

TD n°2: Continuité

Exercice 1. Déterminer et représenter graphiquement le domaine de définition des fonctions:

$$\ln\left(\frac{x+y}{x-y}\right), \quad \sqrt{1-(x-y)^2}, \quad \frac{1}{\sqrt{y-\sqrt{x}}}, \quad \ln\left(\frac{y}{x^2+y^2-1}\right).$$

Exercice 2. Soient les fonctions définies sur $(\mathbb{R}_+^*)^2$ par $f(x,y) = \frac{\sin x}{x+y}$ et $g(x,y) = x^y$. Comparer

$$\lim_{x\to 0} \left[\lim_{y\to 0} f(x,y) \right], \quad \lim_{y\to 0} \left[\lim_{x\to 0} f(x,y) \right] \text{ et } \lim_{(x,y)\to (0,0)} f(x,y). \text{ De même avec la fonction } g.$$

Exercice 3. Soit $f(x,y) = \frac{xy}{y-x}$.

- a) Quel est le domaine de définition de cette fonction?
- b) Soit f_1 la restriction de f à la droite d'équation y = 2x. Quelle est la limite de f_1 en (0,0)?
- c) Soit f_2 la restriction de f à la parabole d'équation $y = x + x^2$, quelle est la limite de f_2 en (0,0)?
- d) Que peut-on en conclure quant à la limite de f en (0,0)?

Exercice 4 (Examen 05). Étudier la continuité des applications suivantes sur \mathbb{R}^2 :

$$f(x,y) = \frac{x^2y^3}{(x^2+y^2)^2}$$
 si $(x,y) \neq (0,0)$, et $f(0,0) = 0$,

$$g(x,y) = \frac{x^2y^2}{(x^2+y^2)^2}$$
 si $(x,y) \neq (0,0)$, et $g(0,0) = 0$.

Exercice 5. Étudier la continuité des applications suivantes sur \mathbb{R}^2 :

$$f(x,y) = \frac{x^3 - y^3}{x^2 + y^2} \quad \text{si} \quad (x,y) \neq (0,0), \quad \text{et} \quad f(0,0) = 0;$$

$$g(x,y) = \frac{\sin(xy)}{(x^2 + y^2)^{\frac{1}{2}}} \quad \text{si} \quad (x,y) \neq (0,0), \quad \text{et} \quad g(0,0) = 0;$$

$$h(x,y) = \frac{x^2 + y^2}{x - y} \quad \text{si} \quad x \neq y, \quad \text{et} \quad h(x,x) = 0.$$

Exercice 6. Soient f et g les deux fonctions définies par $f(x,y) = \frac{xy^2}{x^2 + y^4}$ et $g(x,y) = x^y + y^x$.

- a) Quelles sont les domaines de définition de f et g?
- **b)** Montrer que pour tout $\theta \in [0, 2\pi]$ fixé, $\lim_{r \to 0} f(r \cos \theta, r \sin \theta) = 0$.
- c) Montrer un résultat similaire pour g. (Préciser pour quels θ .)
- d) Montrer que pourtant f et g n'ont pas de limite en 0.

Exercice 7. Déterminer l'ensemble de continuité des fonctions suivantes:

$$f(x,y) = \tanh\left(\frac{x^2}{y^2}\right)$$
 si $y \neq 0$ et $f(x,0) = 1$;

$$g(x,y) = e^{x^2 - y}$$
 si $x^2 < y$ et $g(x,y) = 1$ si $x^2 \ge y$.

Exercice 8. Soient f, g définies par $f(x,y) = \frac{x+y}{x^2-y^2}$ et $g(x,y,z) = \frac{(x+y)z}{x^2-y^2+z^2}$. Donner leurs domaines de définition. Étudier les limites de f en (2,-2) et de g en (2,-2,0).

Exercice 9 (Partiel 02). Montrer la continuité de la fonction f définie sur \mathbb{R}^2 par

$$f(x,y) = \frac{xy}{(1+|x|)(1+|y|)(|x|+|y|)}$$
 si $(x,y) \neq (0,0)$, et $f(0,0) = 0$.

Exercice 10. Soit $(E, \|\cdot\|)$ un espace vectoriel normé. Montrer que

$$\forall x, y \in E, \quad |||x|| - ||y||| \le ||x - y||.$$

En déduire que l'application $x \mapsto ||x||$ est continue.

Exercice 11. Soient E, F deux espaces vectoriels normés, soit f une application de E dans F. Montrer que f est continue sur E si et seulement si l'image réciproque d'un fermé de F est toujours un fermé de E.

