Essential spectra and localization at infinity 00000000

Applications and extensions

Cross-product algebras and the essential spectrum of the *N*-body hamiltonian

Victor Nistor, joint work with Vladimir Georgescu

June 25, 2016

Spectral Theory and Mathematical Physics in Honor of Vladimir Georgescu, June, 2016.

Statement of the main result	Essential spectra and localization at infinity	Applications and extensions
Essential spectrum and radial limits		
Abstract		

Determination of essential spectrum of *N*-body Hamiltonians with potentials that have **radial limits** at infinity on X/Y. Extends the classical HVZ-theorem (zero at infinity on X/Y).

The proof is based on the study of algebras generated by potentials and their cross-products. Technically, the proofs rely on the theory developed by Georgescu and collab. Especially with Damak and Iftimovici on

localizations at infinity via cross-products.

These results are joint work with Vladimir Georgescu.

Essential spectra and localization at infinity 00000000

Applications and extensions

Essential spectrum and radial limits

Summary (three parts)

1 Statement of the main result

- Essential spectrum and radial limits
- One slide intro to GI-localization and idea of our proof
- Essential spectra and localization at infinity
 - Localization at infinity: four steps
 - Cross-products and localizations
 - Technical details of the Georgescu-Iftimovici results

3 Applications and extensions

- Proof of our main result
- Extensions: Cordes' algebras

Essential spectra and localization at infinity ${\tt 000000000}$

Applications and extensions 0000000000

Essential spectrum and radial limits

Notation and assumptions

The hamiltonian and (simplified) assumptions*:

- X = f.d. vect sp.; X̄ := X ∪ S_X = radial compactification (S_X is the space of rays in X.)
- **Fix** a finite dimensional real vector space $X (\mathbb{R}^{3N})$;
- $H := -\Delta + V$, where $V = \sum_{Y} V_{Y}$ (finite sum).
- V_Y: X/Y → ℝ, for a subspace Y ⊂ X, continuous. (Also a function on X via X → X/Y.)

* our functions have *radial limits* at infinity; however, we can relax some other assumptions (next slide).

Statement of the main result	Essential spectra and localization at infinity	Applications and extension	
000000000			

Essential spectrum and radial lim

Extensions

Let $T_x: L^2(X) \to L^2(X)$ be the translation by $x \in X$ and

$$h(P)f := \int_{x \in X} \hat{h}(x) T_x(f) dx$$

be the associated **convolution operator** (so *P* is the momentum).

We can **relax** our assumptions as follows:

- We can replace Δ with h(P), for a suitable proper function h: X^{*} → [0,∞).
- We can include Coulomb type singularities (~ r⁻¹) in each V_Y, so classical N-body interactions are covered.
- In general, H = an operator **affiliated** to our algebra \mathcal{A} (to be constructed) [Damak-Georgescu].

Statement of the main result	Essential spectra and localization at infinity	Applications and extensions
Essential spectrum and radial limits		
Radial limits		

Let
$$S_X := (X \setminus \{0\})/\mathbb{R}^*_+$$
 and $\alpha = \mathbb{R}^*_+ a \in S_X$.

If $v \in \mathcal{C}(\overline{X})$ (cont on the radial comp), then there exists

$$v(\alpha) = \lim_{r \to \infty} v(ra + x), \quad \forall \ a \in X^*, \ x \in X.$$

Let now $v_Y \in \mathcal{C}(\overline{X/Y})$ and $\alpha = \mathbb{R}^*_+ a$ (as always). Then

$$\lim_{r \to \infty} V_Y(x + ra) = \begin{cases} V_Y(\alpha^*) & \text{if } a \notin Y \\ V_Y(x) & \text{otherwise} \end{cases}$$
$$=: \rho_\alpha(V_Y)(x)$$

* the projection $X \to X/Y$ extends to $S_X \smallsetminus S_Y \to S_{X/Y}$.

Essential spectra and localization at infinity 00000000

Applications and extensions 0000000000

Essential spectrum and radial limits

(Radial) limit operators

We interpret the last relation in terms of strong (radial) limits.

Let f(Q) denote the operator of **multiplication** by f on $L^2(X)$.

