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Abstract: In this paper, we consider the quantum version of a hamilto-
nian model describing friction. This model consists of a particle which
interacts with a bosonic reservoir representing a homogeneous medium
through which the particle moves. We show that if the particle is con-
�ned, then the Hamiltonian admits a ground state if and only if a suit-
able infrared condition is satis�ed. The latter is violated in the case of
linear friction, but satis�ed when the friction force is proportional to a
higher power of the particle speed.

AMS classi�cation: 81Q10, 46N50.

1 Introduction

In [BDB], together with S. De Bièvre, we introduced a classical Hamiltonian model
of a particle moving through a homogeneous dissipative medium at zero temper-
ature in such a way that the particle experiences an e�ective linear friction force
proportional to its velocity. The medium consists at each point in the space of
a vibration �eld with which the particle exchanges energy and momentum. More
precisely the Hamiltonian is given by

H(q, p, φ, π) =
p2

2
+ V (q) +

1
2

∫
Rd

dx
∫

Rn

dy c2|∇yφ(x, y)|2 + |π(x, y)|2

+
∫

Rd

dx
∫

Rn

dy ρ1(x− q)ρ2(y)φ(x, y), (1.1)

where V is an external potential, c represents the speed of the wave propagation
in the �membranes� and the functions ρ1 and ρ2 determine the coupling between
the particle and the �eld and are smooth radial functions with compact support.

We studied the asymptotic behaviour of the particle motion for two categories
of potentials: linear ones (which means constant external force) and con�ning
ones. We proved that under suitable assumptions (on the initial conditions), for c
su�ciently large and, most importantly, n = 3, the particle behaves asymptotically
as if its motion was governed by the e�ective equation

q̈(t) + γq̇(t) = −∇V (q(t)),
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where the friction coe�cient γ is non negative and is explicit in terms of the
parameters of the model:

γ :=
π

c3
|ρ̂2(0)|2

∫
Rn

dξ
∫

Rd−1
dη |ρ̂1(|ξ|, η)|2. (1.2)

If V = −F · q, which means that we apply a constant external force F to the
particle, then this particle reaches exponentially fast (with rate γ) an asymptotic
velocity v(F ) = F

γ which is proportional to the applied force (for small forces). This
is, in particular, at the origin of Ohm's law. On the other hand, if V is con�ning,
the particle stops at one of the critical points of the potential, the convergence rate
being still exponential (but with rate γ

2 as expected from the e�ective equation).
In [BDB] we mostly concentrated on linear friction. This is why the n = 3

assumption was required. However, for other values of n (> 3), our model still de-
scribes friction. Indeed, the reaction force of the environment on a particle moving
with velocity v takes the form −γ|v|n−3v (for small v and where γ is de�ned in
(1.2)). So one can see that we have linear friction when n = 3, and otherwise a
friction force which is proportional to some other power of the particle velocity.

Such models, where a small system interacts with a large environment, are
called open systems. The reason for studying those models is usually to have
a Hamiltonian description of dissipative phenomena. There exist several mech-
anisms leading to dissipation. Among them, two important, and very di�erent,
mechanisms are radiation damping and friction (which can be linear or not). As
far as radiation damping is concerned, there exist many models, which are more
or less related to electromagnetism. One example is the �classical Nelson model�

Hnels =
p2

2
+ V (q) +

1
2

∫
Rd

dx
(
|∇φ(x)|2 + |π(x)|2

)
+
∫

Rd

ρ(x− q)φ(x)dx,

which has been studied in [KKS] (except for the kinetic energy of the particle
which was

√
p2 + 1 instead of p2

2 ). This model describes a particle interacting
with a scalar radiation �eld, and exhibits radiation damping. Concerning friction,
although there exist various Hamiltonian models in the literature, ours is the only
one we are aware of that describes the friction produced by the motion of the
particle through a homogeneous medium. Despite the formal similarity between
our model and the classical Nelson model, we want to stress once again that they
describe physically totally di�erent phenomena. This is re�ected in mathematical
di�erences that will become apparent below.

Our goal in this paper is to begin the study of the quantum version of the
model (1.1). Since the speed of the wave propagation will not play any role in our
paper, we take it equal to 1. The quantum Hamiltonian then writes as follows

H = (−∆ + V )⊗ 1l + 1l⊗
∫

dxdk ω(x, k)a∗(x, k)a(x, k)

+
∫

dxdk
ρ1(x−Q)ρ̂2(k)√

2ω(x, k)
⊗ a∗(x, k) + h.c.,
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where a and a∗ are the usual annihilation and creation operators on the bosonic
Fock space F(L2(Rd+n, dx dk)), and ω(x, k) = |k| is the bosons dispersion relation.
In this paper, we start with the study of con�ning potentials which are less di�cult.
More precisely, we deal with the question of existence of a ground state. If a
Hamiltonian is bounded from below, we say that it admits a ground state if the
in�mum of its spectrum is an eigenvalue. We call ground state energy this in�mum
and ground state any corresponding eigenvector if it exists. We will prove that
such a ground state exists provided the following infrared condition is satis�ed
(Theorem 3.1): ∫

Rn

dk
|ρ̂2(k)|2

|k|3
< +∞.

