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FRUMAM

Abstract. We characterize the absolutely continuous spectrum of half-line Jacobi matrices
in terms of electronic transport in a suitable class of open quantum systems.

1 Introduction

Spectral types (e.g., pure point, singular continuous, absolutely continuous) of self-adjoint operators are
completely characterized in terms of the boundary values of the resolvent. Dynamical characterizations,
linking spectral types to physical properties of the corresponding quantum systems, are more subtle. In
this note, we focus on the well established heuristics that the ac spectrum of a quantum Hamiltonian is
the set of energies at which the described system exhibits transport. Much effort has been devoted to the
investigation of these heuristics; so far many results many results have been unfavorable.

In this note we consider bounded half-line Jacobi matrices, operators of the form

(Ju)(n) = anu(n+ 1) + bnu(n) + an−1u(n− 1)

acting on `2(N) with boundary condition u(0) = 0 and where (an)n, (bn)n are bounded sequences with
an > 0. The usual discrete Schrödinger operators correspond to an ≡ 1. The case of a general bounded
self-adjoint operator H is considered in an expanded version of this note [7].



Bruneau, Jakšić, Last, Pillet
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Figure 1: A finite sample of length L coupled to two electronic reservoirs.

In large part, the main novelty of our approach is due to the use of an appropriate notion of transport. The
latter is usually related, at least in the mathematics literature, to the properties of the unitary group e−itJ .
Detailed studies of the link between dynamics, transport, and spectrum revealed an intricate complex
dependence that is only partially understood, many basic questions remaining open.

Our approach can be described as follows. One constructs a family of Electronic Black Box models1

indexed by L ∈ N: two electronic reservoirs are attached at the end points of the finite sample obtained
by restricting J to the interval ZL = {1, · · · , L}, see Figure 1. The left/right electronic reservoir is at
zero temperature and chemical potential µl/µr, where µr > µl, while the Hamiltonian of the sample
is the restriction of J to ZL. The voltage differential µr − µl generates an electronic current between
the reservoirs. The steady state value 〈JL〉+ of this current is given by the celebrated Landauer-Büttiker
formula. Our approach to the ac spectrum/transport duality relates the energies in the ac spectrum of
the operator J in the interval ]µl, µr[ to the energies at which the current 〈JL〉+ persists in the limit
L → ∞. This naturally leads to the Absolutely Continuous Spectrum–Electronic Transport Conjecture
(abbreviated ACET) that these two sets of energies coincide; see Section 4.

In the physics literature this approach can be traced back to the 1970’s and to pioneering works on the
conductance of 1D samples by Landauer, Büttiker, Thouless, Anderson, Lee, and many others. Un-
til recently, however, mathematically rigorous proofs of the transport formulas proposed by physicists
were not available, hampering mathematical development. Recent proofs of the Landauer-Büttiker and
Thouless formulas from the first principles of quantum mechanics [2, 11, 4] have opened the way for a
systematic study of the proposed approach.

One surprising outcome is the fact that the ACET Conjecture is essentially equivalent to the celebrated
Schrödinger Conjecture, which states that the generalized eigenfunctions of J are bounded for almost
all energies in the essential support of the ac spectrum. The announcement of this equivalence in [3],
which has given a somewhat surprising physical interpretation to the Schrödinger Conjecture in terms
of electronic transport, coincided with Avila’s announcement of a counterexample to the Schrödinger
Conjecture [1]. For many years, the latter was regarded as the single most important open problem in the
spectral theory of Schrödinger operators. Its failure induced that of the ACET Conjecture and thus had
direct physical implications. These developments have lead to a weaker form of these conjectures which
were stated and proven in [5, 6]; see Section 5.

2 Schrödinger Conjectures

Let ν be the spectral measure of J for δ1
2. Since δ1 is cyclic for J , ν encodes all the spectral properties

of J . Fixing E ∈ R, let uE = (uE(n))n be the unique solution of the stationary Schrödinger equation
1EBB models are always understood in the independent electrons approximation.
2{δn}n≥1 denotes the standard basis of `2(N).
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JuE = EuE satisfying uE(0) = 0, uE(1) = 1. The following well-known bound holds:3 for any ε > 0
and for ν–a.e. E there is a finite constant CE,ε > 0 such that, for all n ≥ 1, |uE(n)| ≤ CE,εn1/2+ε.