Exercice 12 (Examen 2e session 06). Pour $q \in \mathbb{N}^*$, on considère la fonction réelle $f : \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \frac{x^2 y^q}{x^2 + y^2}$$
 si $(x,y) \neq (0,0)$, et $f(0,0) = 0$.

Pour quelles valeurs de q la fonction f est-elle continue sur \mathbb{R}^2 ?

Exercice 13 (Partiel 95). Soit $a \in \mathbb{R}$, et soit $f : \mathbb{R}^2 \to \mathbb{R}$ définie par

$$f(x,y) = \frac{xy(x^2 - y^2)}{(x^2 + y^2)^a}$$
 si $(x,y) \neq (0,0)$ et $f(0,0) = 0$.

Quelles sont les valeurs possibles de a si on impose f continue sur \mathbb{R}^2 ?

Exercice 14. Soient $E \subset \mathbb{R}$ et $f: E \to \mathbb{R}$.

- a) Écrire à l'aide de quantificateurs que f n'est pas uniformément continue sur E.
- b) Si $(x_n)_{n\in\mathbb{N}}$ est une suite convergente de E, et s'il existe $\varepsilon > 0$ tel que $\forall n \in \mathbb{N}, f(x_{n+1}) f(x_n) \ge \varepsilon$, est ce que f est uniformément continue sur E?
- c) Montrer que si E est borné et f(E) est non bornée, f n'est pas uniformément continue sur E.

Exercice 15. Les fonctions suivantes sont-elles uniformément continues sur [0,1]?

$$\sin x$$
, $\sin \left(\frac{1}{x}\right)$, $\tan x$, $\frac{\sin x}{x}$.

Exercice 16 (Examen 06). Soit (E,d) un espace métrique: à savoir, E est un ensemble quelconque, et d: $E \times E \to \mathbb{R}^+$ est une application qui vérifie que pour tous $x,y,z \in E$, $d(x,y) = 0 \Leftrightarrow x = y$, d(x,y) = d(y,x), et l'inégalité triangulaire $d(x,z) \leq d(x,y) + d(y,z)$. Etant donnée $(x_n)_n$ une suite de points de E, on dit que $(x_n)_n$ converge vers un point x de E si

$$\forall \epsilon > 0, \ \exists N \in \mathbb{N} \ / \ \forall n \ge N, \ d(x_n, x) < \epsilon.$$

Par ailleurs, si (X, d_X) et (Y, d_Y) sont deux espaces métriques, et si $f: X \to Y$ est une application de X dans Y, on dit que f est continue en un point a de X si

$$\forall \epsilon > 0, \ \exists \eta > 0 \ / \ \forall x \in X, \ d_X(a, x) < \eta \Rightarrow d_Y(f(a), f(x)) < \epsilon.$$

Montrer que f est continue en un point a de X si et seulement si pour toute suite $(x_n)_n$ de points de X, la convergence de $(x_n)_n$ vers a entraı̂ne la convergence de $(f(x_n))_n$ vers f(a).

Exercice 17. Soient E, F deux espaces vectoriels normés. Soit f une application d'un sous ensemble $I \subset E$ dans F. On dit que f est K-lipschitzienne sur I ssi $\forall x, y \in I, ||f(x) - f(y)||_F \le K||x - y||_E$.

- a) Montrer que si f est K-lipschtzienne sur I, alors elle est uniformément continue sur I.
- b) Soient $E = F = \mathbb{R}$ et I un intervalle. Supposons que f est dérivable sur I, montrer que f est K-lipschtzienne sur I ssi $|f'(x)| \leq K$ pour tout $x \in I$.
- c) Soit $g(x) = |x|^{\alpha} \sin(\frac{1}{x})$ avec $\alpha \in]1,2[$. Montrer que g se prolonge en une fonction dérivable sur \mathbb{R} tout entier. Est-ce que g est lipschitzienne sur [0,1]? Est-ce que g est uniformément continue sur [0,1]?

Exercice 18. Vrai ou faux?

- a) Toute suite convergente de \mathbb{R}^n est une suite de Cauchy.
- **b)** Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction. Si $f_1: x \mapsto f(x,0)$ et $f_2: y \mapsto f(0,y)$ sont continues en 0, alors f est continue en (0,0).
- c) Si $f: \mathbb{R}^n \to \mathbb{R}$ est continue sur un compact, alors f est uniformément continue.
- d) Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction et soit B la boule unité fermée de \mathbb{R}^n . Alors, f est bornée sur B.