Let us suppose that ρ̂2(0) 6= 0. Indeed, this is the only interesting case since the
friction coe�cient γ vanishes together with ρ̂2(0) (see (1.2)). One can see that the
infrared condition is ful�lled when the friction is non-linear (n ≥ 4). On the other
hand, for linear friction, there is generically no ground state (Proposition 3.2).
Thus, we have a class of models, depending on a parameter n, describing friction
phenomena, linear or proportional to a power of the velocity of the particle, for
which we are able to say whether they admit a ground state or not.

We will describe precisely the quantum version of the model in Sect. 2, and
we state our main results in Sect. 3.

To prove the existence of a ground sate, we follow the standard strategy: we
�rst prove the result for coupling to a massive �eld and then we let the mass tend
to zero. We study the massive case in Sect. 4 along the lines of [BFS1, BFS2, GJ]
and the �zero mass� limit in Sect. 5 adapting the proof of [G] to our model. In
the two parts of the proof, the main mathematical di�erence (and di�culty) with
the models for radiation damping comes from the fact that the dispersion relation
ω does not depend on x. Hence we have no a priori control on the momentum
of the bosons in the �x-direction�. A second di�culty which arises comes from
the fact that, in the interaction term, the norm of ρ1(x − Q) as an operator on
L2(Rd) does not depend on x. In order to control this problem, we will need to
use the exponential decay of the spectral projectors in the Q variable. The proof
of Proposition 3.2 is also given in Sect. 5. Some of the proof are omitted or only
brie�y sketched: see [B1, B2] for more details.

2 Description of the Model

In this section, we introduce the quantum version of the model introduced in Sect.
1. The dynamics of the particle is given by the Schrödinger operator Hp = −∆+V
on L2(Rd). Troughout this paper we will only consider con�ning potentials, so that
Hp has a compact resolvent and purely discrete spectrum.

The Hilbert space for the environment will be the bosonic Fock space over
L2(Rd+n, dx dk). In what follows, we will just write F := F(L2(Rd+n, dx dk)). The
Hamiltonian of the �eld is given by Hf := dΓ(ω), where ω is the multiplication
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operator on L2(Rd+n, dx dk) by the function ω(x, k) = |k|. The function ω depends
only on k, so we will write ω(k) for ω(x, k). It is well known that one can rewrite
Hf using the creation and annihilation operators as follows:

Hf =
∫

Rd+n

dxdk ω(k)a∗(x, k)a(x, k). (2.1)

We can now describe the full system. The Hilbert space is the tensor product
of the particle space and of the environment one, namely H := L2(Rd) ⊗ F , and
the free Hamiltonian (i.e. without interaction) is given by H0 := Hp⊗ 1l+ 1l⊗Hf .
The interaction term is given by

HI :=
∫

dxdk ρ1(x−Q)

(
ρ̂2(k)√
2ω(k)

⊗ a∗(x, k) +
¯̂ρ2(k)√
2ω(k)

⊗ a(x, k)

)
, (2.2)

where ρ1 and ρ2 are two smooth functions with compact support and spherical
symmetry, and ρ1(x−Q) is the multiplication operator on L2(Rd) by the function
ρ1(x− ·). Finally, the full Hamiltonian of the interacting system is therefore

H := H0 +HI . (2.3)

3 Main Results

3.1 Selfadjointness

From now, we will suppose that n ≥ 3. We �rst give the precise condition we
impose on the potential V :

(C) V ∈ L2
loc(Rd), lim|q|→∞ V (q) = +∞.

This hypothesis ensures that Hp is well de�ned and is selfadjoint on D(Hp) =
{ψ ∈ L2(Rd)|Hpψ ∈ L2(Rd)} ([RS2], Theorem X.28). We also know that Hf is
selfadjoint on its domain D(Hf ) ([RS1], Chapter VIII.10). One then easily proves
that H0 is essentially selfadjoint on D(Hp)⊗D(Hf ) ([RS1], Chapter VIII.10). We
now have the following result

Proposition 3.1. Suppose that n ≥ 3, and V satis�es condition (C). Then H is
selfadjoint on D(H) = D(H0). Moreover, H is essentially selfadjoint on any core
for H0, and it is bounded from below.

This is in the standard way a consequence of the Kato-Rellich theorem
([RS2], Theorem X.12). The only ingredient needed is that HI is in�nitesimally
H0-bounded, which follows from the following lemma.

Lemma 3.1. Under the hypothesis of Proposition 3.1, for all Ψ ∈ D(H0), we
have:

‖
∫

dxdk
ρ̂2(k)√
ω(k)

ρ1(x−Q)⊗a(x, k)Ψ‖2H ≤
[ ∫

dxdk|ρ1(x)|2
|ρ̂2(k)|2

ω(k)2
]
‖(1l⊗H

1
2
f )Ψ‖2H.
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and

‖
∫

dxdk
ρ̂2(k)√
ω(k)

ρ1(x−Q)⊗a∗(x, k)Ψ‖2H ≤
[ ∫

dxdk|ρ1(x)|2
|ρ̂2(k)|2

ω(k)2
]
‖(1l⊗H

1
2
f )Ψ‖2H

+
[ ∫

dxdk|ρ1(x)|2
|ρ̂2(k)|2

ω(k)

]
‖Ψ‖2H.

