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Introduction

Open Systems

A “small” (or confined) system S interacts with an environment R.
Goal: understand the asymptotic (t — +00) behaviour of the system S
(asymptotic state, thermodynamical properties).
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Introduction

Open Systems

A “small” (or confined) system S interacts with an environment R.
Goal: understand the asymptotic (t — +00) behaviour of the system S
(asymptotic state, thermodynamical properties).

2 approaches: Hamiltonian / Markovian

@ Hamiltonian: full description, spectral analysis, scattering theory.
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Introduction

Open Systems

A “small” (or confined) system S interacts with an environment R.
Goal: understand the asymptotic (t — +00) behaviour of the system S
(asymptotic state, thermodynamical properties).

2 approaches: Hamiltonian / Markovian
@ Hamiltonian: full description, spectral analysis, scattering theory.

@ Markovian: effective description of S, obtained by weak-coupling
type limits or if S undergoes stochastic forces (Langevin equation).
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Introduction

Repeated Interaction Quantum Systems (RIQS)

A “small" system S:

@ Quantum system governed by some hamiltonian Hgs acting on Hgs.
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Introduction

Repeated Interaction Quantum Systems (RIQS)

A “small" system S:

@ Quantum system governed by some hamiltonian Hgs acting on Hgs.
A chain C of quantum sub-systems & (k =1,2,...):

0 C=E+&E+

@ Each & is governed by some hamiltonian Hg, acting on He,.
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Introduction

Repeated Interaction Quantum Systems (RIQS)

A “small" system S:

@ Quantum system governed by some hamiltonian Hgs acting on Hgs.
A chain C of quantum sub-systems & (k =1,2,...):

eC=&+E+--

@ Each & is governed by some hamiltonian Hg, acting on He,.
Interactions:

@ Interaction operators Vj acting on Hs ® Heg, .
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Introduction

Repeated Interaction Quantum Systems (RIQS)

Given a sequence of interaction times 7, > 0, for
temn+ -+ 71, + Tl :

@ § interacts with &,,

@ & evolves freely for k # n,

i.e. the full system is governed by

Hy = Hs+ Hg, + Vo + Y He, = Ho+ ) He,.
k#n k#n
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Introduction

Repeated Interaction Quantum Systems (RIQS)

Given a sequence of interaction times 7, > 0, for
temn+ -+ 71, + Tl :

@ § interacts with &,,

@ & evolves freely for k # n,

i.e. the full system is governed by

Hy = Hs+ Hg, + Vo + Y He, = Ho+ ) He,.
k#n k#n

t=s
0<s<mn
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Given a sequence of interaction times 7, > 0, for
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@ § interacts with &,,

@ & evolves freely for k # n,
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Repeated Interaction Quantum Systems (RIQS)

Given a sequence of interaction times 7, > 0, for
temn+ -+ 71, + Tl :

@ § interacts with &,,

@ & evolves freely for k # n,

i.e. the full system is governed by

Hy = Hs+ Hg, + Vo + Y He, = Ho+ ) He,.
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Introduction

Repeated Interaction Quantum Systems (RIQS)

Given a sequence of interaction times 7, > 0, for
temn+ -+ 71, + Tl :

@ § interacts with &,,

@ & evolves freely for k # n,

i.e. the full system is governed by

Hy = Hs+ Hg, + Vo + Y He, = Ho+ ) He,.
k#n k#n

t=71+T+T13+S
0<s<mny

vy
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Introduction

Motivation

Physics: One-atom maser (Walther et al '85, Haroche et al '92)

e e b 4 .\'/ ©]
N

@ S= one mode of the electromagnetic field in a cavity.
@ &= k-th atom interacting with the field.

@ C: beam of atoms sent into the cavity.
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Introduction

Motivation

Physics: One-atom maser (Walther et al '85, Haroche et al '92)

e e b 4 .\'/ ©]
N

@ S= one mode of the electromagnetic field in a cavity.
@ &= k-th atom interacting with the field.

@ C: beam of atoms sent into the cavity.

ideal RIQS as simple models (Vogel et al '93, Wellens et al '00)
random RIQS: some fluctuation in the various parameters (temperature,
interaction time, etc).
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Study of the dynamics

The repeated interaction dynamics.