The Schrödinger Conjectures are deep refinements of this simple bound. In a nutshell, they state that the
generalized eigenfunctions uE(n) are bounded for an appropriate set of energies E. These conjectures
are rooted in formal computations and implicit assumptions by physicists. Their formulation has evolved
over time, and they are linked to conjectures that have appeared independently in the mathematical
literature, such as the Steklov Conjecture [12, 15].

The Schrödinger Conjecture for the pure point spectrum is trivial. The Schrödinger Conjecture for the
singular continuous spectrum asserts that for all Jacobi matrices J , supn≥1 |uE(n)| < ∞ for νsing-
a.e. E. A counterexample to this conjecture was found by Jitomirskaya [9]. This leaves us with the
Schrödinger Conjecture for the absolutely continuous spectrum which states that for all Jacobi matrices
J , supn≥1 |uE(n)| <∞ for νac-a.e. E. In terms of the transfer matrices4

TE(n) = AE(n) · · ·AE(1), AE(x) = a−1
x

[
E − bx −1
a2
x 0

]
,

and using the invariance of ac spectrum under rank one perturbations5, one arrives at the equivalent
formulation

Schrödinger Conjecture I. For all Jacobi matrices J and E ∈ Σac(J),6

sup
n≥1
‖TE(n)‖ <∞.

Among other partial results toward this conjecture, Gilbert and Pearson [8] (see also [13]) showed that

{E | sup
n≥1
‖TE(n)‖ <∞} ⊂ Σac(J).

The normalization
∫
R ‖uE(n)|2dν(E) = 1 and Fatou’s Lemma give

Σac(J) ⊂ {E | lim inf
n→∞

‖TE(n)‖ <∞}. (2.1)

Last and Simon [10] refined (2.1) and established the averaged form of the Conjecture:

Σac(J) =

{
E | lim inf

N→∞

1

N

N∑
n=1

‖TE(n)‖2 <∞

}
.

3For f ∈ `2(N), ‖f‖2 =
∑
n≥1 |f(n)|2 =

∑
n≥1 |f(n)|2

∫
R |uE(n)|2dν(E). The estimate follows by taking f(n) =

|n|−1/2−ε and applying Fubini’s theorem.
4Note that uE is a solution of the eigenvalue equation iff

[
uE(n+ 1)
anuE(n)

]
= AE(n)

[
uE(n)

an−1uE(n− 1)

]
.

5In other words, to show that the new formulation implies the original, one also considers the conjecture for Jθ := J +
θ|δ1〉〈δ1|. In this case, Σac(Jθ) = Σac(J) and uθ,E satisfyEuθ,E = Juθ,E with boundary condition uθ,E(0) = θ, uθ,E(1) =

1. Since
[
uE,θ(n+ 1)
anuE,θ(n)

]
= TE(n)

[
1
θ

]
, and spac(J) = ∅ if lim inf an = 0, the Schrödinger Conjecture for two different θ’s

gives supn≥1 ‖TE(n)‖ <∞.
6Σac(J) denotes the essential support of the ac spectrum of J .
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A particularly striking aspect of Avila’s counterexample [1] to the Schrödinger Conjecture I is that it
concerns a spectrally rigid7 class of Jacobi matrices describing discrete ergodic Schrödinger operators.
In this setting an ≡ 1 and bω(n) = B(Snω), ω ∈ Ω, where Ω is a probability space, B : Ω →
R is a bounded measurable map, and S is an ergodic invertible transformation of Ω. The ergodicity
gives that there are deterministic sets Σac and B such that for a.e. ω ∈ Ω, Σac = Σac(Jω), B =
{E | supn≥1 ‖TE(ω, n)‖ < ∞}. Avila constructs Ω, B, and an ergodic transformation S such that the
set Σac \ B has strictly positive Lebesgue measure.

