Local Spectral Deformation

Jacob Schach Møller
Department of Mathematics
Aarhus University

Paris $21^{\text {st }}$ June, 2016

Two-body systems

A two-body system, e.g.,

$$
-\frac{\Delta_{1}}{2 m_{1}}-\frac{\Delta_{2}}{2 m_{2}}-\frac{1}{\left|x_{1}-x_{2}\right|}
$$

in its center of mass frame takes the form

$$
-\frac{\Delta_{\mathrm{CM}}}{2 M}-\frac{\Delta_{\mathrm{Rel}}}{2 \mu}-\frac{1}{\left|x_{\mathrm{Rel}}\right|},
$$

where $M=m_{1}+m_{2}$ (total mass) and $\mu=m_{1} m_{2} / M$ (reduced mass).

Two-body systems

A two-body system, e.g.,

$$
-\frac{\Delta_{1}}{2 m_{1}}-\frac{\Delta_{2}}{2 m_{2}}-\frac{1}{\left|x_{1}-x_{2}\right|}
$$

in its center of mass frame takes the form

$$
-\frac{\Delta_{\mathrm{CM}}}{2 M}-\frac{\Delta_{\mathrm{Rel}}}{2 \mu}-\frac{1}{\left|x_{\mathrm{Rel}}\right|}
$$

where $M=m_{1}+m_{2}$ (total mass) and $\mu=m_{1} m_{2} / M$ (reduced mass). If the relative Hamiltonian is in a bound state, e.g., $\psi_{0}(x)=\exp (-\mu|x|)$ (3 dimensions), then the dynamics of the bound cluster $\varphi\left(x_{\mathrm{CM}}\right) \psi_{0}\left(x_{\text {Rel }}\right)$ will be described by the free Hamiltonian

$$
-\frac{\mu}{2}-\frac{\Delta_{\mathrm{CM}}}{2 M}
$$

Dispersive Two-body Systems

If we instead consider two dispersive particles

$$
\omega_{1}\left(p_{1}\right)+\omega_{2}\left(p_{2}\right)-V\left(x_{1}-x_{2}\right)
$$

one may still pass to " center of mass" coordinates:

$$
\omega_{1}\left(p_{\mathrm{CM}} / 2+p_{\mathrm{Rel}}\right)+\omega_{2}\left(p_{\mathrm{CM}} / 2-p_{\mathrm{Rel}}\right)-V\left(x_{\mathrm{Rel}}\right)
$$

Dispersive Two-body Systems

If we instead consider two dispersive particles

$$
\omega_{1}\left(p_{1}\right)+\omega_{2}\left(p_{2}\right)-V\left(x_{1}-x_{2}\right)
$$

one may still pass to " center of mass" coordinates:

$$
\omega_{1}\left(p_{\mathrm{CM}} / 2+p_{\mathrm{Rel}}\right)+\omega_{2}\left(p_{\mathrm{CM}} / 2-p_{\mathrm{Rel}}\right)-V\left(x_{\mathrm{Rel}}\right)
$$

Writing $\omega_{\xi}(k)=\omega_{1}(\xi / 2+k)+\omega_{2}(\xi / 2-k)$, we find the fibrated Hamiltonian

$$
\int_{\mathbb{R}^{3}}^{\oplus}\left(\omega_{\xi}(p)-V(x)\right) d \xi
$$

Dispersive Two-body Systems

If we instead consider two dispersive particles

$$
\omega_{1}\left(p_{1}\right)+\omega_{2}\left(p_{2}\right)-V\left(x_{1}-x_{2}\right)
$$

one may still pass to " center of mass" coordinates:

$$
\omega_{1}\left(p_{\mathrm{CM}} / 2+p_{\mathrm{Rel}}\right)+\omega_{2}\left(p_{\mathrm{CM}} / 2-p_{\mathrm{Rel}}\right)-V\left(x_{\mathrm{Rel}}\right)
$$

Writing $\omega_{\xi}(k)=\omega_{1}(\xi / 2+k)+\omega_{2}(\xi / 2-k)$, we find the fibrated Hamiltonian

$$
\int_{\mathbb{R}^{3}}^{\oplus}\left(\omega_{\xi}(p)-V(x)\right) d \xi
$$

If $\left\{\psi_{\xi}\right\}_{\xi \in \mathbb{R}^{3}}$ is a family of bound states $\left(\omega_{\xi}-V\right) \psi_{\xi}=\Sigma(\xi) \psi_{\xi}$, then the dynamics of the cluster $\int{ }^{\oplus} \varphi(\xi) \psi_{\xi} d \xi$ is governed by the operator $\Sigma\left(p_{\mathrm{CM}}\right)$.

AARHUS UNIVERSITY

Isolated Mass Shells

In one dimension, the structure of isolated mass shells is well under stood, due to Kato's analytic perturbation theory (provided $k \rightarrow \omega_{j}(k)$ are real analytic).

Isolated Mass Shells

In one dimension, the structure of isolated mass shells is well under stood, due to Kato's analytic perturbation theory (provided $k \rightarrow \omega_{j}(k)$ are real analytic). In the vicinity of a simple eigenvalue, mass shells are graphs of real analytic functions, whereas near degenerate eigenvalues, the shell may split into real analytic branches meeting at an algebraic singularity (Puisseaux series).

Isolated Mass Shells

In one dimension, the structure of isolated mass shells is well under stood, due to Kato's analytic perturbation theory (provided $k \rightarrow \omega_{j}(k)$ are real analytic). In the vicinity of a simple eigenvalue, mass shells are graphs of real analytic functions, whereas near degenerate eigenvalues, the shell may split into real analytic branches meeting at an algebraic singularity (Puisseaux series).

In dimension d, the isolated mass shells are locally the zero set of a real analytic function of d variables.

Isolated Mass Shells

In one dimension, the structure of isolated mass shells is well under stood, due to Kato's analytic perturbation theory (provided $k \rightarrow \omega_{j}(k)$ are real analytic). In the vicinity of a simple eigenvalue, mass shells are graphs of real analytic functions, whereas near degenerate eigenvalues, the shell may split into real analytic branches meeting at an algebraic singularity (Puisseaux series).