Remark 3.1. Such kind of estimates are well known [A1, BFS1, DJ] and are
sometimes called Nτ− estimates. The n ≥ 3 hypothesis ensures that the integrals
on the right-hand side of both inequalities converge.

Proof of Lemma 3.1:We use the fact that H is isomorphic to L2(Rd, dq,F).We
then have:

‖
∫

dxdk
ρ̂2(k)√
ω(k)

ρ1(x−Q)⊗ a(x, k)Ψ‖2H =
∫

Rd

dq‖a(gq)Ψ(q)‖2F , (3.1)

where gq is the function gq(x, k) = ρ̂2(k)√
ω(k)

ρ1(x − q). By a standard computation,

one has (see [BFS1], Lemma I.6):

‖a(gq)Ψ(q)‖2F ≤
[ ∫

dxdk|ρ1(x)|2
|ρ̂2(k)|2

ω(k)2
]
‖H1/2

f Ψ(q)‖2F ,

which, together with (3.1), proves the �rst inequality. One proves the second one
in a similar way. 2

3.2 Existence of a ground state

Let E0 denote the ground state energy of H. It is well known that one of the
main obstacles to the existence of a ground state, in those models where a particle
interacts with a �eld, comes from the so-called infrared catastrophe, which is due
to the behaviour of ω(k) for small k and in particular to the fact that ω(0) = 0.
We will then need the following �infrared condition� on the coupling:

(IR)
∫

Rn dk |ρ̂2(k)|2
ω(k)3 < +∞.

The main result of our paper is the following.

Theorem 3.1. Suppose n ≥ 3, V satis�es hypothesis (C), and ρ̂2 satis�es (IR).
Then H has a ground state.

As we said in the introduction, this (IR) condition is satis�ed when the
friction is non-linear but not if it is linear. On the other way, in the case of the
Nelson model, the same kind of condition is necessary and su�cient to have a
ground state [G, LMS]. It is then reasonable to think this is also true for our
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model. Indeed, we will prove that if the infrared condition is violated, then there
is no ground state but provided the additional condition ρ̂1(0) 6= 0 is satis�ed,
which means that the total charge of the particle does not vanish.

Proposition 3.2. Suppose n ≥ 3, V satis�es hypothesis (C), ρ̂2 does not satisfy
(IR) and ρ̂1(0) 6= 0, then H has no ground state.

To prove Theorem 3.1, we will need to study some �intermediate� models,
and in particular to consider massive bosons and to �discretize� space. The term
massive means that, instead of ω(k), we will consider a function ωm(k) satisfying

(Hω) ∇ωm ∈ L∞(Rn), lim
|k|→∞

ωm(k) = +∞, inf ωm(k) = m > 0.

Our proof will use di�erent methods developed in the literature [BFS1, BFS2,
DG1, G, GJ]. For more detailed proofs, we also refer the reader to [B1].

Finally, we would like to emphasize that all the Hamiltonians we will deal with
have the same structure as (2.3) and so, a similar result to the one of Proposition
3.1 is available for each of them.

4 Ground State for Massive Bosons

Our goal in this section is to prove a �rst result similar to Theorem 3.1 but in
the case of massive bosons (Theorem 4.2, Sect. 4.2). The idea is �rst to consider
a �nite box (|x| < L) and then to control the remainder as L goes to in�nity. We
will see, in Sect. 4.2, that the �cuto�� model so obtained can be written in the
form (4.1). We therefore �rst study models of this latter type (Theorem 4.1).

4.1 Discrete models

4.1.1 Description

We consider Hamiltonians of the form

Hd := Hp ⊗ 1l + 1l⊗
∑
l∈Zd

∫
Rn

dk ωm(k)a∗l (k)al(k)

+
∑
l∈Zd

∫
Rn

dk (βl(k)⊗ a∗l (k) + β̄l(k)⊗ al(k))

= Hd
0 +W d, (4.1)

on the space Hd := L2(Rd)⊗F
(
l2(Zd)⊗ L2(Rn)

)
, and where the βl(k) satisfy

(Cβ) βl(k) = ζl
ρ̂2(k)√
2ωm(k)

where ζl is a multiplication operator on

L2(Rd) such that supl ‖|l|sζl‖ < +∞ for all s > 0,
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al(k) and a∗l (k) are the annihilation and creation operators on the space
F
(
l2(Zd)⊗ L2(Rn)

)
, and for l = (l1, . . . , ld) ∈ Zd, |l| := supi |li|.

Let Ed
0 denote the ground state energy of Hd. We will prove the following:

Theorem 4.1. σess(Hd) ⊂
[
Ed

0 +m,+∞
[
. In particular, Hd has a ground state.

4.1.2 Cuto� models

In the following, M will be a non negative number. On Hd, we de�ne

Hd(M) := Hd
0 +

∑
|l|≤M

∫
Rn

dk (βl(k)⊗ a∗l (k) + β̄l(k)⊗ al(k)) = Hd
0 +W d(M).

We also de�ne

H̃d(M) := Hp ⊗ 1l + 1l⊗
∑
|l|≤M

∫
Rn

dk ωm(k)a∗l (k)al(k) +W d(M), (4.2)

as an operator on the space Hd
M := L2(Rd)⊗F

(
l2(ΛM )⊗ L2(Rn)

)
, where ΛM =

{l ∈ Zd, |l| ≤ M}. Let Ed
0 (M) (resp. Ẽd

0 (M)) be the ground state energy for
Hd(M) (resp. H̃d(M)). Our goal is to get information on Hd from information
Hd(M) (as M → +∞). Thus, we �rst prove a result similar to Theorem 4.1, but
for Hd(M).