If $V_Y \in C(\overline{X/Y})$ and $L = V_Y(Q)$, then we have the following **BASIC RADIAL STRONG LIMIT PROPERTY**:

s-lim
$$T_{ra}LT_{ra}^* = \left\{ \begin{array}{ll} L, & \text{if } a \in Y \\ V_Y(\alpha), & \text{if } a \notin Y \end{array} \right\} =: \rho_a(L) =: \rho_\alpha(L)$$

 $(\alpha = \mathbb{R}_+^*a).$

 $V_L(\alpha) \in \mathbb{C}$ is simpler than $L = V_Y(Q)$, an operator.

Essential spectra and localization at infinity 00000000

Applications and extensions 0000000000

Essential spectrum and radial limits

Statement of main result

If the limit exists, we let

$$\rho_{lpha}(L) := \operatorname{s-lim}_{a o lpha} \mathcal{T}_{ra} \mathcal{L} \mathcal{T}^*_{ra}, \ \ lpha = \mathbb{R}^*_+ a.$$

We have seen that the limit exists for $L = V_Y(Q)$.

Also, trivially, $\rho_{\alpha}(h(P)) = h(P)$, for L = h(P) (conv operator).

Theorem (Georgescu-Nistor)

Let $V_Y \in \mathcal{C}(\overline{X/Y})$, $H = -\Delta + \sum_Y V_Y$, and $\alpha \in S_X$. Then

$$\rho_{\alpha}(H) = -\Delta + \sum_{Y \supset \alpha} V_Y + \sum_{Y \not\supset \alpha} V_Y(\alpha).$$

and $\sigma_{\mathrm{ess}}(H) = \overline{\cup}_{\alpha \in S_X} \sigma(\rho_{\alpha}(H)).$

VERSITÉ .ORRAINE

Statement	of	the	main	result			
0000000000							

Essential spectra and localization at infinity

Applications and extensions

One slide intro to GI-localization and idea of our proof

If all the radial limits of the V_Y s are zero (e.g. the usual *N*-body potentials) then the terms corresponding to $\alpha \not\subset Y$ drop out from the formula for *V*.

Consequently, we thus recover the Hunziker, van Winter, Zhislin (HVZ) theorem. Many other related results (Georgescu, Gerard, Helfer, Rabinovich, Roch, Simon, ... ; "limit operators").

The proof is based on the "localization at infinity" technique developed in [Damak-Georgescu, Georgescu-Iftimovici] in the context of crossed-product algebras.

Applications and extensions 0000000000

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

One slide intro to GI-localization and idea of our proof

One slide introduction to G-I localization at infinity

The Georgescu-Iftimovici (G-I) localization at infinity involves:

- $\mathcal{A}_0 \simeq \mathcal{C}(\Omega_0) \subset \mathcal{C}^{\mathrm{u}}_{\mathrm{b}}(X)$, on which X acts by translations.
- $H = -\Delta + V$, with $V \in A_0$ = algebra of potentials.

• Let
$$\tau_{\omega}(a) := \operatorname{s-lim}_{q \to \omega} T_q a T_q^* := \operatorname{s-lim}_{q \to \omega} \tau_q(a)$$
. $(\rho_{\alpha}!)$

Theorem (Georgescu-Iftimovici)

$$H_{\omega} := \tau_{\omega}(H) = -\Delta + V_{\omega}$$
 (localization at $\omega \in \Omega$). Then

$$\sigma_{\mathrm{ess}}(H) = \overline{\cup}_{\omega \in \partial \Omega_0} \sigma(H_\omega).$$

Proof uses: $(H + i)^{-1} \in$ algebra \mathcal{A} generated by products h(P)g(Q) and their adjoints and τ_{ω} define morphisms on \mathcal{A} whose common kernel consists of compact op. $(\omega \in \partial \Omega_0 := \Omega_0 \setminus X)$.

Essential spectra and localization at infinity 00000000

Applications and extensions

One slide intro to GI-localization and idea of our proof

Idea of the proof of our result

We use **the G-I localization at infinity** for the algebra $\mathcal{A}_0 \simeq \mathcal{C}(\Omega_0) \subset \mathcal{C}^{\mathrm{u}}_{\mathrm{b}}(X)$ generated by all $V_Y \in \mathcal{C}(\overline{X/Y})$.