In dimension d, the isolated mass shells are locally the zero set of a real analytic function of d variables. This implies that the isolated energy-momentum spectrum is a semi-analytic subset of the complement of the continuous energy-momentum spectrum. (Gérard-Nier 1998).

Isolated Mass Shells

In one dimension, the structure of isolated mass shells is well under stood, due to Kato's analytic perturbation theory (provided $k \rightarrow \omega_{j}(k)$ are real analytic). In the vicinity of a simple eigenvalue, mass shells are graphs of real analytic functions, whereas near degenerate eigenvalues, the shell may split into real analytic branches meeting at an algebraic singularity (Puisseaux series).

In dimension d, the isolated mass shells are locally the zero set of a real analytic function of d variables. This implies that the isolated energy-momentum spectrum is a semi-analytic subset of the complement of the continuous energy-momentum spectrum. (Gérard-Nier 1998).

Semi-analytic sets are convenient because they admit Whitney Stratification into locally finitely many real analytic manifolds.

[^0]
Embedded Mass Shell

I am not aware of a concrete example of a dispersive system with an embedded mass shell, but ruling them out in general (outside a weak coupling regime) is probably a very difficult problem.

Embedded Mass Shell

I am not aware of a concrete example of a dispersive system with an embedded mass shell, but ruling them out in general (outside a weak coupling regime) is probably a very difficult problem.

Examples of embedded eigenvalues at a given total momentum ξ however exists, but they are presumably unstable.

Embedded Mass Shell

I am not aware of a concrete example of a dispersive system with an embedded mass shell, but ruling them out in general (outside a weak coupling regime) is probably a very difficult problem.

Examples of embedded eigenvalues at a given total momentum ξ however exists, but they are presumably unstable. Take $\omega_{j}(k)=(k \cdot k)^{2} / 2, f \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right) \backslash\{0\}$ with $f \geq 0$ and put $u=(-\Delta+1)^{-1} f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ and $V=\frac{1}{u}(-\Delta-1) f \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ (recall that $(-\Delta+1)^{-1}$ is positivity improving).

Embedded Mass Shell

I am not aware of a concrete example of a dispersive system with an embedded mass shell, but ruling them out in general (outside a weak coupling regime) is probably a very difficult problem.

Examples of embedded eigenvalues at a given total momentum ξ however exists, but they are presumably unstable. Take $\omega_{j}(k)=(k \cdot k)^{2} / 2, f \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right) \backslash\{0\}$ with $f \geq 0$ and put $u=(-\Delta+1)^{-1} f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ and $V=\frac{1}{u}(-\Delta-1) f \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ (recall that $(-\Delta+1)^{-1}$ is positivity improving). Then
$\left(\omega_{0}(p)-V\right) u=\Delta^{2} u-(-\Delta-1) f=\Delta^{2} u-(-\Delta-1)(-\Delta+1) u=u$,
demonstrating that $(1,0)$ is in the pure point part $\Sigma_{p p}$ of the energy-momentum spectrum of $\left(H, P_{\mathrm{CM}}\right)$.

What can go wrong I

If a mass shell consists of a single point, as in the previous example (presumably), then we are fine since this will not contribute a scattering channel.

What can go wrong I

If a mass shell consists of a single point, as in the previous example (presumably), then we are fine since this will not contribute a scattering channel. There may however be disappearing branches:

What can go wrong I

If a mass shell consists of a single point, as in the previous example (presumably), then we are fine since this will not contribute a scattering channel. There may however be disappearing branches:

Let $H_{\sigma}=k^{2}+\sigma P$ on $L^{2}(\mathbb{R})$, where P is rank one projection onto the subspace spanned by a single function ϕ. We choose
$\phi=\phi_{1}+\phi_{2}$, such that ϕ_{1} is supported inside $[-1 / 2,1 / 2]$ and ϕ_{2} is supported on $\mathbb{R} \backslash[-1,1]$. Choose ϕ_{2} such that $\left|\phi_{2}(k)\right|^{2}$ vanishes like $\left(k^{2}-1\right)^{n_{0}+\frac{1}{2}}$ at $k= \pm 1$, and take ϕ_{1} such that $\int|\phi(k)|^{2}\left(k^{2}-1\right)^{-1} d k=-1$.

What can go wrong I

If a mass shell consists of a single point, as in the previous example (presumably), then we are fine since this will not contribute a scattering channel. There may however be disappearing branches:

Let $H_{\sigma}=k^{2}+\sigma P$ on $L^{2}(\mathbb{R})$, where P is rank one projection onto the subspace spanned by a single function ϕ. We choose $\phi=\phi_{1}+\phi_{2}$, such that ϕ_{1} is supported inside $[-1 / 2,1 / 2]$ and ϕ_{2} is supported on $\mathbb{R} \backslash[-1,1]$. Choose ϕ_{2} such that $\left|\phi_{2}(k)\right|^{2}$ vanishes like $\left(k^{2}-1\right)^{n_{0}+\frac{1}{2}}$ at $k= \pm 1$, and take ϕ_{1} such that $\int|\phi(k)|^{2}\left(k^{2}-1\right)^{-1} d k=-1$.

Then there exists a strictly increasing function $(1-\epsilon, 1] \ni \sigma \rightarrow \lambda_{\sigma}$ with $\lambda_{1}=1$, which is $C^{n_{0}}$ but not $C^{n_{0}+1}$ and real analytic in $(1-\epsilon, 1)$, satisfying $\sigma \int_{\mathbb{R}}|\phi(k)|^{2}\left(k^{2}-\lambda_{\sigma}\right)^{-1}=-1$. Then $H_{\sigma} \psi_{\sigma}=\lambda_{\sigma} P_{\sigma}$, where $\psi_{\sigma}=\left(k^{2}-\lambda_{\sigma}\right)^{-1} \phi$.

AARHUS UNIVERSITY

What can go wrong II

Let

$$
H(g)=\left(\begin{array}{cc}
0 & 0 \\
0 & -\Delta-g^{2} 1[|x| \leq 1]
\end{array}\right)
$$

as an operator on $\mathbb{C} \oplus L^{2}\left(\mathbb{R}^{2}\right)$.

