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Introduction

We consider the cubic nonlinear Schrödinger equation

(i∂t + ∆) u = |u|2u

This is a model for dispersive evolution with nonlinear
perturbation. We want to understand the following questions:

What is the influence of the domain?

What kind of asymptotic behavior is possible?

Creation of energy at small scales/ Growth of Sobolev norms
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NLS as a Hamiltonian system

Hamiltonian equation

H(u) =

∫
X

{
1

2
|∇gu|2 +

1

4
|u|4
}

dνg ,

Ω(u, v) = =
∫
X
uv dνg ,

In general, only one more conservation law

M(u) =

∫
X
|u|2dνg .

Natural to study the equation in H1(X ).
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NLS on Rd

On Rd , the equation is reasonably well understood:

GWP when d ≤ 4 and ill-posed when d ≥ 5 [Ginibre-Vélo,
Bourgain, Grillakis, CKSTT, Killip-Visan, Kenig-Merle]

2 ≤ d ≤ 4: Solutions scatters ,

d = 1, small Solutions modified-scattering (cubic NLS
completely integrable) , solutions scatter for quintic
nonlinearity.

In particular, smooth solutions satisfy

‖u(t)‖Hs ≤ C (‖u(0)‖H1)‖u(0)‖Hs

uniformly in time.
These results can be extended to some cases of domain with “large
volume” (e.g.H3: Banica, Ionescu-P.-Staffilani).
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(modified) Scattering

A solution scatters if it eventually follows the linear flow:

u(t) = e it∆ {f + o(1)} , t →∞.

On R, solutions sometimes have a “modified scattering”

û(ξ, t) = e it∂xxF−1
{
e i |f̂ (ξ)|2 log t f̂ (ξ) + o(1)

}
, t →∞

with a logarithmic correction.
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NLS on small domains

For domains with “smaller volume”: weaker dispersion, one
expects the linear flow to play a less important role. This is what
we want to explore.
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Global existence

For GWP: only need control locally in time. Expect same theory as
in Rd .

Verified in lower dimensions (Td : Bourgain, d = 2 or Sd :
Burq-Gérard-Tzvetkov).

Even true in critical cases, e.g. T4 (Herr-Tataru-Tzvetkov,
Ionescu-P.).

Idea: Appropriate functional spaces to obtain small data theory.
Large data, only obstruction is infinite concentration of energy at a
point in space-time → blow-up analysis + concentration
compactness → back to situation on Rd .
However, these results are still consistent with the following
picture:

‖u(k + 1)‖Hs ≤ 2‖u(k)‖Hs .
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Asymptotic behavior

Asymptotic behavior much more difficult on a “small” domain. On
Td , various heuristic arguments related to “weak turbulence”:

“generic solutions will explore all of phase space”,

“solutions will cascade to large frequency”

“creation of small scales”

A related mathematical question was asked by Bourgain (00):
Does there exist a solution such that

‖u(0)‖H2 . 1, lim sup
t→+∞

‖u(t)‖H2 =∞ ?
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Few evidence for norm growth

Not possible if scattering or on Rd or on T1.

Difficult to control solutions globally in time on a compact domain!
No explicit solution whose norm do become unbounded. Besides
the growth should be slow: [Bourgain]

‖u(t)‖Hs .A (1 + t)A (conjecture� (log t)A).

Example of nontrivial globally bounded solutions (KAM results
[Kuksin, Bourgain. . . ]
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Few evidence for norm growth (II)

Some evidence of finite growth [Kuksin]. Importantly

Arbitrary finite growth on T2 [CKSTT]

Given ε > 0, s > 1 and K > 0, there exists a solution u of cubic
NLS on T2 and a time T such that

‖u(0)‖Hs < ε, ‖u(T )‖Hs > K .

Related results [Hani, Kaloshin-Guardia, Procesi-Haus].
Remark: Only shows no a priori uniform bound; it is possible that
the growth saturates.
Recent similar results for the cubic half-wave equation on R
[Gérard-Lenzman-Pocovnicu-Raphael].
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The space R× T2

Nice space to test these questions R× T2:

Access to nice Fourier analysis.

Partially compact.

One can ask the following questions:

what is the threshold for asymptotically linear behavior (i.e.
scattering)?

what happens beyond this?

These questions can be completely answered in the context of
noncompact quotients of Rd (R× T2 is the most interesting
example).
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Scattering

[Tzvetkov-Visciglia, Hani-P.].
One can have a “nice” scattering theory for

(i∂t + ∆) u = |u|p−1u

on R× Td

if and only if one can have a nice scattering theory for this
equation on R
if and only if p ≥ 5.
At the limit (p = 5), the result is still true but sequences of
solutions lose compactness in new ways [Hani-P.].
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This only leaves one possibility for an interesting behavior: the
cubic equation on R× Td .

Infinite growth [HPTV, Tzvetkov-P.]