Data:
@ Full Hamiltonian: H, = Hs @ g, + 1s ® Hg, + V.
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Study of the dynamics

The repeated interaction dynamics.

Data:
@ Full Hamiltonian: H, = Hs ® 1g, + 1s ® Hg, + V,,.
Q Initial state of S: density matrix p € J1(Hs).
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Study of the dynamics

The repeated interaction dynamics.

Data:
@ Full Hamiltonian: H, = Hs ® 1g, + 1s ® Hg, + V,,.
Q Initial state of S: density matrix p € J1(Hs).

@ Initial state of £,: pg, = invariant state for the free dynamics of &,
e.g. Gibbs state at some inverse temperature [3,.
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Study of the dynamics

The repeated interaction dynamics.

Data:
@ Full Hamiltonian: H, = Hs ® 1g, + 1s ® Hg, + V,,.
Q Initial state of S: density matrix p € J1(Hs).

@ Initial state of £,: pg, = invariant state for the free dynamics of &,
e.g. Gibbs state at some inverse temperature [3,.

After O interaction, the state of the total system is

Pyt = p @ Q) pe,
k>1
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Study of the dynamics

The repeated interaction dynamics.

Data:
@ Full Hamiltonian: H, = Hs ® 1g, + 1s ® Hg, + V,,.
Q Initial state of S: density matrix p € J1(Hs).

@ Initial state of £,: pg, = invariant state for the free dynamics of &,
e.g. Gibbs state at some inverse temperature [3,.

After 1 interaction, the state of the total system is

ot = o—iTHL <p® ®Psk> oimtH

k>1
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Study of the dynamics

The repeated interaction dynamics.

Data:
@ Full Hamiltonian: H, = Hs ® 1g, + 1s ® Hg, + V,,.
Q Initial state of S: density matrix p € J1(Hs).

@ Initial state of £,: pg, = invariant state for the free dynamics of &,
e.g. Gibbs state at some inverse temperature [3,.

After 2 interactions, the state of the total system is

P;Ot — 67172H2€7171H1 (P ® ®P§k> elT]HleszHz
k>1
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Study of the dynamics

The repeated interaction dynamics.

Data:
@ Full Hamiltonian: H, = Hs ® 1g, + 1s ® Hg, + V,,.
Q Initial state of S: density matrix p € J1(Hs).

@ Initial state of £,: pg, = invariant state for the free dynamics of &,
e.g. Gibbs state at some inverse temperature [3,.

After n interactions, the state of the total system is

ot = o iTan . o= iTabh o= imiHy <p ® ®Psk> oimiHigimaHy | oiTaHn

k>1
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Study of the dynamics

Some questions about RIQS

Long time behaviour:

o Existence of the limit lim Tr(pi*"(As @ 1)) = p4(As)?

n
n—-+o0o
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Study of the dynamics

Some questions about RIQS

Long time behaviour:

n

o Existence of the limit lim Tr(pi*(As @ 1)) = p4(As)?

@ Does p depend on p, the initial state of S?
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Study of the dynamics

Some questions about RIQS

Long time behaviour:
o Existence of the limit lim Tr(pi*(As @ 1)) = p4(As)?
n—-—+0o0o
@ Does p depend on p, the initial state of S?

Thermodynamical properties: if C is initially in thermal equilibrium at
temperature 371

—B*Hg y . .
o do we have p, (1) = T "2 i thermal relaxation?

T Tr(e=PTHs) !
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Study of the dynamics

Some questions about RIQS

Long time behaviour:

n

o Existence of the limit lim Tr(pi*(As @ 1)) = p4(As)?
@ Does p depend on p, the initial state of S?

Thermodynamical properties: if C is initially in thermal equilibrium at
temperature 371

Tr(e_ﬁ*HS D)
Tr(e=F*Hs) "

@ energy variation? entropy production? 2nd law of thermodynamics?

o do we have p,(:) = i.e. thermal relaxation?
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Study of the dynamics

Some questions about RIQS

Long time behaviour:
o Existence of the limit lim Tr(pi*(As @ 1)) = p4(As)?
n—-—+0o0o
@ Does p depend on p, the initial state of S?