We then determine Ω_0 and show that one can obtain all localizations $\tau_{\omega}(a)$ from the radial limits $\rho_{\alpha}(a)$. More precisely:

Hence, for $a \in A$,

$$\sigma_{\mathrm{ess}}(\mathbf{a}) \stackrel{\mathsf{GI}}{=} \overline{\cup}_{\omega \in \partial \Omega_0} \, \sigma(\tau_{\omega}(\mathbf{a})) = \overline{\cup}_{\alpha \in S_X} \, \sigma(\rho_{\alpha}(\mathbf{a})) \, .$$

Localization at infinity: four steps

Applications and extensions

Summary of 2nd section

2nd SECTION:

- **U** "Localization at infinity" (Georgescu + col.) in four steps;
- In the me discuss details on cross prod.

Localization at infinity: four steps

Essential spectra and localization at infinity $0{\textcircled{\black}0{\includegraphics{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\back}0{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\textcircled{\black}0{\rule{\black}0{\textcircled{\black}0{\textcircled{\back}0{\textcircled{\back}0{\rule{\back}0{\rule{\back}0{\rule{\back}0{\black}0{\rule{\back}0{\rule0}0{\rule{\back}0{\rule0}0{\ruleblack}0{\ruleb$

Applications and extensions

The localization at infinity: first two steps

First of all, by replacing *H* with $a := (H + i)^{-1}$, we may **assume that our operator is bounded** and normal (but not self-adjoint).

(The problem is thus reduced to the determination of the essential spectrum of $a := (H + i)^{-1}$.)

Let *a* be a bounded operator on $L^2(X)$.

Second, we use that $z \notin \sigma_{ess}(a)$ if, and only if, a - z is Fredholm, if, and only if, a - z is invertible modulo the ideal of compact operators (on $L^2(X)$), by Atkinson's theorem.

Essential spectra and localization at infinity ooeooooo

Applications and extensions 0000000000

Localization at infinity: four steps

Third step of the localization at infinity

The **third** step is a little bit more specific.

We fix an algebra $\mathcal{A}_0 \subset C_b^u(X)$ inv by X. Let \mathcal{A} be the **norm** closed algebra generated by all operators of the form h(P)V(Q)and their adjoints, where $V \in \mathcal{A}_0$ and $h \in C_0(X^*)$ (cont and zero at infinity). In particular, $h(P) \in \mathcal{A}$.

For $V \in \mathcal{A}_0$ $(\mathcal{A} = \langle h(P)\mathcal{A}_0 \rangle)$, we have

 $H + i = -\Delta + i + V = (-\Delta + i) \left[1 + (-\Delta + i)^{-1} V \right] = (-\Delta + i) b,$

hence $b := 1 + (-\Delta + \imath)^{-1} V \in \mathcal{A}$ is L^2 -inv. So $b^{-1} \in \mathcal{A}$ (!) and

$$a = (H + i)^{-1} = [1 + (-\Delta + i)^{-1}V]^{-1}(-\Delta + i)^{-1} \in \mathcal{A}.$$

Essential spectra and localization at infinity ${\tt 000000000}$

Applications and extensions 0000000000

Localization at infinity: four steps

Fourth and last step of the localization at infinity

The **fourth** step of the localization at infinity is the easiest to state, but also the most difficult to solve:

Given $a \in A$, find **concrete** conditions on a that will guarantee that it is Fredholm.

A first result (Georgescu) is that the ideal of compact operators

$$\mathcal{K} = \mathcal{K}(L^2(X)) \subset \mathcal{A},$$

so, in view of step two, the fourth step is equivalent to answering

Given $b \in \mathcal{A}/\mathcal{K}$, find **concrete** conditions on b that will guarantee that it is invertible.