Proposition 4.1. σess(Hd(M)) ⊂
[
Ed

0 (M) +m,+∞
[
. In particular, Hd(M) has

a ground state φd
0(M). Moreover, Ed

0 (M) = Ẽd
0 (M).

Lemma 4.1. σess(H̃d(M)) ⊂
[
Ẽd

0 (M) +m,+∞
[
. In particular, H̃d(M) has a

ground state φ̃d
0(M).

Proof of Lemma 4.1: The set ΛM is �nite. If its cardinal was one, we would
have exactly the model studied in [DG1], and the lemma would correspond to their
Theorem 4.1. The same proof works in the general case. 2

Proof of Proposition 4.1: The proposition follows from the preceding lemma
using an identi�cation between Hd

M and some subspace of Hd, [GJ]. Indeed, one
can write l2(Zd) ' l2(ΛM )⊕ l2(Λc

M ), where Λc
M = Zd\ΛM , so one has

F
(
l2(Zd)⊗ L2(Rn)

)
' F

(
l2(ΛM )⊗ L2(Rn)

)
⊗F

(
l2(Λc

M )⊗ L2(Rn)
)
.

And �nally, Hd ' Hd
M ⊗F

(
l2(Λc

M )⊗ L2(Rn)
)
.

One can then identify Hd
M with Hd

M ⊗ Ωc
M where Ωc

M is the vacuum of
F
(
l2(Λc

M )⊗ L2(Rn)
)
. We can rewrite Hd as

Hd =
+∞⊕
j=0

(
Hd

M ⊗j
s

(
l2(Λc

L)⊗ L2(Rn)
))

=
+∞⊕
j=0

H(j).
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Actually, we have Hd
M = H(0) and (Hd

M )⊥ =
⊕+∞

j=1 H(j). One sees that the
H(j) are invariants for Hd(M). But, on H(j), one has

Hd(M) = H̃d(M)⊗ 1l + 1l⊗
∑
|l|>L

∫
Rn

dk ωm(k)a∗l (k)al(k) ≥ H̃d(M)⊗ 1l +mj,

and on H(0), Hd(M) = H̃d(M)⊗ 1l. Hence, we have

σ
(
Hd(M)|Hd

M

)
= σ

(
H̃d(M)

)
and σess

(
Hd(M)|Hd

M

)
= σess

(
H̃d(M)

)
,

and also

σess

(
Hd(M)|(Hd

M )⊥

)
⊂ σ

(
Hd(M)|(Hd

M )⊥

)
⊂
[
Ẽd

0 (M) +m,+∞
[
,

which ends the proof. Moreover, one can remark that φd
0(M) = φ̃d

0(M)⊗ Ωc
M . 2

4.1.3 Removing the cuto�

We �rst prove some convergence results as M goes to in�nity.

Proposition 4.2. Hd(M) converges to Hd in the strong resolvent sense.

Proof : We have

Hd −Hd(M) = W d −W d(M) =
∑
|l|>M

∫
Rn

dk βl(k)⊗ a∗l (k) + β̄l(k)⊗ al(k).

Let ψ ∈ D(Hd
0 ). Using condition (Cβ), one proves, in the same way as Lemma 3.1,

‖Hdψ −Hd(M)ψ‖ ≤ 2C(s)
1 +Ms

‖(Hd
0 )

1
2ψ‖+

 ∑
|l|>M

∫
Rn

dk |βl(k)|2
 1

2

‖ψ‖.

Using condition (Cβ) once more, one shows that the right hand side tends to zero
as M goes to in�nity. So, Hd(M) converges strongly to Hd and hence also in the
strong resolvent sense ([RS1], Theorem VIII.25). 2

Proposition 4.3. Ed
0 (M) is a decreasing function of M which tends to Ed

0 .

Proof : We know that, if φd
0(M) is a ground state for Hd(M), then φd

0(M) =
φ̃d

0(M)⊗ Ωc
M , and so, ∀l ∈ Λc

M ,∀k ∈ Rn, al(k)φd
0(M) = 0.

As a consequence, it is easy to see that the function Ed
0 (M) decreases with

M and satis�es Ed
0 (M) ≥ Ed

0 . Thus Ed
0 (M) converges to some E∞ ≥ Ed

0 . But
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Ed
0 ∈ σ(Hd) and Hd(M) converges to Hd in the strong resolvent sense, so ([RS1],

Theorem VIII.24),

∀M > 0,∃E(M) ∈ σ(Hd(M))/E(M) → Ed
0 .

Since Ed
0 (M) is the ground state energy of Hd(M), we �nally get E∞ = Ed

0 . 2

Proposition 4.4. Let ∆ be an interval bounded from above. For all s > 0, there
exists K(s,∆) > 0 such that

‖χ∆(Hd)(W d −W d(M))χ∆(Hd)‖ ≤ K(s,∆)
1 +Ms

.