Thermodynamical properties: if C is initially in thermal equilibrium at
temperature 371
o Tr(e_ﬁ*HS-) . .
o do we have p,(:) = Te(e=F sy " 1€ thermal relaxation?
@ energy variation? entropy production? 2nd law of thermodynamics?

Examples?
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Study of the dynamics

Some questions about RIQS

Long time behaviour:
o Existence of the limit lim Tr(pi*(As @ 1)) = p4(As)?
@ Does p depend on p, the initial state of S?
Thermodynamical properties: if C is initially in thermal equilibrium at

temperature 371

Tr(e_ﬁ*HS D)
Tr(e=F*Hs) "

@ energy variation? entropy production? 2nd law of thermodynamics?

o do we have p,(:) = i.e. thermal relaxation?

Examples?
2 situations: ideal (identical interactions)
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Study of the dynamics

Some questions about RIQS

Long time behaviour:
o Existence of the limit lim Tr(pi*(As @ 1)) = p4(As)?
@ Does p depend on p, the initial state of S?
Thermodynamical properties: if C is initially in thermal equilibrium at

temperature 371

Tr(e_ﬁ*HS D)
Tr(e=F*Hs) "

@ energy variation? entropy production? 2nd law of thermodynamics?

o do we have p,(:) = i.e. thermal relaxation?

Examples?
2 situations: ideal (identical interactions), random.
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Study of the dynamics

The reduced dynamics map

We are interested in the system S (expactation values of observables of
the form As ® 1).
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Study of the dynamics

The reduced dynamics map

We are interested in the system S (expactation values of observables of
the form As ® 1).At “time” n the state of S is given by

o = Tre(p").
i.e. satisfies

VA € B(HS), Tr (p';.,Ot A X ﬂc) = TI"HS (pnA) .
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Study of the dynamics

The reduced dynamics map

We are interested in the system S (expactation values of observables of
the form As ® 1).At “time” n the state of S is given by

o = Tre ().

i.e. satisfies
VA € B(HS), Tr (p';.,Ot A X ﬂc) = TI"HS (pnA) .

If S is in the state p before the n-th interaction, right after it it is in the
state ‘ _
La(p) = Tre, (7 ™"p @ pe, &™),

where Trg, denotes the partial trace over &,.
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Study of the dynamics

The reduced dynamics map

We are interested in the system S (expactation values of observables of
the form As ® 1).At “time” n the state of S is given by

o = Tre ().

i.e. satisfies
VA € B(HS), Tr (p';.,Ot A X ﬂc) = TI"HS (pnA) .

If S is in the state p before the n-th interaction, right after it it is in the
state

L(p) = Tre, (7™M p @ pg, ™M),

where Trg, denotes the partial trace over &,.
The “repeated interaction” structure induces a markovian behaviour:

Vn, pa :ﬁn(ﬂnfl)-
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Study of the dynamics

The reduced dynamics map

We are interested in the system S (expactation values of observables of
the form As ® 1).At “time” n the state of S is given by

o = Tre ().

i.e. satisfies
VA € B(HS), Tr (p';.,Ot A X ﬂc) = TI"HS (pnA) .

If S is in the state p before the n-th interaction, right after it it is in the
state

L(p) = Tre, (7™M p @ pg, ™M),

where Trg, denotes the partial trace over &,.
The “repeated interaction” structure induces a markovian behaviour:

Vn, pa :ﬁn(ﬂnfl)-

— We shall understand £, 0---0 L1 as n — oc.
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Study of the dynamics

Spectrum of a RDM

The L, are completely positive and trace preserving maps on [J1(Hs).

General case:

Spec(L,) c {z€ C||z| <1},
1 is an eigenvalue.
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Study of the dynamics

Spectrum of a RDM

The L, are completely positive and trace preserving maps on [J1(Hs).

General case:

Spec(L,) c {z€ C||z| <1},
1 is an eigenvalue.