Applications and extensions

Technical details of the Georgescu-Iftimovici results

The general setting for the G.-I. results

TECHNICAL DETAILS OF THE GEORGESCU-IFTIMOVICI LOCALIZATION AT INFINITY RESULTS (general case)

Notation and assumptions:

- $C_{\rm b}^{\rm u}(X) =$ algebra of *bounded uniformly cont* funct on X.
- $\mathcal{C}_0(X) \subset \mathcal{C}^{\mathrm{u}}_{\mathrm{b}}(X)$ the ideal of functions vanishing at infinity.
- C₀(X) ⊂ A₀ ⊂ C^u_b(X) a norm-closed, conj. inv. subalgebra, invariant for the action of X by translations on C^u_b(X).
- Hence $\mathcal{A}_0 = \mathcal{C}(\Omega_0)$, where Ω_0 is a **compact space** containing X as a dense open subset (struct. of commut. C^* -algebras).
- Also, X acts continuously on Ω_0 , since it acts on A.

Applications and extensions 0000000000

Technical details of the Georgescu-Iftimovici results

The cross-product algebra $\mathcal{A} := \mathcal{A}_0 \rtimes X$

This data $(\mathcal{A}_0 = \mathcal{C}(\Omega_0), ...)$ defines the **cross-product algebra** $\mathcal{A} := \mathcal{A}_0 \rtimes X$ as the norm-closed algebra on $L^2(X)$ generated by

$$h(P)g(Q), h \in \mathcal{C}_0(X^*), g \in \mathcal{A}_0,$$

and their adjoints.

Thus $\mathcal{A} := \mathcal{A}_0 \rtimes X$ is the algebra generated by multiplications with funct in \mathcal{A}_0 and by convolutions. ($\mathcal{A}_0 = \text{potentials.}$)

Reason for \rtimes : $H := -\Delta + V$, where $V = V^* \in \mathcal{A}_0 \simeq \mathcal{C}(\Omega_0)$. Then H is self-adjoint, $(-\Delta + i)^{-1}V \in \mathcal{A}$ (same calc.), hence

$$(H+i)^{-1}\in\mathcal{A}$$

Applications and extensions 0000000000

Technical details of the Georgescu-Iftimovici results

Definition of the localization at infinity

Recall the definition of localizations at infinity (functions)

If $q \in X$ and $\varphi : X \to \mathbb{C}$, then $\tau_q(\varphi)(x) := \phi(x - q) = \text{its}$ translation by q.

Extends to operators A by $\tau_q(A) := T_q A T_{-q}$.

Recall that $X \subset \Omega$. For $\omega \in \Omega$, we let

$$au_{\omega}(A) := \operatorname{s-lim}_{q o \omega} au_q(A) \,, \ \ q \in X \,.$$

The s-lim exists for $A = \phi \in \mathcal{A}_0 \subset \mathcal{C}_b^u(X) = \text{operator on } L^2(X)$, hence an explicit **algebra morphism:** ($\alpha = \mathbb{R}_+^* a$)

$$au_{\omega}: \mathcal{A} \to \mathcal{C}^{\mathrm{u}}_{\mathrm{b}}(X), \ \ au_{\omega}(f)(x) = (au_{x}f)(\omega).$$

Technical details of the Georgescu-Iftimovici results

Definition of the localization at infinity (cont.)

Definition of localizations at infinity (cross-product)

We have $\tau_{\omega}(h(P)) := \operatorname{s-lim}_{q \to \omega} \tau_q(h(P)) = \operatorname{s-lim}_{q \to \omega} h(P) = h(P)$. Hence we obtain

$$\tau_{\omega}(h(P)g(Q)) := \operatorname{s-lim}_{q \to \omega} \tau_q(h(P)g(Q)) = h(P)\tau_{\omega}(g(Q)).$$

Since $\|\tau_{\omega}(A)\| \leq \|A\|$ (when the limit exists), we obtain that τ_{ω} extends to the cross-product algebra $\mathcal{A} := \mathcal{A}_0 \rtimes X$ to yield a ***-algebra morphisms**

$$au_\omega: \mathcal{A}:=\mathcal{A}_{\mathbf{0}}
times X
ightarrow \mathcal{C}^{\mathrm{u}}_{\mathrm{b}}(X)
times X$$
 .

 $a_{\omega} := \tau_{\omega}(a)$ is the the localization of $a \in \mathcal{A} := \mathcal{A}_0 \rtimes X$ at ω .