Proof : Let φ, ψ ∈ Hd. Using condititon (Cβ), we get∣∣〈φ;χ∆(Hd)(W d −W d(M))χ∆(Hd)ψ〉
∣∣

≤ C(s)
1 +Ms

(
‖φ‖ × ‖(1l⊗Nd)

1
2χ∆(Hd)ψ‖+ ‖ψ‖ × ‖(1l⊗Nd)

1
2χ∆(Hd)φ‖

)
.

But ∆ is bounded from above, 1l⊗Nd ≤ 1
mH

d
0 and W d is relatively Hd

0 bounded,
so (1l⊗Nd)

1
2χ∆(Hd) is a bounded operator. Finally, one has∣∣〈φ;χ∆(Hd)(W d −W d(M))χ∆(Hd)ψ〉

∣∣ ≤ 2C(s)‖(Nd)
1
2χ∆(Hd)‖

1 +Ms
‖φ‖ × ‖ψ‖,

which ends the proof. 2

Proof of Theorem 4.1: The proof goes in the same way as the one of [BFS2]
(Theorem II.2.), i.e. we prove, using the results of Propositions 4.1, 4.3 and 4.4,
that Tr{[Hd − Ed

0 − m + ε]−} > −∞ for all ε > 0 and where [A]− denotes the
negative part of an operator A. 2

4.2 Continuous models

In this section, we are interested in the model introduced in Sect. 2 but for massive
bosons. We thus consider, on H, the same Hamiltonian as in Section 2 but with
ω(k) replaced by ωm(k) satisfying (Hω).We denote it Hm = H0

m +Wm where H0
m

denotes the free part and Wm the interaction. Let Em denote the ground state
energy of Hm. The main result of this section is the following:

Theorem 4.2. σess(Hm) ⊂ [Em +m,+∞[. In particular, Hm has a ground state.

The strategy of the proof is very similar to the one of the previous section. However,
one has to be more careful with the estimates when removing the cuto� because the
norm of ρ1(x−Q) as an operator on L2(Rd) does not decrease with x. Even worse,
it does not depend on it. To control this problem, we will use the exponential decay
of the spectral projectors in the Q variable, which are obtained via the Agmon
method (see Sect. 4.2.2)
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4.2.1 Cuto� models

Let j be a smooth function with compact support on Rd such that

0 ≤ j(x) ≤ 1, j(x) = 1 for |x| ≤ 1/2, and j(x) = 0 for |x| ≥ 3/4.

For all L > 0, we de�ne jL(x) = j( x
L ). We then de�ne

Hm(L) := H0
m +

∫
Rd

dx
∫

Rn

dk ρ1(x−Q)jL(x)
ρ̂2(k)√
2ωm(k)

⊗ a∗(x, k)

+ρ1(x−Q)jL(x)
¯̂ρ2(k)√
2ωm(k)

⊗ a(x, k) (4.3)

= H0
m +Wm(L)

on H. Using the de�nition of jL, one can, in Wm(L), replace
∫

Rd dx by
∫
[−L,L]d

dx.
Finally, we de�ne

H̃m(L) := Hp ⊗ 1l + 1l⊗
∫

[−L,L]d
dx
∫

Rn

dk ωm(k)a∗(x, k)a(x, k) +Wm(L), (4.4)

as an operator on L2(Rd)⊗F
(
L2([−L,L]d)⊗ L2(Rn)

)
.We denote by Em(L) and

Ẽm(L) the ground state energies of Hm(L) and H̃m(L) respectively.
We have �cut� the Hamiltonian Hm in the x variable. We are now in a �nite

volume box. If we consider the variable p, conjugate to x, this is equivalent to
�discretizing� the problem. One has to note that here p ∈ Zd. If

a∗p(k) =
1

(2L)
d
2

∫
[−L,L]d

dx eipxa∗(x, k), ap(k) =
1

(2L)
d
2

∫
[−L,L]d

dx e−ipxa(x, k),

and
βp =

1

(2L)
d
2

∫
[−L,L]d

dx ρ1(x−Q)jL(x)

denote the Fourier coe�cients of a∗(x, k), a(x, k) and ρ1(x−Q)jL(x) respectively,
the Hamiltonian can now be written as follows

H̃m(L) = Hp ⊗ 1l + 1l⊗
∑
p∈Zd

∫
Rn

dk ωm(k)a∗p(k)ap(k)

+
∑
p∈Zd

∫
Rn

dk (βp
ρ̂2(k)√
2ωm(k)

⊗ a∗p(k) + β̄p

¯̂ρ2(k)√
2ωm(k)

⊗ ap(k)),

which has the form (4.1). If the βp satisfy (Cβ), we will then have the following:

Proposition 4.5. ∀L > 0, σess(H̃m(L)) ⊂ [Ẽm(L) +m,+∞[.
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Finally, a splitting of L2(Rd) into L2([−L,L]d) ⊕ L2(Rd\[−L,L]d) together with
the argument of the previous section will lead to the

Proposition 4.6. σess(Hm(L)) ⊂ [Em(L) +m,+∞[. In particular, Hm(L) has a
ground state φm(L).

So, it remains to check that the βp satisfy the condition (Cβ). The function
jL is zero for |x| > L and ρ1 has compact support (in a ball of radius R1), so

∀|q| > L+R1,∀x ∈ Rd, ρ1(x− q)jL(x) = 0.

