists C > 0 such that

∀n ∈ N : ‖adnA(H)(H + i)−1‖ ≤ Cnn!

The expansion for Hθ is convergent strongly on D(H) for |θ| < R ′

(some R ′ > 0). The graph norms of H and Hθ are equivalent.
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The Mourre Estimate

The leading terms in the expansion of Hθ are H − i [H,A]θ. For
small θ, the spectrum of Hθ should be close to that of H, but
shifted slightly depending on properties of the commutator i [H,A].

Keeping the dilation example in mind, we see that by asking the
symmetric operator i [H,A] to be positive, one may push the
spectrum down when Imθ > 0.

Being less ambitious, we may also only want to push the spectrum
down locally near an embedded eigenvalue λ ∈ R of H, by
imposing the weaker condition:

i [H,A] ≥ e − C
(
1[|H − λ| ≥ κ](1 + |H|) + P

)
,

where P projects onto to the associated eigenspace and
e,C , κ > 0. This is a so-called Mourre estimate.
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Clearing out the Essential Spectrum

That a Mourre estimate will create a hole in the essential spectrum
near the eigenvalue λ is not entirely obvious, since Hθ is not
normal and the cleared region sits inside the numerical range of Hθ.

Engelmann-M-Rasmussen 2015

There exist R ′′, κ′ > 0 such that for |θ| < R ′′ with Imθ > 0, we
have

σess(Hθ) ∩
{
z ∈ C

∣∣ |Rez − λ| < κ′, Imz > −1
2eImθ/2

}
= ∅.

The proof revolves around: (1) a Feshbach reduction, making use
of the undilated eigenprojection P. (2) A proposition that P̄HθP̄
has no spectrum in the region in question. The ingredient (2) is
the key.
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Invoking Hunziker-Sigal

Having cleared away the essential spectrum from around the
eigenvalue λ of H, we may now conclude for 0 < Imθ < R ′′:

Hunziker-Sigal 2000

λ ∈ σpp(Hθ)

The associated Riesz projection Pθ satisfies that
Pθ = e−iθAPe iθA as a form identity on D(eImθA).

P and Pθ have the same rank.

For 0 ≤ r < R ′′, we have Range(P) ⊂ D(erA).

That eigenfunctions are analytic vectors for A were previously
established by M-Westrich 2011 by brute force.
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Parameter Dependent Family

We now assume that ξ → H(ξ) is a family of self-adjoint operators
with identical domains, parametrized by ξ ∈ U ⊂ Rn open, and
0 ∈ U. Again A denotes a self-adjoint operator.

For each ξ ∈ U, we assume that Hθ(ξ) extends analytically to the
same strip SR and satisfies the same bound
‖Hθ(ξ)(H(ξ) + i)−1‖ ≤ M for all θ ∈ C with |θ| < R.

Suppose a Mourre estimate is satisfied for the pair (H(0),A) near
an eigenvalue λ of multiplicity n for H(0).

Finally we assume that there exists a θ0 with Imθ0 > 0 and
|θ| < R ′′, such that ξ → Hθ0(ξ) extends to an analytic family of
Type (A) in a complex neighborhood of ξ = 0.
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Analytic Perturbation theory 1D

Suppose that U ⊂ R. Using that any real eigenvalue for Hθ0(ξ) is
also an eigenvalue for H(ξ) (and vice versa), we may invoke Kato:

The pure point spectrum of H(ξ) near (λ, 0) in the
energy-momentum spectrum has multiplicity at most n, the
multiplicity of λ.

The pure point spectrum near (λ, 0) are graphs of real analytic
functions for ξ 6= 0 with at most algebraic singularities as ξ → 0.
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Analytic Perturbation theory

When the perturbation parameter has two or more coordinates,
eigenvalues of high multiplicity may break up in more complicated
ways.

For an open set W , we write O(W ) for the ring of sets generated
by sets of the form f = 0 and f > 0, where f : W → R ranges over
real analytic functions. Semi-analytic sets are locally of this form.

Engelmann-M-Rasmussen 2015

There exists an open neighbourhood W of (λ, 0), such that
Σpp ∩W ∈ O(W ), and for ξ fixed the number of eigenvalues µ
with (µ, ξ) ∈W is at most n.
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Back to the Two-body problem

Let us return to the dispersive two-body problem with

H(ξ) = ωξ(p)− V .

We assume that ω1 and ω2 extend as analytic functions into a
d-dimensional strip S̃R = {k ∈ Cd | |Imkj | < R}.