The following variant of the Schrödinger Conjecture was motivated by the the ACET Conjecture which
we will discuss in Section 4:

Schrödinger Conjecture II. For all Jacobi matrices J ,

Σac(J) = {E | lim inf
n→∞

‖TE(n)‖ <∞}.

The Kotani theory [14] gives that Conjecture II holds for discrete ergodic Schrödinger operators. The va-
lidity of this conjecture for general J remains an open problem. The following weak form of Conjectures
I and II was formulated and proved in [5]:

Theorem 2.1 For any Jacobi matrix J , any interval ]a, b[, and any sequence of integers Ln → ∞ one
has

spac(J)∩ ]a, b[ = ∅ ⇐⇒ lim
n→∞

∫ b

a
‖TE(Ln)‖−2dE = 0.

This result plays a key role in the characterization of the ac spectrum by transport properties; see Section
5.

3 Landauer-Büttiker formula

To a Jacobi matrix J we associate the following EBB models. For L ≥ 1, the finite sample is described
by the one-particle Hilbert space HL = `2(ZL), ZL = {1, · · · , L}, and the one-particle Hamiltonian
JL, the restriction of J to ZL with Dirichlet b.c. The left/right electronic reservoir Rl/r is described by
the spectral triple (Hl/r, Hl/r, ψl/r), where ψl/r is a unit vector cyclic for Hl/r. The one-particle Hilbert
space of the joint system reservoirs + sample isH = Hl ⊕HL⊕Hr and its one-particle Hamiltonian is
Hλ = H0 + λV , where H0 = Hl ⊕ JL ⊕Hr,

V := |δ1〉〈ψl|+ |ψl〉〈δ1|+ |δL〉〈ψr|+ |δL〉〈ψr|,

and λ 6= 0 is a coupling constant. The full Hilbert space of the joint system is the anti-symmetric Fock
space F over H and its full Hamiltonian is the second quantization dΓ(Hλ) of Hλ. The observables of
the joint system are elements of the C∗-algebra O of bounded operators on F generated by 1 and the
family {a∗(f)a(g) | f, g ∈ H}, where a∗/a are the creation/annihilation operators on F . The electronic
current observable is

JL := −iλdΓ([V,1r]),

7The rigidity here refers to Kotani theory [14].
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where 1r is the orthogonal projection fromH ontoHr. We assume that the l/r reservoir is initially at zero
temperature and chemical potential µl/r, where µr > µl, while the sample is in an arbitrary state. More
precisely, the initial state of system is the quasi-free state ωµl,µr on O generated by T = Tl ⊕ TL ⊕ Tr,
where Tl/r is the spectral projection ofHl/r onto the interval ]−∞, µl/r] and for definiteness TL = 1L/L,
where 1L is the orthogonal projection from H onto HL. The chemical potential difference generates an
electronic current from the right to the left reservoir across the sample whose expectation value at time t
is

〈JL〉t = ωµl,µr

(
eitdΓ(Hλ)JLe−itdΓ(Hλ)

)
.

Assuming that Hλ has no singular continuous spectrum, one proves [2, 11]

〈J 〉+(L) := lim
t→∞

1

t

∫ t

0
〈JL〉sds =

1

2π

∫ µr

µl

D(L,E)dE, (3.1)

where
D(L,E) = 4π2λ4|〈δ1, (Hλ − E − i0)−1δL〉|2

dνl,ac

dE
(E)

dνr,ac

dE
(E) (3.2)

is the one-particle transmittance (νl/r being the spectral measure of Hl/r for ψl/r). Relations (3.1)
and (3.2) constitute the Landauer-Büttiker formula. We emphasize that its derivation is dynamical and
based on the first principles of quantum mechanics.

Note that Σac,l/r := {E | dνl/r,ac
dE (E) > 0} is the essential support of the ac spectrum of Hl/r. To

avoid discussion of trivialities, in what follows we shall assume that the reservoirs are chosen so that
Σac(J) ⊂ Σac,l/r.