Then, for all p in Zd, βp is a multiplication operator by a compactly supported
function. Moreover, the function ρ1(x−q)jL(x) is C∞, so its Fourier coe�cients de-
cay faster than any power of p. Those two facts ensure that supp supq

∣∣βp(q)|p|n
∣∣ <

Cn(L) < +∞ and so condition (Cβ) is satis�ed. To prove Theorem 4.2, it remains
to control the limit L→ +∞.

4.2.2 Exponential bounds

Proposition 4.7. Let ∆ be a bounded from above interval. For any α > 0, there
exists M(α,∆) > 0 such that, for all L and m,

1. ‖(eα|Q| ⊗ 1l)χ∆(Hm(L))‖ ≤M(α,∆).

2. ‖(eα|Q| ⊗ 1l)χ∆(Hm)‖ ≤M(α,∆).

3. ‖(eα|Q| ⊗ 1l)χ∆(H)‖ ≤M(α,∆).

The proof is exactly the same as the one of Theorem II.1 of [BFS1]. The only
di�erence is that σess(Hp) = ∅, which makes things easier and in particular one
does not need any condition on α or on the supremum of the interval ∆.

For any R > 0, we now de�ne

N(|x| > R) :=
∫
|x|>R

dx
∫

Rn

dk a∗(x, k)a(x, k). (4.5)

N(|x| > R) is the number of bosons outside the ball centered at the origin and of
radius R (in the x variable). We will prove that the number of these �far away�
bosons decays exponentially fast with R. More precisely, we have

Proposition 4.8. For any α > 0, there exists C(α) > 0 such that, for all L,

〈φm(L); 1l⊗N(|x| > R)φm(L)〉 ≤ C(α)e−αR. (4.6)

The idea is to adapt the proof of [BFS1]. What is new in our model is that we need
an explicit control on the number of �far away� bosons in the x direction, even for
massive bosons. For that purpose, we use the following lemma which comes from
the well known pullthrough formula (see e.g. [G]):

11



Lemma 4.2. ‖1l⊗ a(x, k)φm(L)‖ ≤ 1
ωm(k)‖ρ1(x−Q)jL(x) ρ̂2(k)√

2ωm(k)
⊗ 1lφm(L)‖.

Proof of Proposition 4.8 : Let α > 0, using Lemma 4.2, we have

〈φm(L); 1l⊗N(|x| > R)φm(L)〉

≤
∫
|x|>R

dx
∫

Rn

dk
|ρ̂2(k)|2

2ω3
m(k)

‖ρ1(x−Q)jL(x)e−α|Q|‖2B(L2) × ‖e
α|Q| ⊗ 1lφm(L)‖2.

The function ρ̂2 is a Schwartz function and ωm is bounded from below by
m > 0, so the integral with respect to the k variable converges. Recall that the
function ρ1 has compact support in the ball of radius R1, so, for any given x ∈ Rd,
we have ‖ρ1(x−Q)e−α|Q|‖B(L2) ≤ ‖ρ1‖∞eαR1e−α|x|. Thus∫
|x|>R

dx ‖ρ1(x−Q)e−α|Q|‖2B(L2) ≤ ‖ρ1‖2∞e2αR1

∫
|x|>R

dx e−2α|x| ≤ K(α)e−αR.

And hence, 〈φm(L); 1l⊗N(|x| > R)φm(L)〉 ≤ K ′(α)e−αR‖eα|Q| ⊗ 1lφm(L)‖2.
Now, for any L, we have Em(L) ≤ E0

p where E0
p is the ground state energy

of Hp. Indeed, if ψ0
p is the ground state of Hp, we have

Em(L) ≤ 〈ψ0
p ⊗ Ω;Hm(L) ψ0

p ⊗ Ω〉 = E0
p .

Take �nally ∆ =]−∞, E0
p ]. Then, one has φm(L) = χ∆(Hm(L))φm(L), and hence

‖eα|Q| ⊗ 1lφm(L)‖2 ≤ ‖eα|Q| ⊗ 1l χ∆(Hm(L))‖2‖φm(L)‖ ≤ M(α,∆)2,

which ends the proof. 2

We �nally give an estimate similar to the one of Proposition 4.4.

Proposition 4.9. Let ∆ and α be as in Proposition 4.7, then there exists K(α,∆)
such that

‖χ∆(Hm)(Wm −Wm(L))χ∆(Hm)‖ ≤ K(α,∆)e−αL.

Proof : The proof goes in the same way as the one of Proposition 4.4. As we
already mentioned, the main di�erence comes from the fact that ‖ρ1(x−Q)‖B(L2)

does not decay with x. This di�culty is overcome using Proposition 4.7, and
writing

|〈φ;χ∆(Hm)(Wm −Wm(L))χ∆(Hm)ψ〉|
= |〈(e2α|Q| ⊗ 1l)χ∆(Hm)φ; (e−2α|Q| ⊗ 1l)(Wm −Wm(L))χ∆(Hm)ψ〉|.

4.2.3 Removing the cuto�

Proposition 4.10. Hm(L) converges to Hm in the strong resolvent sense.
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Proof : The proof is similar to the one of Proposition 4.2. 2

Proposition 4.11. Em(L) converges to Em as L goes to in�nity.