Uncoupled case:

If V, =0, L,(-) = e imHs . eimaHs
= Spec(L,) = {e™M=A)Y N\, € Spec(Hs), :
1 is degenerate (dim(Hs) times). \\V
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Study of the dynamics

Ideal RIQS: L, =

Assumption (E):

Spec(Lp,)N{ze C||z| =1} = {1},
1 is a simple eigenvalue.

L. Bruneau
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Study of the dynamics

Ideal RIQS: L, =

Assumption (E):

Spec(L,)N{z e C||z| =1} = {1},
1 is a simple eigenvalue.

If (E) is satisfied, there exist C,ac > 0 s.t. for any initial state p

1£7(p) — p+lls < Ce™*", Vn €N,

where p is the (unique) invariant state of L.

Note that p; does not depend on the initial state of S.
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Study of the dynamics

A simple example: spin-spin model

@ S and &, are 2-level systems, i.e. Hs = He, = He = C?, with
. 0 O
energy levels {0, Es}, resp. {0, Ec}, ie. Hy = ( )
{0.Es}, resp. (0.Ec)ie He=( o p,

L. Bruneau Random repeated interaction quantum systems



Study of the dynamics

A simple example: spin-spin model

n

@ S and &, are 2-level systems, i.e. Hs = He, = H
energy levels {0, Es}, resp. {0, Ec}, i.e. Hy = (

1

0

o V, =\ as®a}+ a5 ® ap) where ay = (
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Study of the dynamics

A simple example: spin-spin model

@ S and &, are 2-level systems, i.e. Hs = He, = He = C?, with
. 0 O
energy levels {0, Es}, resp. {0, Ec}, ie. Hy = ( )
(0.Es), resp. {0.Ec)ie Hy = (o g
o V, =\ as®a}+ a5 ® ap) where ay = 00 )

o pg, is a Gibbs state, i.e. pg, = pg, e = e Potle /Tr(e=PrHe) with
Bn = 8.
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Study of the dynamics

A simple example: spin-spin model

@ S and &, are 2-level systems, i.e. Hs = He, = He = C?, with
. 0 O
energy levels {0, Es}, resp. {0, Ec}, ie. Hy = ( )
(0.Es), resp. {0.Ec)ie Hy = (o g
o V, =\ as®a}+ a5 ® ap) where ay = 00 )

o pg, is a Gibbs state, i.e. pg, = pg, e = e Potle /Tr(e=PrHe) with
Bn = 5.
Explicit computation: £ satisfies (E) iff 7 ¢ TN with
T =27/y/(Es — Ec)? + 4)2 (non-resonance condition).

L. Bruneau Random repeated interaction quantum systems



Study of the dynamics

A simple example: spin-spin model

@ S and &, are 2-level systems, i.e. Hs = He, = He = C?, with
. 0 0
energy levels {0, Es}, resp. {0, Ec}, i.e. Hy = ( 0 E, )
o V, =\ as®a}+ a5 ® ap) where ay = 00 )
o pg, is a Gibbs state, i.e. pg, = pg, e = e Potle /Tr(e=PrHe) with

Bn = 5.

Explicit computation: £ satisfies (E) iff 7 ¢ TN with
T =27/y/(Es — Ec)? + 4)2 (non-resonance condition).

Proposition

Ifr ¢ TN, lim Tr(p,As) = ps+.s(As) (exponentially fast) where
n—oo
p* = BEg/Es.
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Study of the dynamics

Random RIQS: £ = L(w)

Fluctuations w.r.t. ideal situation: £ = L(wg) random variable with
values in RDM (CP, trace preserving maps on Hs) over a probability
space (Qo, F,p).
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Study of the dynamics

Random RIQS: £ = L(w)

Fluctuations w.r.t. ideal situation: £ = L(wg) random variable with
values in RDM (CP, trace preserving maps on Hs) over a probability
space (Qo, F,p).

Product of i.i.d. RDMs: Q = QY , dP = [[,~, dp and w = (wn)n>1.
= Understand ®(n,w) = L(w,) oo L(wy).
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Study of the dynamics

Random RIQS: £ = L(w)

Fluctuations w.r.t. ideal situation: £ = L(wg) random variable with
values in RDM (CP, trace preserving maps on Hs) over a probability
space (Qo, F,p).