Applications and extensions

Technical details of the Georgescu-Iftimovici results

Summary and main GI-result

In summary, we have the following results [Georgescu-Iftimovici]:

 $\ \, {\bf 0} \ \, \omega\in\Omega_0=\hat{\mathcal A}_0 \ \, \text{defines a morphism} \ \, \tau_\omega:\mathcal A\to\mathcal C^{\mathrm{u}}_{\mathrm{b}}(X)\rtimes X \ \, \text{s.t.}$

$$\tau_{\omega}(\varphi(Q)\psi(P)) = \tau_{\omega}(\varphi)(Q)\psi(P)\,, \quad \varphi \in \mathcal{A}_{0}(X), \ \psi \in \mathcal{C}_{0}(X^{*})\,.$$

- If ω ∈ X, τ_ω is simply the translation by ω; for ω ∈ ∂Ω₀ := Ω₀ \ X, τ_ω is a strong limit of translations.
- $\bigcap_{\omega \in \delta(\mathcal{A})} \ker \tau_{\omega} = \mathcal{K} = (\text{compact ops on } L^2(X)).$
- Onsequently,

$$\sigma_{\mathrm{ess}}(a) = \overline{\cup}_{\omega \in \partial \Omega_0} \sigma(\tau_{\omega}(a)).$$

Proof of our main result

Essential spectra and localization at infinity ${\tt 000000000}$

Applications and extensions •000000000

Summary of 3rd section

3rd SECTION:

- Some details of the proof of our result;
- **2** Extensions: Cordes algebras and Lie manifolds.

Essential spectra and localization at infinity 00000000

Applications and extensions

Proof of our main result

The algebra of potentials

Our result: the *N*-body case.

For each linear subspace $Y \subset X$, we let $\mathcal{C}(\overline{X/Y}) \subset \mathcal{C}_{\mathrm{b}}^{\mathrm{u}}(X/Y)$ be the translation invariant subalgebra of functions on X/Y that have uniform radial limits at infinity on X/Y.

Then our $\mathcal{A}_0 = \mathcal{A}_0(X)$ = norm closed subalgebra of $\mathcal{C}_{\mathrm{b}}^{\mathrm{u}}(X)$ generated by all the subspaces $\mathcal{C}(\overline{X/Y}) \subset \mathcal{C}_{\mathrm{b}}^{\mathrm{u}}(X/Y)$. Warning: change in notation!!! $\mathcal{A}_0 = \mathcal{A}_0(X) =$ NOW.

Comment: for the standard *N*-body algebra, it may be more natural to consider the subalgebras $C_0(X/Y)$ of functions that *vanish* at infinity on X/Y. However, the spectrum of this algebra is more cumbersome to understand. (!)

Essential spectra and localization at infinity 00000000

Applications and extensions

Proof of our main result

Radial limits and characters of $\mathcal{A}_0(X)$

We want to write $\mathcal{A}_0(X) \simeq \mathcal{C}(\Omega_0)$. We know then that Ω_0 is the set of algebra morphisms $\chi : \mathcal{A}_0(X) \to \mathbb{C}$ (the **characters** of $\mathcal{A}_0(X) \subset C^{\mathrm{u}}_{\mathrm{b}}(X)$).

• $\chi_x(f) := f(x)$ defines a character $\chi_x : \mathcal{A}_0(X) \to \mathbb{C}$.

We now explain how all the other characters are obtained. We use the radial limit morphisms ($\alpha = \mathbb{R}^*_+ a$.)

$$\lim_{r \to \infty} V_Y(x + ra) = \begin{cases} V_Y(\alpha) & \text{if } a \notin Y \\ V_Y(x) & \text{otherwise} \end{cases} =: \rho_\alpha(V_Y)(x).$$

Each $\mathcal{C}(\overline{X/Y})$ is invariant with respect to translations by X and is "killed" by ρ_{α} if $\alpha = \mathbb{R}^*_+ a \notin Y$. That is $\rho_{\alpha}(\mathcal{C}(\overline{X/Y})) \subset \mathbb{C}$.

Proof of our main result

Essential spectra and localization at infinity 00000000

Applications and extensions

・ロット (雪) (山) (山)

The characters of
$$A_0$$
 (cont.)

Thus ρ_{α} is already a character on $\mathcal{C}(\overline{X/Y})$, if $\alpha = \mathbb{R}_{+}^{*}a \notin Y$.