What can go wrong II

Let

$$
H(g)=\left(\begin{array}{cc}
0 & 0 \\
0 & -\Delta-g^{2} 1[|x| \leq 1]
\end{array}\right)
$$

as an operator on $\mathbb{C} \oplus L^{2}\left(\mathbb{R}^{2}\right)$.
Here 0 is a simple eigenvalue for all g, and for $g \neq 0$ with $|g|$ small, the operator has a simple eigenvalue $\lambda_{g}<0$ with $\lim _{g \rightarrow 0} \lambda_{g}=0$.

What can go wrong II

Let

$$
H(g)=\left(\begin{array}{cc}
0 & 0 \\
0 & -\Delta-g^{2} 1[|x| \leq 1]
\end{array}\right)
$$

as an operator on $\mathbb{C} \oplus L^{2}\left(\mathbb{R}^{2}\right)$.
Here 0 is a simple eigenvalue for all g, and for $g \neq 0$ with $|g|$ small, the operator has a simple eigenvalue $\lambda_{g}<0$ with $\lim _{g \rightarrow 0} \lambda_{g}=0$.

Note that the local multiplicity of 0 jumps UP from 1 to 2 when g is perturbed away from $g=0$.

What can go wrong II

Let

$$
H(g)=\left(\begin{array}{cc}
0 & 0 \\
0 & -\Delta-g^{2} 1[|x| \leq 1]
\end{array}\right)
$$

as an operator on $\mathbb{C} \oplus L^{2}\left(\mathbb{R}^{2}\right)$.
Here 0 is a simple eigenvalue for all g, and for $g \neq 0$ with $|g|$ small, the operator has a simple eigenvalue $\lambda_{g}<0$ with $\lim _{g \rightarrow 0} \lambda_{g}=0$.

Note that the local multiplicity of 0 jumps UP from 1 to 2 when g is perturbed away from $g=0$.

Also, $\lambda_{g} \simeq-\exp \left(-1 / g^{2}\right)$, as $g \rightarrow 0$ (Simon 76), demonstrating that the singularity is not algebraic.

Dilation

Consider again the fiber operator $H(\xi)=\Delta^{2}-\frac{3 \xi^{2}}{2} \Delta+\frac{\xi^{4}}{16}-V$ with $V=u^{-1}(-\Delta-1) f$ and $u=(-\Delta+1)^{-1} f>0$. Recall that 1 is an embedded eigenvalue for $H(0)$.

Dilation

Consider again the fiber operator $H(\xi)=\Delta^{2}-\frac{3 \xi^{2}}{2} \Delta+\frac{\xi^{4}}{16}-V$ with $V=u^{-1}(-\Delta-1) f$ and $u=(-\Delta+1)^{-1} f>0$. Recall that 1 is an embedded eigenvalue for $H(0)$.

Dilate $x \rightarrow \exp (\theta) x$ such that

$$
H_{\theta}(\xi)=e^{-4 \theta} \Delta^{2}-e^{-2 \theta} \frac{3 \xi^{2}}{2} \Delta+\frac{\xi^{4}}{16}-V\left(e^{\theta} x\right)
$$

Dilation

Consider again the fiber operator $H(\xi)=\Delta^{2}-\frac{3 \xi^{2}}{2} \Delta+\frac{\xi^{4}}{16}-V$ with $V=u^{-1}(-\Delta-1) f$ and $u=(-\Delta+1)^{-1} f>0$. Recall that 1 is an embedded eigenvalue for $H(0)$.

Dilate $x \rightarrow \exp (\theta) x$ such that

$$
H_{\theta}(\xi)=e^{-4 \theta} \Delta^{2}-e^{-2 \theta} \frac{3 \xi^{2}}{2} \Delta+\frac{\xi^{4}}{16}-V\left(e^{\theta} x\right)
$$

Ignoring for now that V is not dilation analytic, we observe that pushing θ up into the upper half-plane will push the positive part of the continuous spectrum into the lower half-plane. The embedded eigenvalue for $\xi=0$ will remain at 1 and may now use Kato's analytic perturbation theory.

Generalized Dilation

Let H, A be self-adjoint operators and define

$$
\forall \theta \in \mathbb{R}: \quad H_{\theta}=e^{i \theta A} H e^{-i \theta A}
$$

Generalized Dilation

Let H, A be self-adjoint operators and define

$$
\forall \theta \in \mathbb{R}: \quad H_{\theta}=e^{i \theta A} H e^{-i \theta A}
$$

In order to realize H_{θ} as an operator with domain $D(H)$, we demand that $e^{i \theta A} D(H) \subset D(H)$ for $\theta \in \mathbb{R}$ (and that $\sup _{-1 \leq \theta \leq 1}\left\|H e^{i \theta A} \psi\right\|<\infty$ for $\left.\psi \in D(H)\right)$.

Generalized Dilation

Let H, A be self-adjoint operators and define

$$
\forall \theta \in \mathbb{R}: \quad H_{\theta}=e^{i \theta A} H e^{-i \theta A}
$$

In order to realize H_{θ} as an operator with domain $D(H)$, we demand that $e^{i \theta A} D(H) \subset D(H)$ for $\theta \in \mathbb{R}$ (and that $\sup _{-1 \leq \theta \leq 1}\left\|H e^{i \theta A} \psi\right\|<\infty$ for $\left.\psi \in D(H)\right)$.

If one formally expands H_{θ} into a power series in θ one finds
$H_{\theta}=H-i[H, A] \theta+(-i)^{2}[[H, A], A] \theta^{2}+\cdots+(-i)^{n} \operatorname{ad}_{A}^{n}(H) \theta^{n}+\cdots$
where $\operatorname{ad}_{A}^{n}(H)$ denotes n-fold commutator of H with A.

Properties of H_{θ}

Engelmann-M-Rasmussen 15

The following are equivalent:

Properties of H_{θ}

Engelmann-M-Rasmussen 15

The following are equivalent:

- There exists $R, M>0$, such that for any $\psi \in D(H)$, the map $\theta \rightarrow H_{\theta} \psi$ extends to an analytic function in the strip $S_{R}=\{z \in \mathbb{C}| | \operatorname{Imz} \mid<R\}$ and for all $\theta \in \mathbb{C}$ with $|\theta|<R$; $\left\|H_{\theta}(H+i)^{-1}\right\| \leq M$.