Product of i.i.d. RDMs: Q = QY , dP = [[,~, dp and w = (wn)n>1.
= Understand ®(n,w) = L(w,) oo L(wy).

A simple case: L(wp) is a rank one projection, i.e. for any state p,

(L(w0))(p) = p+(wo)-
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Study of the dynamics

Random RIQS: £ = L(w)

Fluctuations w.r.t. ideal situation: £ = L(wg) random variable with
values in RDM (CP, trace preserving maps on Hs) over a probability
space (Qo, F,p).

Product of i.i.d. RDMs: Q = QY , dP = [[,~, dp and w = (wn)n>1.
= Understand ®(n,w) = L(w,) o -+ o L(wy).

A simple case: L(wp) is a rank one projection, i.e. for any state p,

(L(w0))(p) = p+(wo)-

= For any n, iy = (®(n,w))(p) = p1(wn)-
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Study of the dynamics

Random RIQS: £ = L(w)

Fluctuations w.r.t. ideal situation: £ = L(wg) random variable with
values in RDM (CP, trace preserving maps on Hs) over a probability
space (Qo, F,p).

Product of i.i.d. RDMs: Q = QY , dP = [[,~, dp and w = (wn)n>1.
= Understand ®(n,w) = L(w,) o -+ o L(wy).

A simple case: L(wp) is a rank one projection, i.e. for any state p,

(L(w0))(p) = p+(wo)-

= Forany n, piy = (®(n,w))(p) = p1(wn)-
Consequence: unless py(wp) = p4, no convergence in the usual sense
(local fluctuations), but in the ergodic mean

N—oo

N
.1 w
lim N nE_l oY =E(py), ae w.
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Study of the dynamics

Random RIQS: £ = L(w)

If p(L(wo) satisfies (E)) > 0, then
Q E(L) satisfies (E),

N
. 1
Q Forany p € Ji(Hs), Nlinoo N Z(dD(n, w))(p) =ps, ae.weQ,

n=1
where py is the unique invariant state of E(L).
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Study of the dynamics

Random RIQS: £ = L(w)

If p(L(wo) satisfies (E)) > 0, then
Q E(L) satisfies (E),
N
. 1
Q Forany p € Ji(Hs), lim &> (&(nw)(p) =ps, aeweQ

n=1
where p. is the unique invariant state of E(L).

>

If p(L(wo) satisfies (E)) > 0 and there exists py s.t. L(wo)(p+) = p4 for
a.e. wy, I.e. there is a deterministic invariant state, then
Q E(L) satisfies (E),
Q@ There exists a« > 0 s.t. for any p € J1(Hs) and for a.e. w € Q,
there exists C(w) > 0

[(®(n,w))(p) — p+ll1 < C(w)e™ ", VneN. J



Study of the dynamics

Back to the example

Recall:
Q L satisfies (E) iff 7 ¢ TN with T = 2r/+/(Es — E¢)? + 42,
@ pp+.s is an invariant state of £, with §* = BE¢/Es.
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Study of the dynamics

Back to the example

Recall:
Q L satisfies (E) iff 7 ¢ TN with T = 2r/\/(Es — E¢)? + 4)2,
@ pp+.s is an invariant state of £, with §* = BE¢/Es.
We consider 2 situations:
@ the interaction time is random: 7, = 7(w,),
Q the temperature of the &, is random: 3, = B(w,).
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Study of the dynamics

Back to the example

Recall:
Q L satisfies (E) iff 7 ¢ TN with T = 2r/\/(Es — E¢)? + 4)2,
@ pp+.s is an invariant state of £, with §* = BE¢/Es.
We consider 2 situations:
@ the interaction time is random: 7, = 7(w,),
Q the temperature of the &, is random: 3, = B(w,).

Theorem

1) Suppose 3, = 8 and T(wo) > 0 is a random variable satisfying
p(7(wo) ¢ TN) > 0. Then there exists o > 0 s.t. for any p € J1(Hs)
and for a.e. w € Q, there exists C(w) > 0

P — pg=.slh < C(w)e™ ", VneN.
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Study of the dynamics

Back to the example

Recall:
Q L satisfies (E) iff 7 ¢ TN with T = 2r/\/(Es — E¢)? + 4)2,
@ pp+.s is an invariant state of £, with §* = BE¢/Es.
We consider 2 situations:
@ the interaction time is random: 7, = 7(w,),
Q the temperature of the &, is random: 3, = B(w,).