Proof : Remember that φm(L) is a ground state of Hm(L). We have

Em ≤ 〈φm(L);Hmφm(L)〉 ≤ Em(L) + 〈φm(L); (Wm −Wm(L))φm(L)〉

≤ Em(L) + 2Re
(
〈eα|Q| ⊗ 1lφm(L);

∫
|x|> L

2

dx
∫

Rn

dk e−α|Q|ρ1(x−Q)

×(1− jL(x))
ρ̂2(k)√
2ωm(k)

⊗ a(x, k)φm(L)〉
)
.

Then, the same computation as in Proposition 4.2 leads to

Em ≤ Em(L) +K(α)e−
αL
2 〈φm(L); 1l⊗N(|x| > L

2
)φm(L)〉

≤ Em(L) + C(α)e−αL.

Hence, the function Em(L) is bounded from below (and from above by E0
p), so

there exists a sequence Ln and E∞ such that lim
n→+∞

Em(Ln) = E∞. For the same

reason as in the proof of Proposition 4.3, we have Em = E∞. The function Em(L)
is then bounded with only one accumulating point Em, which proves that the
function converges to it. 2

Proof of Theorem 4.2 : The proof is identical to the one of Theorem 4.1.

5 Proof of the Main Results

The goal of this section is to prove the results of Sect. 3. We start with Theorem 3.1.
We adapt the method of [G]. We will insist on the di�erences with this paper. The
idea is to approach (in a way which has to be made precise) H with Hamiltonians
for which we know that they have a ground state and then to obtain the same
result for H. More precisely, we will use the following lemma:

Lemma 5.1. ([AH], Lemma 4.9) Let H,Hn(n ∈ N) be selfadjoint operators on a
Hilbert space H. We suppose that

(i) ∀n ∈ N,Hn has a ground state ψn with ground state energy En,

(ii) Hn tends to H in the strong resolvent sense,

(iii) limn→+∞En = E,

(iv) w− limn→+∞ ψn = ψ 6= 0.

Then ψ is a ground state of H with ground state energy E.

13



5.1 Infrared cuto�

We denote by χσ≤ω(k) the caracteristic function of the set {k ∈ Rn|σ ≤ ω(k)}. For
any σ > 0, we then de�ne

Hσ := H0 +
∫

Rd

dx
∫

Rn

dk ρ1(x−Q)
ρ̂2(k)√
2ω(k)

χσ≤ω(k)(k)⊗ a∗(x, k)

+ρ1(x−Q)
¯̂ρ2(k)√
2ω(k)

χσ≤ω(k)(k)⊗ a(x, k)

= H0 +HI,σ, (5.1)

where H0 is the free Hamiltonian de�ned in Section 2. We want to use Lemma 5.1
with H and Hσn where σn is some sequence going to zero.
We consider a function ω̃σ(k) satisfying

∇ω̃σ ∈ L∞(Rn), ω̃σ(k) = ω(k) if ω(k) ≥ σ, inf ω̃σ(k) ≥ σ

2
> 0,

and we de�ne
H̃σ = Hp ⊗ 1l + 1l⊗ dΓ(ω̃σ) +HI,σ. (5.2)

Then we have the following result:

Proposition 5.1. For any σ > 0,Hσ has a ground state ψσ. We denote by Eσ

its ground state energy.

To prove this result we use the following lemma:

Lemma 5.2. ([G], Lemma 3.2) Hσ has a ground state if and only if H̃σ has one.

Proof of Proposition 5.1 : According to the previous lemma, it su�ces to show
that H̃σ has a ground state. But H̃σ is a Hamiltonian of the form studied in Sect.
4.2, so, according to Theorem 4.2, it has a ground state. 2

Proposition 5.2. Hσ tends to H in the norm resolvent sense.

Proof : We use Lemma A.2 of [G] which says that it su�ces to show that Qσ

converges to Q in the topology of D(Q), where Qσ and Q are the quadratic forms
associated to Hσ and H. But, with a similar computation to the one of Lemma
3.1, one has

|Q(u, v)−Qσ(u, v)| ≤

(∫
Rd

dx
∫

ω(k)≤σ

dk
ρ1(x− q)2|ρ̂2(k)|2

2ω2(k)

) 1
2

×(Q(u, u)‖v‖+Q(v, v)‖u‖).

Corollary 5.1. limσ→0Eσ = E0.
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Remark 5.1. As in the massive case, one has Eσ ≤ E0
p for all σ > 0.

Using Propositions 5.1 and 5.2 together with Corollary 5.1, one can see that
the operators Hσ and H satisfy assumptions (i)− (ii)− (iii) of Lemma 5.1. So, it
remains to check condition (iv) and Theorem 3.1 will be proven.

5.2 Uniform estimates

Lemma 5.3. There exists C1 > 0 such that for all σ > 0, 〈ψσ;H0ψσ〉 ≤ C1.

This inequality comes from the fact that HI,σ is relatively H0 bounded with
in�nitesimal bound, uniformly with respect to σ > 0.We will also need an estimate
on the number of soft bosons, estimate which uses the infrared condition (IR).

Lemma 5.4. There exists C2 > 0 such that for all σ > 0, 〈ψσ; 1l⊗Nψσ〉 ≤ C2.