Properties of H_{θ}

Engelmann-M-Rasmussen 15

The following are equivalent:

- There exists $R, M>0$, such that for any $\psi \in D(H)$, the map $\theta \rightarrow H_{\theta} \psi$ extends to an analytic function in the strip $S_{R}=\{z \in \mathbb{C}| | \operatorname{Imz} \mid<R\}$ and for all $\theta \in \mathbb{C}$ with $|\theta|<R$; $\left\|H_{\theta}(H+i)^{-1}\right\| \leq M$.
- The iterated commutators $\operatorname{ad}_{A}^{n}(H)$ exists for all n as H-bounded operators, and there exists $C>0$ such that

$$
\forall n \in \mathbb{N}: \quad\left\|\operatorname{ad}_{A}^{n}(H)(H+i)^{-1}\right\| \leq C^{n} n!
$$

Properties of H_{θ}

Engelmann-M-Rasmussen 15

The following are equivalent:

- There exists $R, M>0$, such that for any $\psi \in D(H)$, the map $\theta \rightarrow H_{\theta} \psi$ extends to an analytic function in the strip $S_{R}=\{z \in \mathbb{C}| | \operatorname{Imz} \mid<R\}$ and for all $\theta \in \mathbb{C}$ with $|\theta|<R$; $\left\|H_{\theta}(H+i)^{-1}\right\| \leq M$.
- The iterated commutators $\operatorname{ad}_{A}^{n}(H)$ exists for all n as H-bounded operators, and there exists $C>0$ such that

$$
\forall n \in \mathbb{N}: \quad\left\|\operatorname{ad}_{A}^{n}(H)(H+i)^{-1}\right\| \leq C^{n} n!
$$

The expansion for H_{θ} is convergent strongly on $D(H)$ for $|\theta|<R^{\prime}$ (some $R^{\prime}>0$). The graph norms of H and H_{θ} are equivalent.

The Mourre Estimate

The leading terms in the expansion of H_{θ} are $H-i[H, A] \theta$. For small θ, the spectrum of H_{θ} should be close to that of H, but shifted slightly depending on properties of the commutator $i[H, A]$.

The Mourre Estimate

The leading terms in the expansion of H_{θ} are $H-i[H, A] \theta$. For small θ, the spectrum of H_{θ} should be close to that of H, but shifted slightly depending on properties of the commutator $i[H, A]$.

Keeping the dilation example in mind, we see that by asking the symmetric operator $i[H, A]$ to be positive, one may push the spectrum down when $\operatorname{Im} \theta>0$.

The Mourre Estimate

The leading terms in the expansion of H_{θ} are $H-i[H, A] \theta$. For small θ, the spectrum of H_{θ} should be close to that of H, but shifted slightly depending on properties of the commutator $i[H, A]$.

Keeping the dilation example in mind, we see that by asking the symmetric operator $i[H, A]$ to be positive, one may push the spectrum down when $\operatorname{Im} \theta>0$.

Being less ambitious, we may also only want to push the spectrum down locally near an embedded eigenvalue $\lambda \in \mathbb{R}$ of H, by imposing the weaker condition:

$$
i[H, A] \geq e-C(1[|H-\lambda| \geq \kappa](1+|H|)+P)
$$

where P projects onto to the associated eigenspace and $e, C, \kappa>0$. This is a so-called Mourre estimate.

Clearing out the Essential Spectrum

That a Mourre estimate will create a hole in the essential spectrum near the eigenvalue λ is not entirely obvious, since H_{θ} is not normal and the cleared region sits inside the numerical range of H_{θ}.

Clearing out the Essential Spectrum

That a Mourre estimate will create a hole in the essential spectrum near the eigenvalue λ is not entirely obvious, since H_{θ} is not normal and the cleared region sits inside the numerical range of H_{θ}.

Engelmann-M-Rasmussen 2015

There exist $R^{\prime \prime}, \kappa^{\prime}>0$ such that for $|\theta|<R^{\prime \prime}$ with $\operatorname{Im} \theta>0$, we have

$$
\sigma_{\text {ess }}\left(H_{\theta}\right) \cap\left\{z \in \mathbb{C}| | \operatorname{Re} z-\lambda \mid<\kappa^{\prime}, \operatorname{Im} z>-\frac{1}{2} e \operatorname{Im} \theta / 2\right\}=\emptyset .
$$

Clearing out the Essential Spectrum

That a Mourre estimate will create a hole in the essential spectrum near the eigenvalue λ is not entirely obvious, since H_{θ} is not normal and the cleared region sits inside the numerical range of H_{θ}.

Engelmann-M-Rasmussen 2015

There exist $R^{\prime \prime}, \kappa^{\prime}>0$ such that for $|\theta|<R^{\prime \prime}$ with $\operatorname{Im} \theta>0$, we have

$$
\sigma_{\text {ess }}\left(H_{\theta}\right) \cap\left\{z \in \mathbb{C}| | \operatorname{Re} z-\lambda \mid<\kappa^{\prime}, \operatorname{Im} z>-\frac{1}{2} e \operatorname{Im} \theta / 2\right\}=\emptyset .
$$

The proof revolves around: (1) a Feshbach reduction, making use of the undilated eigenprojection P. (2) A proposition that $\bar{P} H_{\theta} \bar{P}$ has no spectrum in the region in question. The ingredient (2) is the key.

Invoking Hunziker-Sigal

Having cleared away the essential spectrum from around the eigenvalue λ of H, we may now conclude for $0<\operatorname{Im} \theta<R^{\prime \prime}$:

Invoking Hunziker-Sigal

Having cleared away the essential spectrum from around the eigenvalue λ of H, we may now conclude for $0<\operatorname{Im} \theta<R^{\prime \prime}$:

Hunziker-Sigal 2000

- $\lambda \in \sigma_{\mathrm{pp}}\left(H_{\theta}\right)$

Invoking Hunziker-Sigal

Having cleared away the essential spectrum from around the eigenvalue λ of H, we may now conclude for $0<\operatorname{Im} \theta<R^{\prime \prime}$:

Hunziker-Sigal 2000

- $\lambda \in \sigma_{\mathrm{pp}}\left(H_{\theta}\right)$
- The associated Riesz projection P_{θ} satisfies that $P_{\theta}=e^{-i \theta A} P e^{i \theta A}$ as a form identity on $D\left(e^{\operatorname{Im} \theta A}\right)$.