Theorem

1) Suppose 3, = 8 and T(wo) > 0 is a random variable satisfying
p(7(wo) ¢ TN) > 0. Then there exists o > 0 s.t. for any p € J1(Hs)
and for a.e. w € Q, there exists C(w) > 0

P — pg=.slh < C(w)e™ ", VneN.

2) Suppose 7, =T ¢ TN and 3(w) is a random variable. Then for any
p € N(Hs),

N
I|m Zp“; = E(p,@*(w),S)'
n=1

N— oo
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‘Thermodynamics properties

Energy variation

During the n-th interaction the energy is constant, formally given by

n

Tr (p';,o_tl H,,) =Tr (ptOtHn) .
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‘Thermodynamics properties

Energy variation

During the n-th interaction the energy is constant, formally given by

n

Tr (p';,o_tl H,,) =Tr (ptOtHn) .

When one switches from interaction n to interaction n -+ 1, there is an
energy jump:

0E, = Tr (pfft Hn+1) —Tr (p“’t H,,)

n
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‘Thermodynamics properties

Energy variation

During the n-th interaction the energy is constant, formally given by

Tr (p';,o_tl H,,) =Tr (ptOtHn) .

n

When one switches from interaction n to interaction n -+ 1, there is an
energy jump:

6En = Tr(pi"Hpi1) — Tr (pHa) = Tr (p* Var1) — Tr (pi*V,)

n n
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‘Thermodynamics properties

Energy variation

During the n-th interaction the energy is constant, formally given by

Tr (pzotlHn) Tr (ptotH )

When one switches from interaction n to interaction n -+ 1, there is an
energy jump:

0By = Tr(py"Huy1) = Tr (" Ha) = Tr (0 Vra) = Tr (0" Vi)

= Trs g (Lno 0 Li(p) © pe,,) Var) = Tr (s (¢ Vyei7H)
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‘Thermodynamics properties

Energy variation

During the n-th interaction the energy is constant, formally given by

Tr (pzotlHn) Tr (ptotH )

When one switches from interaction n to interaction n -+ 1, there is an
energy jump:
6En = Tr(pi"Hpi1) — Tr (pHa) = Tr (p* Var1) — Tr (pi*V,)
v (Lno-+-0 L1(p) ® pe,y) Var1) = Tr (4 (e Ve ™))
= Trsafnﬂ ((‘Cn 0---0 ‘Cl(p) ® p5n+1)vn+1)
~Trs.e, (Lot 00 L1(p) ® pe,) (™M Ve~ mHn)) |

= TI‘&g
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‘Thermodynamics properties

Energy variation

During the n-th interaction the energy is constant, formally given by

Tr (pzotlHn) Tr (ptotH )

When one switches from interaction n to interaction n+ 1, there is an
energy jump:
SE, = Tr (ptOtHn+1) Ty (ptotH ) Tr (ptot Voy ) Ty (ptot v )
1 ((Lno---0Li(p)® P€n+1)Vn+1) —Tr (pE,Otl( imaHn V,,ef"T"H"))
= s, (Lno-+0 La(p) @ pe,,) Vii1)
—Trse, (La10--- 0 L1(p) @ pe,) (&M Ve It |

= TI‘&g

In the ideal case, this rewrites

SE, = Trse ((L(p) ® pe)V) — Trs.e (L (p) @ pe)(e™ Ve ™).
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‘Thermodynamics properties

Energy variation

In the ideal case, one easily gets

Proposition
If Assumption (E) is satisfied,

dE; = lim 0E, = Trs e (,0+ ®pe (V — oimH Vef’.TH)) .

n—oo
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‘Thermodynamics properties

Energy variation

In the ideal case, one easily gets

Proposition

If Assumption (E) is satisfied,

dE; = lim 0E, = Trs e (,0+ ®pe (V — oimH Vef’.TH)) .