Let s > 5/8, s 6= 1. There exists solutions of the cubic NLS on
R× T2 such that

lim sup
t→+∞

‖U(t)‖Hs =∞.

Not true (for small data) on R× T (some form of complete
integrability).

True even for some 0 < s < 1 despite the conservation laws at
s = 0 and s = 1!

Contrast with recent results of Killip-Visan, Koch-Tataru for
the completely integrable case.
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Appearance of the resonant system

Solutions expected to decay over time,

(i∂t + ∆) u = |u|2u (∼ ε2u)

to first order, solutions evolve linearly. Conjugate out the linear
flow

u(t) = e it∆R×Td F (t), i∂tF = N [F ,F ,F ]
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FN [F ,G ,H](ξ, p) =∑
q−r+s=p

∫
R2

e itΦF̂q(ξ − η)Ĝr (ξ − η − θ)Ĥs(ξ − θ)dηdθ,

Φ := |p|2 − |q|2 + |r |2 − |s|2 + 2ηθ
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Appearance of the resonant system II

i∂tF = N [F ,F ,F ]

FN [F ,G ,H](ξ, p) =∑
q−r+s=p

∫
R2

e itΦF̂q(ξ − η, t)Ĝr (ξ − η − θ, t)Ĥs(ξ − θ, t)dηdθ,

Φ := |p|2 − |q|2 + |r |2 − |s|2 + 2ηθ

Expect ∂tF � ε2 so main time dependence is in the phase.
If |Φ| ≥ 1, can integrate terms through a normal form:

i∂t F̃ = N|Φ|�1[F ,F ,F ] + O(F 5), F − F̃ = O(F 3)

Quintic nonlinearities lead to scattering: can be neglected after a
long enough time.
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Appearance of the resonant system

We are left with

i∂tF = R′[F ,F ,F ]

FR′[F ,G ,H](ξ, p) =∑
q−r+s=p

∫
R2

e itΦϕ(Φ)F̂q(ξ − η, t)Ĝr (ξ − η − θ, t)Ĥs(ξ − θ, t)dηdθ,

Φ := |p|2 − |q|2 + |r |2 − |s|2 + 2ηθ

Main contribution comes from stationary phase η = θ = 0.
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Appearance of the resonant system

We are left with

i∂t F̂ (ξ, p, t) =
π

t

∑
q−r+s=p,

|q|2−|r |2+|s|2=|p|2

F̂q(ξ, t)F̂r (ξ, t)F̂s(ξ, t)

This is, for each fixed ξ an ODE which is the resonant system of
the cubic NLS on T2.
At this point, it is a derivative analysis from the work of CKSTT to
create solutions that grow.
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Why R× T2 and not T2?

Although one would expect growth to appear more easily on T2,
this remains an open question.
All the results about growth so far rely on special solutions for the
resonant system that grow.
Key difference between R× T2 and T2: validity of approximation

Equ(u) ' RS(u) + O(u5).

on R× T2, quintic terms scatter and thus are perturbative globally
in time.
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Quite challenging

finding appropriate norms in which to close the nonlinear
estimates, especially in the low-regularity case s < 1 when
solutions are unbounded in L∞.

need to control over long time solutions of a nonintegrable
ODE whose solutions can grow.

Idea: use 2 norms

A “Strong norm” which provides good control on the solutions
(e.g. ∆u, xe−it∆u ∈ L2) but which grows slowly over time

A “Weak norm” which remains bounded uniformly in time.
Corresponds to a conservation law for the resonant system.
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Modified scattering

Modified scattering for the cubic NLS on R× T2 [HPTV,
P.-Tzvetkov]

Let s > 1, there exists a norm X such that any ID small in X leads
to a global solution of the cubic NLS on R× T2. Moreover, this
solution satisfies a modified scattering in the sense that there
exists a solution of the equation

∂tĜp(ξ, t) =
∑

p+q2=q1+q3

|p|2+|q2|2=|q1|2+|q3|2

Ĝq1(ξ, t)Ĝq2(ξ, t)Ĝq3(ξ, t)

such that
‖U(t)− e it∆R×T2G (π ln t)‖Hs → 0.
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Exotic solutions

All solutions to the resonant system

i∂tap =
∑

q−r+s=p,
|q|2−|r |2+|s|2=|p|2

aqaras

correspond to an asymptotic behavior of the cubic NLS: many
unusual behaviors! Growth, beating effect. . .
A key missing point: good understanding of the solutions of the
resonant system.
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A physical space formula for the resonant system

One can also obtain a formula for the resonant system in the
physical space: a function

f (x , t) =
∑
p∈Zd

ap(t)e i〈p,x〉

is a solution if

i∂t f =

∫ 2π

α=0
e−iα∆

{
e iα∆f (x , t) · e iα∆f (x , t) · e iα∆f (x , t)

}
dα

which is the Hamiltonian associated to the “averaged perturbation”

Hav =

∫ 2π

α=0

∫
X
|e iα∆f |4dνdα.