Invoking Hunziker-Sigal

Having cleared away the essential spectrum from around the eigenvalue λ of H, we may now conclude for $0<\operatorname{Im} \theta<R^{\prime \prime}$:

Hunziker-Sigal 2000

- $\lambda \in \sigma_{\mathrm{pp}}\left(H_{\theta}\right)$
- The associated Riesz projection P_{θ} satisfies that $P_{\theta}=e^{-i \theta A} P e^{i \theta A}$ as a form identity on $D\left(e^{\operatorname{Im} \theta A}\right)$.
- P and P_{θ} have the same rank.

Invoking Hunziker-Sigal

Having cleared away the essential spectrum from around the eigenvalue λ of H, we may now conclude for $0<\operatorname{Im} \theta<R^{\prime \prime}$:

Hunziker-Sigal 2000

- $\lambda \in \sigma_{\mathrm{pp}}\left(H_{\theta}\right)$
- The associated Riesz projection P_{θ} satisfies that $P_{\theta}=e^{-i \theta A} P e^{i \theta A}$ as a form identity on $D\left(e^{\operatorname{Im} \theta A}\right)$.
- P and P_{θ} have the same rank.
- For $0 \leq r<R^{\prime \prime}$, we have Range $(P) \subset D\left(e^{r A}\right)$.

Invoking Hunziker-Sigal

Having cleared away the essential spectrum from around the eigenvalue λ of H, we may now conclude for $0<\operatorname{Im} \theta<R^{\prime \prime}$:

Hunziker-Sigal 2000

- $\lambda \in \sigma_{\mathrm{pp}}\left(H_{\theta}\right)$
- The associated Riesz projection P_{θ} satisfies that $P_{\theta}=e^{-i \theta A} P e^{i \theta A}$ as a form identity on $D\left(e^{\operatorname{Im} \theta A}\right)$.
- P and P_{θ} have the same rank.
- For $0 \leq r<R^{\prime \prime}$, we have Range $(P) \subset D\left(e^{r A}\right)$.

That eigenfunctions are analytic vectors for A were previously established by M-Westrich 2011 by brute force.

Parameter Dependent Family

We now assume that $\xi \rightarrow H(\xi)$ is a family of self-adjoint operators with identical domains, parametrized by $\xi \in U \subset \mathbb{R}^{n}$ open, and $0 \in U$. Again A denotes a self-adjoint operator.

Parameter Dependent Family

We now assume that $\xi \rightarrow H(\xi)$ is a family of self-adjoint operators with identical domains, parametrized by $\xi \in U \subset \mathbb{R}^{n}$ open, and $0 \in U$. Again A denotes a self-adjoint operator.

For each $\xi \in U$, we assume that $H_{\theta}(\xi)$ extends analytically to the same strip S_{R} and satisfies the same bound $\left\|H_{\theta}(\xi)(H(\xi)+i)^{-1}\right\| \leq M$ for all $\theta \in \mathbb{C}$ with $|\theta|<R$.

Parameter Dependent Family

We now assume that $\xi \rightarrow H(\xi)$ is a family of self-adjoint operators with identical domains, parametrized by $\xi \in U \subset \mathbb{R}^{n}$ open, and $0 \in U$. Again A denotes a self-adjoint operator.

For each $\xi \in U$, we assume that $H_{\theta}(\xi)$ extends analytically to the same strip S_{R} and satisfies the same bound $\left\|H_{\theta}(\xi)(H(\xi)+i)^{-1}\right\| \leq M$ for all $\theta \in \mathbb{C}$ with $|\theta|<R$.

Suppose a Mourre estimate is satisfied for the pair $(H(0), A)$ near an eigenvalue λ of multiplicity n for $H(0)$.

Parameter Dependent Family

We now assume that $\xi \rightarrow H(\xi)$ is a family of self-adjoint operators with identical domains, parametrized by $\xi \in U \subset \mathbb{R}^{n}$ open, and $0 \in U$. Again A denotes a self-adjoint operator.

For each $\xi \in U$, we assume that $H_{\theta}(\xi)$ extends analytically to the same strip S_{R} and satisfies the same bound $\left\|H_{\theta}(\xi)(H(\xi)+i)^{-1}\right\| \leq M$ for all $\theta \in \mathbb{C}$ with $|\theta|<R$.

Suppose a Mourre estimate is satisfied for the pair $(H(0), A)$ near an eigenvalue λ of multiplicity n for $H(0)$.

Finally we assume that there exists a θ_{0} with $\operatorname{Im} \theta_{0}>0$ and $|\theta|<R^{\prime \prime}$, such that $\xi \rightarrow H_{\theta_{0}}(\xi)$ extends to an analytic family of Type (A) in a complex neighborhood of $\xi=0$.

Analytic Perturbation theory 1D

Suppose that $U \subset \mathbb{R}$. Using that any real eigenvalue for $H_{\theta_{0}}(\xi)$ is also an eigenvalue for $H(\xi)$ (and vice versa), we may invoke Kato:

Analytic Perturbation theory 1D

Suppose that $U \subset \mathbb{R}$. Using that any real eigenvalue for $H_{\theta_{0}}(\xi)$ is also an eigenvalue for $H(\xi)$ (and vice versa), we may invoke Kato:

The pure point spectrum of $H(\xi)$ near $(\lambda, 0)$ in the energy-momentum spectrum has multiplicity at most n, the multiplicity of λ.

Analytic Perturbation theory 1D

Suppose that $U \subset \mathbb{R}$. Using that any real eigenvalue for $H_{\theta_{0}}(\xi)$ is also an eigenvalue for $H(\xi)$ (and vice versa), we may invoke Kato:

The pure point spectrum of $H(\xi)$ near $(\lambda, 0)$ in the energy-momentum spectrum has multiplicity at most n, the multiplicity of λ.