On the other hand, $\rho_{\alpha}(\mathcal{C}(\overline{X/Y})) = \mathcal{C}(\overline{X/Y})$ if $\alpha \subset Y$. Therefore

$$\rho_{\alpha}(\mathcal{A}_{0}(X)) = \mathcal{A}_{0}(X/\alpha),$$

where, for $\alpha \in S_X$, we denoted by X/α the quotient of X by the subspace $[\alpha] := \mathbb{R}a$ generated by $\alpha := \mathbb{R}^*_+ a$.

 \Rightarrow inductive determination of the spectrum of $\mathcal{A}_0(X)$ (next).

Essential spectra and localization at infinity 00000000

Applications and extensions

Proof of our main result

Inductive construction of the characters of \mathcal{A}_0

Iteration of the radial morphisms ρ_{α} :

• Fix $\alpha \in S_X$ consider $\rho_\alpha : \mathcal{A}_0(X) \to \mathcal{A}_0(X/\alpha)$.

Q Let β ∈ S_{X/α} and consider ρ_β : A₀(X/α) → A₀(X/[α, β]).
 ([α, β] is the 2-dim subspace of X generated by α and β)

We obtain

$$\rho_{\beta,\alpha} := \rho_{\beta} \circ \rho_{\alpha} : \mathcal{A}_0(X) \to \mathcal{A}_0(X/[\alpha,\beta]).$$

• Similar for families $\overrightarrow{\alpha} = (\alpha_1, \dots, \alpha_n)$, $n \leq \dim X$, and $\alpha_1 \in S_X$, $\alpha_2 \in S_{X/\alpha_1}$, $\alpha_3 \in S_{X/[\alpha_1, \alpha_2]}$, and so on, thus

$$\rho_{\overrightarrow{\alpha}} := \rho_{\alpha_n} \dots \rho_{\alpha_1} : \mathcal{A}_0(X) \to \mathcal{A}_0(X/[\alpha_1, \dots, \alpha_n]).$$

So Let $x \in X/[\alpha_1, \dots, \alpha_n]$ and define

$$\chi_{x,\overrightarrow{\alpha}}(f) := \chi_{x}(\rho_{\overrightarrow{\alpha}}(f)) = \rho_{\overrightarrow{\alpha}}(f)(x).$$

Essential spectra and localization at infinity ${\tt 000000000}$

Applications and extensions

Proof of our main result

Determination of all characters

Theorem (Georgescu-Nistor)

All characters of $\mathcal{A}_0(X)$ are of the form

$$\chi_{x,\overrightarrow{lpha}}(f) := \chi_x(\rho_{\overrightarrow{lpha}}(f)) = \rho_{\overrightarrow{lpha}}(f)(x).$$

with x and $\overrightarrow{\alpha}$ uniquely determined, so $\Omega_0 = \{(x, \overrightarrow{\alpha})\}.$

Warning: The topology is not the obvious one!!!

Moreover, if $\omega = (x, \overrightarrow{\alpha})$, $\omega' = (0, \overrightarrow{\alpha})$, and $a \in \mathcal{A}_0$, then

$$au_{\omega}(\mathsf{a}) \sim_{u} au_{\omega'}(\mathsf{a}) =
ho_{\overrightarrow{lpha}}(\mathsf{a}) =
ho_{\overrightarrow{lpha'}}
ho_{lpha_1}(\mathsf{a}).$$

So $\{\rho_{\alpha}(a)\} \subset \{\tau_{\omega}(a)\}$ and $\{\tau_{\omega}(a)\}$ are hom images of $\{\rho_{\alpha}(a)\}$:

$$\sigma_{\mathrm{ess}}(a) = \overline{\cup}_{\omega \in \partial \Omega_0} \sigma(\tau_{\omega}(a)) = \overline{\cup}_{\alpha \in S_X} \sigma(\tau_{\alpha}(a)).$$

Essential spectra and localization at infinity 00000000

Applications and extensions

Extensions: Cordes' algebras

Cordes' comparison algebras

Let M be a (non-compact) Riemannian manifold.

The **Cordes comparison algebra of** M is the (norm-closed) algebra $\mathfrak{A} = \mathfrak{A}(M)$ generated by $P(1 - \Delta)^{-m}$, where P is a suitable differential operator of order 2m with **bounded** coefficients.