4 Linear response and Schrödinger Conjectures

Setting µl = µ, µr = µ+ ε, the Landauer-Büttiker formula gives

LL(µ) := lim
ε↓0

1

ε
〈JL〉+ =

1

2π
D(L, µ), for Lebesgue a.e. µ.

The starting point of our research program was the conjecture that the linear response conductance LL
characterizes Σac(J). More precisely, let

T := {µ | lim sup
L→∞

LL(µ) > 0}, T := {µ | lim inf
L→∞

LL(µ) > 0}.

The following conjecture was made in the preprint version of [3], prior to Avila’s announcement of the
results [1]:

ACET Conjecture. For all Jacobi matrices J , T = T = Σac(J).

The main result of [3] are the relations

T = {E | sup
n≥1
‖TE(n)‖ <∞}, T = {E | lim inf

n→∞
‖TE(n)‖ <∞},

which show that the ACET Conjecture is equivalent to the Schrödinger Conjectures I+II. Avila’s coun-
terexample disproves the part T = Σac(J), while the validity of T = Σac(J) for all Jacobi matrices
remains an open problem.
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5 Characterization of the absolutely continuous spectrum

5.1 Landauer-Büttiker transport

Physically, the message conveyed by Avila’s counterexample is that the Landauer-Büttiker linear re-
sponse fails to characterize the essential support of the ac spectrum. By contrast, [5] shows that the large
L asymptotics of the steady state current fully characterize the absolutely continuous spectrum.

Theorem 5.1 For any Jacobi matrix J , any µr > µl, all reservoirs satisfying ]µl, µr[⊂ Σac,l/r, and any
sequence of integers Ln →∞, one has

spac(J)∩ ]µl, µr[ = ∅ ⇐⇒ lim
n→∞

〈JLn〉+ = 0.

The proof proceeds by showing that lim〈JLn〉+ = 0 ⇔ lim
∫ µr
µl
‖TE(Ln)‖−2dE = 0 and by invoking

Theorem 2.1.

5.2 Thouless transport

The Thouless formula is a special case of the Landauer-Büttiker formula in which the reservoirs are
implemented such that the coupled Hamiltonian Hλ is a periodic Jacobi matrix. More precisely, let
JL,per be the periodic Jacobi matrix on `2(Z) obtained by extending the Jacobi parameters (an)1≤n<L
and (bn)1≤n≤L of the sample Hamiltonian JL by setting aL = λS and

ax+nL = ax, bx+nL = bx, n ∈ Z, x ∈ ZL.

The internal coupling constant λS 6= 0 is a priori an arbitrary parameter. The one-particle Hilbert spaces
of the reservoirs are Hl = `2(] − ∞, 0] ∩ Z) and Hr = `2([L + 1,∞[∩Z); the corresponding one-
particle Hamiltonians are the restriction, with Dirichlet boundary condition, of JL,per to ] −∞, 0] ∩ Z
and [L+ 1,∞[∩Z respectively. Finally, ψl = δ0, ψr = δL+1, and the coupling constant is set to λ = λS .
For such EBB models the Landauer-Büttiker formula coincides with the Thouless formula:

〈J Th
L 〉+ = |sp(JL,per)∩]µl, µr[| , (5.1)

where | · | denotes Lebesgue measure. For Thouless transport we also have [5]

Theorem 5.2 For any Jacobi matrix J , any µr > µl and any sequence of integers Ln →∞ one has

spac(J)∩ ]µl, µr[ = ∅ ⇐⇒ lim
n→∞

〈J Th
Ln 〉+ = 0.

The proof proceeds by showing that lim〈J Th
Ln
〉+ = 0 ⇔ lim

∫ µr
µl
‖TE(Ln)‖−2dE = 0. The details of

the proof, however, are considerably more involved than in the case of Theorem 5.1.

Remark. A third notion of electronic transport, called Crystalline transport, was introduced in [4] as
a link between the Landauer-Büttiker and Thouless transport. It is shown in [6] that this crystalline
transport also fully characterizes the ac spectrum. We refer the reader to the original papers [4, 6] and to
the expanded version of this note [7] for more details about this notion.
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