The pure point spectrum near $(\lambda, 0)$ are graphs of real analytic functions for $\xi \neq 0$ with at most algebraic singularities as $\xi \rightarrow 0$.

Analytic Perturbation theory

When the perturbation parameter has two or more coordinates, eigenvalues of high multiplicity may break up in more complicated ways.

Analytic Perturbation theory

When the perturbation parameter has two or more coordinates, eigenvalues of high multiplicity may break up in more complicated ways.

For an open set W, we write $\mathcal{O}(W)$ for the ring of sets generated by sets of the form $f=0$ and $f>0$, where $f: W \rightarrow \mathbb{R}$ ranges over real analytic functions. Semi-analytic sets are locally of this form.

Analytic Perturbation theory

When the perturbation parameter has two or more coordinates, eigenvalues of high multiplicity may break up in more complicated ways.

For an open set W, we write $\mathcal{O}(W)$ for the ring of sets generated by sets of the form $f=0$ and $f>0$, where $f: W \rightarrow \mathbb{R}$ ranges over real analytic functions. Semi-analytic sets are locally of this form.

Engelmann-M-Rasmussen 2015

There exists an open neighbourhood W of $(\lambda, 0)$, such that $\Sigma_{\mathrm{pp}} \cap W \in \mathcal{O}(W)$, and for ξ fixed the number of eigenvalues μ with $(\mu, \xi) \in W$ is at most n.

Back to the Two-body problem

Let us return to the dispersive two-body problem with

$$
H(\xi)=\omega_{\xi}(p)-V
$$

Back to the Two-body problem

Let us return to the dispersive two-body problem with

$$
H(\xi)=\omega_{\xi}(p)-V
$$

We assume that ω_{1} and ω_{2} extend as analytic functions into a d-dimensional strip $\widetilde{S}_{R}=\left\{k \in \mathbb{C}^{d}| | \operatorname{Im} k_{j} \mid<R\right\}$.

Back to the Two-body problem

Let us return to the dispersive two-body problem with

$$
H(\xi)=\omega_{\xi}(p)-V
$$

We assume that ω_{1} and ω_{2} extend as analytic functions into a d-dimensional strip $\widetilde{S}_{R}=\left\{k \in \mathbb{C}^{d}| | \operatorname{Im} k_{j} \mid<R\right\}$.

There exists $s_{1}, s_{2}>0$ and $\widetilde{C}>0$ such that for any multi-index α :

$$
\left|\partial^{\alpha} \omega_{j}(k)\right| \leq \widetilde{C}\langle k\rangle^{s_{j}}, \quad \omega_{j}(k) \geq \frac{1}{\widetilde{C}}\langle k\rangle^{s_{j}}-\widetilde{C}
$$

Back to the Two-body problem

Let us return to the dispersive two-body problem with

$$
H(\xi)=\omega_{\xi}(p)-V
$$

We assume that ω_{1} and ω_{2} extend as analytic functions into a d-dimensional strip $\widetilde{S}_{R}=\left\{k \in \mathbb{C}^{d}| | \operatorname{Im} k_{j} \mid<R\right\}$.

There exists $s_{1}, s_{2}>0$ and $\widetilde{C}>0$ such that for any multi-index α :

$$
\left|\partial^{\alpha} \omega_{j}(k)\right| \leq \widetilde{C}\langle k\rangle^{s_{j}}, \quad \omega_{j}(k) \geq \frac{1}{\widetilde{C}}\langle k\rangle^{s_{j}}-\widetilde{C} .
$$

Let $d^{\prime}=d+2$. We suppose $V \in C^{d^{\prime}}\left(\mathbb{R}^{d}\right)$ and that there exists a >0, such that for multi-indicies α wih $|\alpha| \leq d^{\prime}$, we have

$$
\sup _{x} e^{a|x|}\left|\partial^{\alpha} V(x)\right|<\infty .
$$

AARHUS UNIVERSITY

The Energy-Momentum Spectrum

Let $\Sigma_{\mathrm{pp}}=\left\{(\lambda, \xi) \mid \lambda \in \sigma_{\mathrm{pp}}(H(\xi))\right\}$ be the pure point part of the energy momentum spectrum.

The Energy-Momentum Spectrum

Let $\Sigma_{\mathrm{pp}}=\left\{(\lambda, \xi) \mid \lambda \in \sigma_{\mathrm{pp}}(H(\xi))\right\}$ be the pure point part of the energy momentum spectrum. The threshold part is defined to be

$$
\mathcal{T}=\{(\lambda, \xi) \mid \lambda \in \mathcal{T}(\xi)\}, \mathcal{T}(\xi)=\left\{\lambda \mid \exists k: \omega_{\xi}(k)=\lambda, \nabla_{k} \omega_{\xi}(k)=0\right\}
$$

The Energy-Momentum Spectrum

Let $\Sigma_{\mathrm{pp}}=\left\{(\lambda, \xi) \mid \lambda \in \sigma_{\mathrm{pp}}(H(\xi))\right\}$ be the pure point part of the energy momentum spectrum. The threshold part is defined to be

$$
\mathcal{T}=\{(\lambda, \xi) \mid \lambda \in \mathcal{T}(\xi)\}, \mathcal{T}(\xi)=\left\{\lambda \mid \exists k: \omega_{\xi}(k)=\lambda, \nabla_{k} \omega_{\xi}(k)=0\right\}
$$

Engelmann-M-Rasmussen 2015

- \mathcal{T} is a closed and subanalytic subset of \mathbb{R}^{d+1} (locally the proper projection of a semi-analytic set).

The Energy-Momentum Spectrum

Let $\Sigma_{\mathrm{pp}}=\left\{(\lambda, \xi) \mid \lambda \in \sigma_{\mathrm{pp}}(H(\xi))\right\}$ be the pure point part of the energy momentum spectrum. The threshold part is defined to be

$$
\mathcal{T}=\{(\lambda, \xi) \mid \lambda \in \mathcal{T}(\xi)\}, \mathcal{T}(\xi)=\left\{\lambda \mid \exists k: \omega_{\xi}(k)=\lambda, \nabla_{k} \omega_{\xi}(k)=0\right\}
$$

Engelmann-M-Rasmussen 2015

- \mathcal{T} is a closed and subanalytic subset of \mathbb{R}^{d+1} (locally the proper projection of a semi-analytic set).
- For each $\xi, \mathcal{T}(\xi)$ is closed and locally finite.