There exists s1, s2 > 0 and C̃ > 0 such that for any multi-index α:

|∂αωj(k)| ≤ C̃ 〈k〉sj , ωj(k) ≥ 1

C̃
〈k〉sj − C̃ .

Let d ′ = d + 2. We suppose V ∈ Cd ′
(Rd) and that there exists

a > 0, such that for multi-indicies α wih |α| ≤ d ′, we have

sup
x

ea|x ||∂αV (x)| <∞.
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The Energy-Momentum Spectrum

Let Σpp = {(λ, ξ)|λ ∈ σpp(H(ξ))} be the pure point part of the
energy momentum spectrum.

The threshold part is defined to be

T =
{

(λ, ξ)
∣∣λ ∈ T (ξ)}, T (ξ) =

{
λ
∣∣∃k : ωξ(k) = λ, ∇kωξ(k) = 0

}
.

Engelmann-M-Rasmussen 2015

T is a closed and subanalytic subset of Rd+1 (locally the
proper projection of a semi-analytic set).

For each ξ, T (ξ) is closed and locally finite.

Σpp \ T is a semi-analytic subset of Rd+1 \ T .

For each ξ, σpp(H(ξ)) \ T (ξ) is a locally finite subset of
R \ T (ξ).
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Momentum Representation

The idea of the proof is to pass to a momentum representation,
where ωξ(p) is a multiplication operator and the potential becomes

an operator of convolution with V̂ .

A first choice of conjugate operator A would be Re∇kωξ · i∇k , but
the growth of ω may cause problems. The solution is to keep in
mind that momentum is bounded so one may instead use
Aξ = Revξ · i∇k , where vξ(k) = e−k

2∇kωξ(k).

A conjugate operator of this type was previously employed by
Nakamura 1990, also in a momentum representation.
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Complex Deformation

Denote by γtξ(k) the solution of ẏ = vξ(y) with y(0) = k . Then

e itAξωξ(k)e−itAξ = ωξ(γtξ(k)).

Recall that e itAξ f =
√

detDkγ
t
ξ(k)f (γtξ(k)).

Deforming into the complex plane now amounts to analyzing the
extension of the flow z → γzξ (k) to complex times.

The exponential decay of V ensures that the operator of
convolution with V̂ may be complex deformed into a strip as well.

The Mourre estimate essentially follows from the computation

i [ωξ(k),Aξ] = e−k
2 |∇kωξ(k)|2.
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e itAξωξ(k)e−itAξ = ωξ(γtξ(k)).

Recall that e itAξ f =
√

detDkγ
t
ξ(k)f (γtξ(k)).

Deforming into the complex plane now amounts to analyzing the
extension of the flow z → γzξ (k) to complex times.

The exponential decay of V ensures that the operator of
convolution with V̂ may be complex deformed into a strip as well.

The Mourre estimate essentially follows from the computation

i [ωξ(k),Aξ] = e−k
2 |∇kωξ(k)|2.
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Sketch of Proof of Main Theorem I

The key point is to show that for Imθ > 0 with |θ| < R ′′ small
enough, PHθP has no spectrum in a region of the form
(λ− ρ, λ+ ρ) + i(−eImθ/2,∞).

Suppose towards a contradiction that µ ∈ σ(PHθP) is in this
region. We may wlog assume that there exists a normalized
sequence ψn ∈ D(H) with on := ‖P(Hθ − µ)Pψn‖ → 0.

The result follows from the computation

Imµ = Im〈Pψn, (µ− Hθ)Pψn〉+ Im〈Pψn,HθPψn〉
= Im〈Pψn, (µ− Hθ)Pψn〉 − Imθ〈Pψn, i [H,A]Pψn〉

+ O(R ′′Imθ)

≤ on − Imθ(e − cR ′′ − C 〈Pψn, 1(|H − λ| ≥ κ)〈H〉Pψn〉)
≤ on − Imθ(e − c ′R ′′ − c ′′ρ).
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Sketch of Proof of Main Theorem II

It remains to show that Hθ has no essential spectrum near λ. That
the spectrum consists of isolated points near λ follows from the
preceding result and isospectrality of the Feschbach map, which
ensures that µ ∈ σ(Hθ) if and only if det(FP(µ)) = 0, where

FP(µ) = P(Hθ − µ)P − PHθP(PHθP − µ)−1HθP.

In order to show that the remaining points in the spectrum are
not essential spectrum, one must show that the corresponding
Riesz projection have finite rank. Here on can use the Feshbach
Reconstruction Formula and Cauchy’s Integral Theorem to express
the path integral of (Hθ − z)−1 as a sum of finite rank operators.
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