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Abstract

Determination of essential spectrum of N-body Hamiltonians with
potentials that have radial limits at infinity on X/Y .

Extends the classical HVZ-theorem (zero at infinity on X/Y ).

The proof is based on the study of algebras generated by potentials
and their cross-products. Technically, the proofs rely on the theory
developed by Georgescu and collab. Especially with Damak and
Iftimovici on

localizations at infinity via cross-products.

These results are joint work with Vladimir Georgescu.
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Essential spectrum and radial limits

Notation and assumptions

The hamiltonian and (simplified) assumptions∗:

X = f.d. vect sp.; X := X ∪ SX = radial compactification
(SX is the space of rays in X .)

Fix a finite dimensional real vector space X (R3N);

H := −∆ + V , where V =
∑

Y VY (finite sum).

VY : X/Y → R, for a subspace Y ⊂ X , continuous. (Also a
function on X via X → X/Y .)

∗ our functions have radial limits at infinity; however, we can relax
some other assumptions (next slide).
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Extensions

Let Tx : L2(X )→ L2(X ) be the translation by x ∈ X and

h(P)f :=

∫
x∈X

ĥ(x)Tx(f )dx

be the associated convolution operator (so P is the momentum).
.

We can relax our assumptions as follows:

We can replace ∆ with h(P), for a suitable proper function
h : X ∗ → [0,∞).

We can include Coulomb type singularities (∼ r−1) in each
VY , so classical N-body interactions are covered.

In general, H = an operator affiliated to our algebra A (to be
constructed) [Damak-Georgescu].
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Radial limits

Let SX := (X r {0})/R∗+ and α = R∗+a ∈ SX .

If v ∈ C(X ) (cont on the radial comp), then there exists

v(α) = lim
r→∞

v(ra + x) , ∀ a ∈ X ∗, x ∈ X .

Let now vY ∈ C(X/Y ) and α = R∗+a (as always). Then

lim
r→∞

VY (x + ra) =

{
VY (α∗) if a /∈ Y

VY (x) otherwise

=: ρα(VY )(x)

∗ the projection X → X/Y extends to SX r SY → SX/Y .
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Essential spectrum and radial limits

(Radial) limit operators

We interpret the last relation in terms of strong (radial) limits.

Let f (Q) denote the operator of multiplication by f on L2(X ).

If VY ∈ C(X/Y ) and L = VY (Q), then we have the following

BASIC RADIAL STRONG LIMIT PROPERTY:

s- lim
r→∞

TraLT ∗ra =

{
L , if a ∈ Y

VY (α) , if a /∈ Y

}
=: ρa(L) =: ρα(L)

(α = R∗+a).

VL(α) ∈ C is simpler than L = VY (Q), an operator.
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Statement of main result

If the limit exists, we let

ρα(L) := s-lim
a→α

TraLT ∗ra , α = R∗+a.

We have seen that the limit exists for L = VY (Q).

Also, trivially, ρα(h(P)) = h(P), for L = h(P) (conv operator).

Theorem (Georgescu-Nistor)

Let VY ∈ C(X/Y ), H = −∆ +
∑

Y VY , and α ∈ SX . Then

ρα(H) = −∆ +
∑
Y⊃α

VY +
∑
Y 6⊃α

VY (α) .

and σess(H) = ∪α∈SXσ(ρα(H)).
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One slide intro to GI-localization and idea of our proof

Comments

If all the radial limits of the VY s are zero (e.g. the usual N-body
potentials) then the terms corresponding to α 6⊂ Y drop out from
the formula for V .

Consequently, we thus recover the Hunziker, van Winter, Zhislin
(HVZ) theorem. Many other related results (Georgescu, Gerard,
Helfer, Rabinovich, Roch, Simon, ... ; “limit operators”).

The proof is based on the “localization at infinity” technique
developed in [Damak-Georgescu, Georgescu-Iftimovici] in the
context of crossed-product algebras.
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One slide introduction to G-I localization at infinity

The Georgescu-Iftimovici (G-I) localization at infinity involves:

A0 ' C(Ω0) ⊂ Cub(X ), on which X acts by translations.

H = −∆ + V , with V ∈ A0 = algebra of potentials.

Let τω(a) := s-limq→ωTqaT ∗q := s-limq→ωτq(a). (ρα!)

Theorem (Georgescu-Iftimovici)

Hω := τω(H) = −∆ + Vω (localization at ω ∈ Ω). Then

σess(H) = ∪ω∈∂Ω0 σ(Hω) .