The Energy-Momentum Spectrum

Let $\Sigma_{\mathrm{pp}}=\left\{(\lambda, \xi) \mid \lambda \in \sigma_{\mathrm{pp}}(H(\xi))\right\}$ be the pure point part of the energy momentum spectrum. The threshold part is defined to be

$$
\mathcal{T}=\{(\lambda, \xi) \mid \lambda \in \mathcal{T}(\xi)\}, \mathcal{T}(\xi)=\left\{\lambda \mid \exists k: \omega_{\xi}(k)=\lambda, \nabla_{k} \omega_{\xi}(k)=0\right\}
$$

Engelmann-M-Rasmussen 2015

- \mathcal{T} is a closed and subanalytic subset of \mathbb{R}^{d+1} (locally the proper projection of a semi-analytic set).
- For each $\xi, \mathcal{T}(\xi)$ is closed and locally finite.
- $\Sigma_{\mathrm{pp}} \backslash \mathcal{T}$ is a semi-analytic subset of $\mathbb{R}^{d+1} \backslash \mathcal{T}$.

The Energy-Momentum Spectrum

Let $\Sigma_{\mathrm{pp}}=\left\{(\lambda, \xi) \mid \lambda \in \sigma_{\mathrm{pp}}(H(\xi))\right\}$ be the pure point part of the energy momentum spectrum. The threshold part is defined to be

$$
\mathcal{T}=\{(\lambda, \xi) \mid \lambda \in \mathcal{T}(\xi)\}, \mathcal{T}(\xi)=\left\{\lambda \mid \exists k: \omega_{\xi}(k)=\lambda, \nabla_{k} \omega_{\xi}(k)=0\right\}
$$

Engelmann-M-Rasmussen 2015

- \mathcal{T} is a closed and subanalytic subset of \mathbb{R}^{d+1} (locally the proper projection of a semi-analytic set).
- For each $\xi, \mathcal{T}(\xi)$ is closed and locally finite.
- $\Sigma_{\mathrm{pp}} \backslash \mathcal{T}$ is a semi-analytic subset of $\mathbb{R}^{d+1} \backslash \mathcal{T}$.
- For each $\xi, \sigma_{\mathrm{pp}}(H(\xi)) \backslash \mathcal{T}(\xi)$ is a locally finite subset of $\mathbb{R} \backslash \mathcal{T}(\xi)$.

Momentum Representation

The idea of the proof is to pass to a momentum representation, where $\omega_{\xi}(p)$ is a multiplication operator and the potential becomes an operator of convolution with \hat{V}.

Momentum Representation

The idea of the proof is to pass to a momentum representation, where $\omega_{\xi}(p)$ is a multiplication operator and the potential becomes an operator of convolution with \hat{V}.

A first choice of conjugate operator A would be $\operatorname{Re} \nabla_{k} \omega_{\xi} \cdot i \nabla_{k}$, but the growth of ω may cause problems. The solution is to keep in mind that momentum is bounded so one may instead use $A_{\xi}=\operatorname{Re} v_{\xi} \cdot i \nabla_{k}$, where $v_{\xi}(k)=e^{-k^{2}} \nabla_{k} \omega_{\xi}(k)$.

Momentum Representation

The idea of the proof is to pass to a momentum representation, where $\omega_{\xi}(p)$ is a multiplication operator and the potential becomes an operator of convolution with \hat{V}.

A first choice of conjugate operator A would be $\operatorname{Re} \nabla_{k} \omega_{\xi} \cdot i \nabla_{k}$, but the growth of ω may cause problems. The solution is to keep in mind that momentum is bounded so one may instead use $A_{\xi}=\operatorname{Re} v_{\xi} \cdot i \nabla_{k}$, where $v_{\xi}(k)=e^{-k^{2}} \nabla_{k} \omega_{\xi}(k)$.

A conjugate operator of this type was previously employed by Nakamura 1990, also in a momentum representation.

Complex Deformation

Denote by $\gamma_{\xi}^{t}(k)$ the solution of $\dot{y}=v_{\xi}(y)$ with $y(0)=k$. Then

$$
e^{i t A_{\xi}} \omega_{\xi}(k) e^{-i t A_{\xi}}=\omega_{\xi}\left(\gamma_{\xi}^{t}(k)\right)
$$

Complex Deformation

Denote by $\gamma_{\xi}^{t}(k)$ the solution of $\dot{y}=v_{\xi}(y)$ with $y(0)=k$. Then

$$
e^{i t A_{\xi}} \omega_{\xi}(k) e^{-i t A_{\xi}}=\omega_{\xi}\left(\gamma_{\xi}^{t}(k)\right)
$$

Recall that $e^{i t A_{\xi} f}=\sqrt{\operatorname{det} D_{k} \gamma_{\xi}^{t}(k)} f\left(\gamma_{\xi}^{t}(k)\right)$.

Complex Deformation

Denote by $\gamma_{\xi}^{t}(k)$ the solution of $\dot{y}=v_{\xi}(y)$ with $y(0)=k$. Then

$$
e^{i t A_{\xi}} \omega_{\xi}(k) e^{-i t A_{\xi}}=\omega_{\xi}\left(\gamma_{\xi}^{t}(k)\right)
$$

Recall that $e^{i t A_{\xi} f}=\sqrt{\operatorname{det} D_{k} \gamma_{\xi}^{t}(k)} f\left(\gamma_{\xi}^{t}(k)\right)$.
Deforming into the complex plane now amounts to analyzing the extension of the flow $z \rightarrow \gamma_{\xi}^{z}(k)$ to complex times.

Complex Deformation

Denote by $\gamma_{\xi}^{t}(k)$ the solution of $\dot{y}=v_{\xi}(y)$ with $y(0)=k$. Then

$$
e^{i t A_{\xi}} \omega_{\xi}(k) e^{-i t A_{\xi}}=\omega_{\xi}\left(\gamma_{\xi}^{t}(k)\right)
$$

$$
\text { Recall that } e^{i t A_{\xi} f}=\sqrt{\operatorname{det} D_{k} \gamma_{\xi}^{t}(k)} f\left(\gamma_{\xi}^{t}(k)\right)
$$

Deforming into the complex plane now amounts to analyzing the extension of the flow $z \rightarrow \gamma_{\xi}^{z}(k)$ to complex times.