n—oo

In the random case we have, using

0E, = Trse,, ((Lao---0Li(p) ® pe,,)Vas1)
~Trse, (Lae1 00 L1(p) ® pe,) (€™ Ve ™Hn)) |

Proposition

If p(L(wo) satisfies (E)) > 0, then

N
H 1 iTH —iTH
dE, := fim 2_:1515" =E (Trs,e (p+ ® pe (V — Ve ™)),
where py is the unique invariant state of E(L).
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‘Thermodynamics properties

Entropy production

We assume that the pg, are Gibbs states at inverse temperature [3,,.
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‘Thermodynamics properties

Entropy production

We assume that the pg, are Gibbs states at inverse temperature [3,,.
Fix a reference state ps for S (e.g. the tracial state) and let

Po = ps @ ®Pek-
k>1

Relative entropy Ent(p|po) = Tr(plog p — plog po) > 0.
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‘Thermodynamics properties

Entropy production

We assume that the pg, are Gibbs states at inverse temperature [3,,.
Fix a reference state ps for S (e.g. the tracial state) and let

po=ps ®P€k-

k>1
Relative entropy Ent(p|po) = Tr(plog p — plog po) > 0.
Theorem

1) Ideal case: if (E) is satisfied, then

dSi := lim Ent(p}%:|po) — Ent(pn”|po) = AdE,.

-
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‘Thermodynamics properties

Entropy production

We assume that the pg, are Gibbs states at inverse temperature [3,,.

Fix a reference state ps for S (e.g. the tracial state) and let
Po = ps @ ®P€k-

k>1
Relative entropy Ent(p|po) = Tr(plog p — plog po) > 0.
Theorem

1) Ideal case: if (E) is satisfied, then

dSy = lim_ Ent(ppt1]po) — Ent(p,™|po) = BdE,.
2) Random case: if p(L(wo) satisfies (E)) > 0, then

E tot —E
d5+ — lim nt(pn |p0) Dt(p|p0)

n—oo n

= E(8Trse (p+ ®pe (V- et Ve_iTH))) .

In particular, if 3 is not random we still have dS; = BdE, .

L. Bruneau Random repeated interaction quantum systems
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‘Thermodynamics properties

Thermodynamics of the spin-spin example

16m2\%Es ., (7r7'>
———sin .

Recall T =2n/\/(Es — Ec)2 +4)2, and let k := = —
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‘Thermodynamics properties

Thermodynamics of the spin-spin example

16m2\%Es ., (7r7'>
———sin .

Recall T =2n/\/(Es — Ec)2 +4)2, and let k := = —

We compute explicitly

—1
1 1
dE+ =K <1—|—e_BES> X COV (Ii, ]_—|—e_6E£> 5

~1
1 1
d5+:E<1+e—BEs) x Cov <BH’1+Q—BE5>'
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‘Thermodynamics properties

Thermodynamics of the spin-spin example

16m2\%Es ., (7r7'>
———sin .

Recall T =2n/\/(Es — Ec)2 +4)2, and let k := = —

We compute explicitly

—1
1 1
dE+ =K <1—|—e_BES> X COV (Ii, ]_—|—e_6E£> 5

~1
1 1
d5+:E<1+e—BEs) x Cov <BH’1+Q—BE5>'

In particular,
@ if only 7 is random, dE; =dS; =0,
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‘Thermodynamics properties

Thermodynamics of the spin-spin example

Recall T =2n/\/(Es — Ec)2 +4)2, and let k :=
We compute explicitly

—1
1 1
dE+ =K <1—|—e_BES> X COV (Ii, ]_—|—e_6E£> 5

~1
1 1
d5+:E<1+e—BEs) x Cov <BH’1+Q—BE5>'

In particular,
@ if only 7 is random, dE; =dS; =0,
Q@ if only 3 is random, dE; = 0 while

1 - 1
d5+ = kE <1_|_e—ﬁE£> x Cov (ﬂ, 1_|_e—ﬁE€> > 0

and vanishes iff (w) = 3 as.

16m2)\2E; <in2 (E)
T? '



	Introduction
	Study of the dynamics
	Thermodynamics properties