Proof uses: (H + ı)−1 ∈ algebra A generated by products
h(P)g(Q) and their adjoints and τω define morphisms on A whose
common kernel consists of compact op. (ω ∈ ∂Ω0 := Ω0 r X ).
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Idea of the proof of our result

We use the G-I localization at infinity for the algebra
A0 ' C(Ω0) ⊂ Cub(X ) generated by all VY ∈ C(X/Y ).

We then determine Ω0 and show that one can obtain all
localizations τω(a) from the radial limits ρα(a). More precisely:

1 {ρα(a)} ⊂ {τω(a)}, (“⊃”)

2 If ω ∈ ∂Ω0 := Ω0 r X , then there is α ∈ SX s.t. (“⊂”)

σ(τω(a)) ⊂ σ(ρα(a)) .

Hence, for a ∈ A,

σess(a)
GI
= ∪ω∈∂Ω0 σ(τω(a)) = ∪α∈SX σ(ρα(a)) .
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Summary of 2nd section

2nd SECTION:

1 “Localization at infinity” (Georgescu + col.) in four steps;

2 Then we discuss details on cross prod.
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Localization at infinity: four steps

The localization at infinity: first two steps

First of all, by replacing H with a := (H + ı)−1, we may assume
that our operator is bounded and normal (but not self-adjoint).

(The problem is thus reduced to the determination of the
essential spectrum of a := (H + ı)−1.)

Let a be a bounded operator on L2(X ).

Second, we use that z /∈ σess(a) if, and only if, a− z is Fredholm,
if, and only if, a− z is invertible modulo the ideal of compact
operators (on L2(X )), by Atkinson’s theorem.
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Third step of the localization at infinity

The third step is a little bit more specific.

We fix an algebra A0 ⊂ Cub(X ) inv by X . Let A be the norm
closed algebra generated by all operators of the form h(P)V (Q)
and their adjoints, where V ∈ A0 and h ∈ C0(X ∗) (cont and zero
at infinity). In particular, h(P) ∈ A.

For V ∈ A0 (A = 〈h(P)A0〉), we have

H + ı = −∆ + ı+ V = (−∆ + ı)
[
1 + (−∆ + ı)−1V

]
= (−∆ + ı)b ,

hence b := 1 + (−∆ + ı)−1V ∈ A is L2-inv. So b−1 ∈ A (!) and

a = (H + ı)−1 =
[
1 + (−∆ + ı)−1V

]−1
(−∆ + ı)−1 ∈ A .
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Fourth and last step of the localization at infinity

The fourth step of the localization at infinity is the easiest to
state, but also the most difficult to solve:

Given a ∈ A, find concrete conditions on a that will
guarantee that it is Fredholm.

A first result (Georgescu) is that the ideal of compact operators

K = K(L2(X )) ⊂ A ,

so, in view of step two, the fourth step is equivalent to answering

Given b ∈ A/K, find concrete conditions on b that
will guarantee that it is invertible.
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The general setting for the G.-I. results

TECHNICAL DETAILS OF THE GEORGESCU-IFTIMOVICI
LOCALIZATION AT INFINITY RESULTS (general case)

Notation and assumptions:

Cub(X ) = algebra of bounded uniformly cont funct on X .

C0(X ) ⊂ Cub(X ) the ideal of functions vanishing at infinity.

C0(X ) ⊂ A0 ⊂ Cub(X ) a norm-closed, conj. inv. subalgebra,
invariant for the action of X by translations on Cub(X ).

Hence A0 = C(Ω0), where Ω0 is a compact space containing
X as a dense open subset (struct. of commut. C ∗-algebras).

Also, X acts continuously on Ω0, since it acts on A.
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The cross-product algebra A := A0 o X

This data (A0 = C(Ω0), ... ) defines the cross-product algebra
A := A0 o X as the norm-closed algebra on L2(X ) generated by

h(P)g(Q) , h ∈ C0(X ∗), g ∈ A0 ,

and their adjoints.

Thus A := A0 o X is the algebra generated by multiplications
with funct in A0 and by convolutions. (A0 = potentials.)

Reason for o: H := −∆ + V , where V = V ∗ ∈ A0 ' C(Ω0).
Then H is self-adjoint, (−∆ + ı)−1V ∈ A (same calc.), hence

(H + ı)−1 ∈ A .
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Definition of the localization at infinity

Recall the definition of localizations at infinity (functions)

If q ∈ X and ϕ : X → C, then τq(ϕ)(x) := φ(x − q) = its
translation by q.

Extends to operators A by τq(A) := TqAT−q.