The exponential decay of V ensures that the operator of convolution with \hat{V} may be complex deformed into a strip as well.

Complex Deformation

Denote by $\gamma_{\xi}^{t}(k)$ the solution of $\dot{y}=v_{\xi}(y)$ with $y(0)=k$. Then

$$
e^{i t A_{\xi}} \omega_{\xi}(k) e^{-i t A_{\xi}}=\omega_{\xi}\left(\gamma_{\xi}^{t}(k)\right)
$$

$$
\text { Recall that } e^{i t A_{\xi} f}=\sqrt{\operatorname{det} D_{k} \gamma_{\xi}^{t}(k)} f\left(\gamma_{\xi}^{t}(k)\right) \text {. }
$$

Deforming into the complex plane now amounts to analyzing the extension of the flow $z \rightarrow \gamma_{\xi}^{z}(k)$ to complex times.

The exponential decay of V ensures that the operator of convolution with \hat{V} may be complex deformed into a strip as well.

The Mourre estimate essentially follows from the computation

$$
i\left[\omega_{\xi}(k), A_{\xi}\right]=e^{-k^{2}}\left|\nabla_{k} \omega_{\xi}(k)\right|^{2}
$$

Sketch of Proof of Main Theorem I

The key point is to show that for $\operatorname{Im} \theta>0$ with $|\theta|<R^{\prime \prime}$ small enough, $\bar{P} H_{\theta} \bar{P}$ has no spectrum in a region of the form $(\lambda-\rho, \lambda+\rho)+i(-e \operatorname{Im} \theta / 2, \infty)$.

Sketch of Proof of Main Theorem I

The key point is to show that for $\operatorname{Im} \theta>0$ with $|\theta|<R^{\prime \prime}$ small enough, $\bar{P} H_{\theta} \bar{P}$ has no spectrum in a region of the form $(\lambda-\rho, \lambda+\rho)+i(-e \operatorname{Im} \theta / 2, \infty)$.

Suppose towards a contradiction that $\mu \in \sigma\left(\bar{P} H_{\theta} \bar{P}\right)$ is in this region. We may wlog assume that there exists a normalized sequence $\psi_{n} \in D(H)$ with $o_{n}:=\left\|\bar{P}\left(H_{\theta}-\mu\right) \bar{P} \psi_{n}\right\| \rightarrow 0$.

Sketch of Proof of Main Theorem I

The key point is to show that for $\operatorname{Im} \theta>0$ with $|\theta|<R^{\prime \prime}$ small enough, $\bar{P} H_{\theta} \bar{P}$ has no spectrum in a region of the form $(\lambda-\rho, \lambda+\rho)+i(-e \operatorname{Im} \theta / 2, \infty)$.
Suppose towards a contradiction that $\mu \in \sigma\left(\bar{P} H_{\theta} \bar{P}\right)$ is in this region. We may wlog assume that there exists a normalized sequence $\psi_{n} \in D(H)$ with $o_{n}:=\left\|\bar{P}\left(H_{\theta}-\mu\right) \bar{P} \psi_{n}\right\| \rightarrow 0$.

The result follows from the computation

$$
\begin{aligned}
\operatorname{Im} \mu= & \operatorname{Im}\left\langle\bar{P} \psi_{n},\left(\mu-H_{\theta}\right) \bar{P} \psi_{n}\right\rangle+\operatorname{Im}\left\langle\bar{P} \psi_{n}, H_{\theta} \bar{P} \psi_{n}\right\rangle \\
= & \operatorname{Im}\left\langle\bar{P} \psi_{n},\left(\mu-H_{\theta}\right) \bar{P} \psi_{n}\right\rangle-\operatorname{Im} \theta\left\langle\bar{P} \psi_{n}, i[H, A] \bar{P} \psi_{n}\right\rangle \\
& +O\left(R^{\prime \prime} \operatorname{Im} \theta\right) \\
\leq & o_{n}-\operatorname{Im} \theta\left(e-c R^{\prime \prime}-C\left\langle\bar{P} \psi_{n}, 1(|H-\lambda| \geq \kappa)\langle H\rangle \bar{P} \psi_{n}\right\rangle\right) \\
\leq & o_{n}-\operatorname{Im} \theta\left(e-c^{\prime} R^{\prime \prime}-c^{\prime \prime} \rho\right) .
\end{aligned}
$$

AARHUS UNIVERSITY

Sketch of Proof of Main Theorem II

It remains to show that H_{θ} has no essential spectrum near λ. That the spectrum consists of isolated points near λ follows from the preceding result and isospectrality of the Feschbach map, which ensures that $\mu \in \sigma\left(H_{\theta}\right)$ if and only if $\operatorname{det}\left(F_{P}(\mu)\right)=0$, where

$$
F_{P}(\mu)=P\left(H_{\theta}-\mu\right) P-P H_{\theta} \bar{P}\left(\bar{P} H_{\theta} \bar{P}-\mu\right)^{-1} H_{\theta} P
$$

Sketch of Proof of Main Theorem II

It remains to show that H_{θ} has no essential spectrum near λ. That the spectrum consists of isolated points near λ follows from the preceding result and isospectrality of the Feschbach map, which ensures that $\mu \in \sigma\left(H_{\theta}\right)$ if and only if $\operatorname{det}\left(F_{P}(\mu)\right)=0$, where

$$
F_{P}(\mu)=P\left(H_{\theta}-\mu\right) P-P H_{\theta} \bar{P}\left(\bar{P} H_{\theta} \bar{P}-\mu\right)^{-1} H_{\theta} P .
$$

In order to show that the remaining points in the spectrum are not essential spectrum, one must show that the corresponding Riesz projection have finite rank. Here on can use the Feshbach Reconstruction Formula and Cauchy's Integral Theorem to express the path integral of $\left(H_{\theta}-z\right)^{-1}$ as a sum of finite rank operators.

[^0]: AARHUS UNIVERSITY