Theorem (Cordes)

 $\mathcal{K} \subset \mathfrak{A}$. If M is "very nice", then the quotient \mathfrak{A}/\mathcal{K} is commutative ($\simeq \mathcal{C}(\Omega)$). Hence an operator $a \in \mathfrak{A}$ is Fredholm if, and only if, its "full symbol" $\Sigma(a) \in \mathcal{C}(\Omega)$ is nowhere vanishing.

Ex. if coefficients satisfy $\nabla^k a \in C_0(M)$, $k \ge 1$.

Applications and extensions

Extensions: Cordes' algebras

Comparison algebras and localizations at infinity

Cordes' theorem extends the classical result

"*P* is elliptic \Leftrightarrow *P* is Fredholm"

for differential operators on **compact** manifolds M ($\Omega = S^*M$). In particular (recall that $\Sigma : \mathcal{A}/\mathcal{K} \simeq C(\Omega)$),

$$\sigma_{ess}(a) = \overline{\cup}_{\omega \in \Omega} \sigma(\Sigma(a)(\omega)).$$

 $S^*M \subset \Omega$ and gives a part of the essential spectrum of *a* via its principal symbol (*a* = order zero pseudo-differential op).

In this sense, $a_{\omega} := \Sigma(a)(\omega) \in \mathbb{C}$, for $\omega \in \Omega \setminus S^*X$, can be regarded as a "localization at infinity" of *a*. G-I construction **generalizes this,** but in their case a_{ω} are operators.

Essential spectra and localization at infinity ${\tt 000000000}$

Applications and extensions

Extensions: Cordes' algebras

Example: eulidean spaces

The assumptions of this theorem ($\nabla^k a \in C_0(M)$ for all $a \in A$ and k > 0) are satisfied for asymptotically Euclidean manifolds.

Let \overline{M} be a comp. manifold **with boundary** and h be a metric on \overline{M} . Let r = distance to the boundary and $\mathcal{A}_0 := \mathcal{C}^{\infty}(\overline{M})$. Let

$$g := \frac{h}{r^2} + \kappa \frac{(dr)^2}{r^4}, \quad \kappa > 0.$$

Then M, the int of \overline{M} , with metric g, satisfies the assumptions of Cordes' theorem (so $\mathfrak{A}/\mathcal{K} \simeq \mathcal{C}(\Omega)$). (Asympt. eucl. if $\overline{M} = \overline{X}$.)

Cordes' theorem is **not valid** if $\kappa = 0$, **a. hyperbolic case.**

Essential spectra and localization at infinity ${\tt 000000000}$

Applications and extensions

Extensions: Cordes' algebras

Extension: A. hyperbolic spaces

As before: $\overline{M} = \text{comp.}$ man w b, r = dist to b, $\mathcal{A}_0 := \mathcal{C}^{\infty}(\overline{M})$, $h = \text{metric on } \overline{M}$, but $g = r^{-2}h$ ($\kappa = 0$, asy. hyp.).

Then we can still define **localizations at infinity** a_{ω} , $\omega \in \partial \overline{M}$, s.t.

Theorem (Lauter-Monthubert-V.N.)

 $a \in \mathfrak{A}$ is Fredholm \Leftrightarrow a is elliptic and a_{ω} is invertible $\forall \omega \in \partial \overline{M}$.

 a_{ω} is an order zero pseudodiff operator on a solvable Lie group. The proof is similar, but uses **groupoid** C*-algebras instead of cross-product C*-algebras. Also for some Lie manifolds.

Essential spectra and localization at infinity 00000000

Applications and extensions

Extensions: Cordes' algebras

Extension: The space (spectrum) $\Omega_0 := \mathcal{A}_0$

There are good reasons to study the space $\Omega_0 := \widehat{\mathcal{A}}_0$ for itself. Fix a finite number of $Y \subset X$.

- Even if one is interested in the classical *N*-body problem, the eigenfunctions live naturally on Ω₀ (nice ends: Lie man.).
- **②** One can study the regularity of eigenfunctions on Ω_0 (work in progress; my initial motivation).
- It seems that Ω₀ in fact coincides with the space introduced by Vasy (recent progress by Jérémy Mougel).

Thank you!