Recall that X ⊂ Ω. For ω ∈ Ω, we let

τω(A) := s-lim
q→ω

τq(A) , q ∈ X .

The s-lim exists for A = φ ∈ A0 ⊂ Cub(X ) = operator on L2(X ),
hence an explicit algebra morphism: (α = R∗+a)

τω : A → Cub(X ) , τω(f )(x) = (τx f )(ω) .
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Technical details of the Georgescu-Iftimovici results

Definition of the localization at infinity (cont.)

Definition of localizations at infinity (cross-product)

We have τω(h(P)) := s-limq→ωτq(h(P)) = s-limq→ωh(P) = h(P) .
Hence we obtain

τω(h(P)g(Q)) := s-lim
q→ω

τq(h(P)g(Q)) = h(P)τω(g(Q)) .

Since ‖τω(A)‖ ≤ ‖A‖ (when the limit exists), we obtain that τω
extends to the cross-product algebra A := A0 o X to yield a
∗-algebra morphisms

τω : A := A0 o X → Cub(X ) o X .

aω := τω(a) is the the localization of a ∈ A := A0 o X at ω.
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Technical details of the Georgescu-Iftimovici results

Summary and main GI-result

In summary, we have the following results [Georgescu-Iftimovici]:

1 ω ∈ Ω0 = Â0 defines a morphism τω : A → Cub(X ) o X s.t.

τω(ϕ(Q)ψ(P)) = τω(ϕ)(Q)ψ(P) , ϕ ∈ A0(X ), ψ ∈ C0(X ∗) .

2 If ω ∈ X , τω is simply the translation by ω; for
ω ∈ ∂Ω0 := Ω0 r X , τω is a strong limit of translations.

3 ∩ω∈δ(A) ker τω = K = (compact ops on L2(X )).

4 Consequently,

σess(a) = ∪ω∈∂Ω0 σ(τω(a)) .
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Proof of our main result

Summary of 3rd section

3rd SECTION:

1 Some details of the proof of our result;

2 Extensions: Cordes algebras and Lie manifolds.
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Proof of our main result

The algebra of potentials

Our result: the N-body case.

For each linear subspace Y ⊂ X , we let C(X/Y ) ⊂ Cub(X/Y ) be
the translation invariant subalgebra of functions on X/Y that have
uniform radial limits at infinity on X/Y .

Then our A0 = A0(X ) = norm closed subalgebra of Cub(X )

generated by all the subspaces C(X/Y ) ⊂ Cub(X/Y ).

Warning: change in notation!!! A0 = A0(X ) = NOW.

Comment: for the standard N-body algebra, it may be more
natural to consider the subalgebras C0(X/Y ) of functions that
vanish at infinity on X/Y . However, the spectrum of this algebra
is more cumbersome to understand. (!)
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Proof of our main result

Radial limits and characters of A0(X )

We want to write A0(X ) ' C(Ω0). We know then that Ω0 is the
set of algebra morphisms χ : A0(X )→ C (the characters of
A0(X ) ⊂ Cub(X )).

• χx(f ) := f (x) defines a character χx : A0(X )→ C.

We now explain how all the other characters are obtained. We
use the radial limit morphisms (α = R∗+a.)

lim
r→∞

VY (x + ra) =

{
VY (α) if a /∈ Y

VY (x) otherwise

}
=: ρα(VY )(x) .

Each C(X/Y ) is invariant with respect to translations by X and is
“killed” by ρα if α = R∗+a 6⊂ Y . That is ρα(C(X/Y )) ⊂ C.
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Proof of our main result

The characters of A0 (cont.)

Thus ρα is already a character on C(X/Y ), if α = R∗+a 6⊂ Y .

On the other hand, ρα(C(X/Y )) = C(X/Y ) if α ⊂ Y . Therefore

ρα(A0(X )) = A0(X/α) ,

where, for α ∈ SX , we denoted by X/α the quotient of X by the
subspace [α] := Ra generated by α := R∗+a.

⇒ inductive determination of the spectrum of A0(X ) (next).
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Proof of our main result

Inductive construction of the characters of A0

Iteration of the radial morphisms ρα:
1 Fix α ∈ SX consider ρα : A0(X )→ A0(X/α).

2 Let β ∈ SX/α and consider ρβ : A0(X/α)→ A0(X/[α, β]).

([α, β] is the 2-dim subspace of X generated by α and β)

3 We obtain

ρβ,α := ρβ ◦ ρα : A0(X )→ A0(X/[α, β]) .

4 Similar for families −→α = (α1, . . . , αn), n ≤ dim X , and
α1 ∈ SX , α2 ∈ SX/α1

, α3 ∈ SX/[α1,α2], and so on, thus

ρ−→α := ραn . . . ρα1 : A0(X )→ A0(X/[α1, . . . , αn]) .

5 Let x ∈ X/[α1, . . . , αn] and define

χx ,−→α (f ) := χx(ρ−→α (f )) = ρ−→α (f )(x) .
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Proof of our main result

Determination of all characters

Theorem (Georgescu-Nistor)

All characters of A0(X ) are of the form

χx ,−→α (f ) := χx(ρ−→α (f )) = ρ−→α (f )(x) .

with x and −→α uniquely determined, so Ω0 = {(x ,−→α )}.

Warning: The topology is not the obvious one!!!

Moreover, if ω = (x ,−→α ), ω′ = (0,−→α ), and a ∈ A0, then

τω(a) ∼u τω′(a) = ρ−→α (a) = ρ−→α ′ρα1(a) .

So {ρα(a)} ⊂ {τω(a)} and {τω(a)} are hom images of {ρα(a)}:

σess(a) = ∪ω∈∂Ω0 σ(τω(a)) = ∪α∈SX σ(τα(a)) .
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Extensions: Cordes’ algebras

Cordes’ comparison algebras

Let M be a (non-compact) Riemannian manifold.

The Cordes comparison algebra of M is the (norm-closed)
algebra A = A(M) generated by P(1−∆)−m, where P is a suitable
differential operator of order 2m with bounded coefficients.

Theorem (Cordes)

K ⊂ A. If M is “very nice”, then the quotient A/K is
commutative (' C(Ω)). Hence an operator a ∈ A is Fredholm if,
and only if, its “full symbol” Σ(a) ∈ C(Ω) is nowhere vanishing.

Ex. if coefficients satisfy ∇ka ∈ C0(M), k ≥ 1.
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Extensions: Cordes’ algebras

Comparison algebras and localizations at infinity

Cordes’ theorem extends the classical result

“P is elliptic ⇔ P is Fredholm”

for differential operators on compact manifolds M (Ω = S∗M).

In particular (recall that Σ : A/K ' C(Ω)),

σess(a) = ∪ω∈Ω σ
(
Σ(a)(ω)

)
.

S∗M ⊂ Ω and gives a part of the essential spectrum of a via its
principal symbol (a = order zero pseudo-differential op).

In this sense, aω := Σ(a)(ω) ∈ C, for ω ∈ Ω r S∗X , can be
regarded as a “localization at infinity” of a. G-I construction
generalizes this, but in their case aω are operators.
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Extensions: Cordes’ algebras

Example: eulidean spaces

The assumptions of this theorem (∇ka ∈ C0(M) for all a ∈ A and
k > 0) are satisfied for asymptotically Euclidean manifolds.

Let M be a comp. manifold with boundary and h be a metric on
M. Let r = distance to the boundary and A0 := C∞(M). Let

g :=
h

r 2
+ κ

(dr)2

r 4
, κ > 0 .

Then M, the int of M, with metric g , satisfies the assumptions of
Cordes’ theorem (so A/K ' C(Ω)). (Asympt. eucl. if M = X .)

Cordes’ theorem is not valid if κ = 0, a. hyperbolic case.
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Extensions: Cordes’ algebras

Extension: A. hyperbolic spaces

As before: M = comp. man w b, r = dist to b, A0 := C∞(M),
h = metric on M, but g = r−2h (κ = 0, asy. hyp.).

Then we can still define localizations at infinity aω, ω ∈ ∂M, s.t.

Theorem (Lauter-Monthubert-V.N.)

a ∈ A is Fredholm ⇔ a is elliptic and aω is invertible ∀ω ∈ ∂M.

aω is an order zero pseudodiff operator on a solvable Lie group.

The proof is similar, but uses groupoid C ∗-algebras instead of
cross-product C ∗-algebras. Also for some Lie manifolds.
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Extensions: Cordes’ algebras

Extension: The space (spectrum) Ω0 := Â0

There are good reasons to study the space Ω0 := Â0 for itself. Fix
a finite number of Y ⊂ X .

1 Even if one is interested in the classical N-body problem, the
eigenfunctions live naturally on Ω0 (nice ends: Lie man.).

2 One can study the regularity of eigenfunctions on Ω0 (work in
progress; my initial motivation).

3 It seems that Ω0 in fact coincides with the space introduced
by Vasy (recent progress by Jérémy Mougel).

Thank you!
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