Proof : As in Lemma 4.2, one can show that

‖1l⊗ a(x, k)ψσ‖ ≤
1

ω(k)
‖ρ1(x−Q)

ρ̂2(k)√
2ωm(k)

χω(k)≥σ(k)⊗ 1lψσ‖. (5.3)

Thus,

〈ψσ; 1l⊗Nψσ〉 =
∫

Rd

dx
∫

Rn

dk ‖1l⊗ a(x, k)ψσ‖2H

≤
∫

Rd

dq
∫

Rd

dx
∫

ω(k)≥σ

dk
|ρ̂2(k)|2

2ω3(k)
|ρ1(x− q)|2‖ψσ(q)‖2F

≤ ‖ρ1‖22
(∫

Rn

dk
|ρ̂2(k)|2

2ω3(k)

)∫
Rd

dq ‖ψσ(q)‖2F ≤ C2.

We have obtained a control on the total number of bosons. However, we will
also need some control (uniform with respect to σ) on the number of �far away
bosons�, that is on the following quantities: 〈ψσ;N(|x| > R)ψσ〉, 〈ψσ;N(|y| >
S)ψσ〉 and 〈ψσ;N(|p| > P )ψσ〉 where N(|x| > R) was de�ned in (4.5) and

N(|y| > S) =
∫

Rd

dx
∫
|y|>S

dy ã∗(x, y)ã(x, y),

N(|p| > P ) =
∫
|p|>P

dp
∫

Rn

dk â∗(p, k)â(p, k).

The operators ã and ã∗ come from a and a∗ via a partial Fourier transform in the
k variable, and the operators â and â∗ via a partial Fourier transform in the x
variable. We then prove a result similar to Proposition 4.8.

Lemma 5.5. For any α > 0, there exists C(α) > 0 such that

〈ψσ; 1l⊗N(|x| > R)ψσ〉 ≤ C(α)e−αR.

15



The proof of this lemma is exactly the same as the one of Proposition 4.8. This
lemma gives us a control on the number of �far away� bosons in the x direction.
Similarly one can control the number of bosons whose momentum in the x direction
is large:

Lemma 5.6. For any s > 0, there exists C(s) > 0 such that

〈ψσ; 1l⊗N(|p| > P )ψσ〉 ≤
C(s)

1 + P s
.

Finally, to control N(|y| > S), we use the following result noting that dΓ(1 −
FS(y)) ≤ N(|y| > S

2 ).

Lemma 5.7. Let F ∈ C∞0 (Rn) such that

0 ≤ F (y) ≤ 1, F (y) = 1 for |y| ≤ 1/2, and F (y) = 0 for |y| ≥ 1.

Let FS(y) = F ( |y|S ). Then

lim
σ→0,S→+∞

〈ψσ; dΓ(1− FS(y))ψσ〉 = 0.

Proof : There is a similar result in [G] (Lemma 4.5), and we essentially follow its
proof. The main di�erence is that the norm of ρ1(x−Q) as an operator on L2(Rd)
does not depend on x and is therefore not square integrable with respect to this
variable. As in Sect. 4.2.2, to control this problem, we will use the exponential
decay of the spectral projectors in the Q variable (Proposition 4.7). First, one
easily sees that

dΓ(1− FS(y)) =
∫

dxdk a∗(x, k)(1− F (
|Dk|
S

))a(x, k). (5.4)

Then, one can prove ([G], Prop 4.4) that

lim
σ→0

a(x, k)ψσ − (E0 −H − ω(k))−1 ρ1(x−Q)ρ̂2(k)√
2ω(k)

ψσ = 0

in L2(Rd+n, dx dk;H). Using this together with (5.4), we then have

〈ψσ; dΓ(1− FS(y))ψσ〉
≤ ‖(E0 −H − ω(k))−1 ρ1(x−Q)ρ̂2(k)√

2ω(k)
ψσ‖L2(Rd+n;H)

×‖(1− F ( |Dk|
S ))(E0 −H − ω(k))−1 ρ1(x−Q)ρ̂2(k)√

2ω(k)
ψσ‖L2(Rd+n;H) + o(σ0)

≤ ‖(E0 −H − ω(k))−1 ρ1(x−Q)e−α|Q|ρ̂2(k)√
2ω(k)

‖L2(Rd+n;B(H)) × ‖eα|Q|ψσ‖H

×‖(1− F ( |Dk|
S ))(E0 −H − ω(k))−1 ρ1(x−Q)e−α|Q|ρ̂2(k)√

2ω(k)
‖L2(Rd+n;B(H))

×‖eα|Q|ψσ‖H + o(σ0).
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We check that (E0 − H − ω(k))−1 ρ1(x−Q)e−α|Q|ρ̂2(k)√
2ω(k)

belongs to L2(Rd+n;B(H)),

using the fact that ‖(E0 −H − ω(k))−1‖ ≤ ω(k)−1 and condition (IR). Thus

lim
S→+∞

‖(1−F (
|Dk|
S

))(E0 −H − ω(k))−1 ρ1(x−Q)e−α|Q|ρ̂2(k)√
2ω(k)

‖L2(Rd+n;B(H)) = 0.

Moreover ‖eα|Q|ψσ‖H is uniformly bounded (w.r.t σ), which can be proven as for
‖eα|Q|ψm(L)‖H (see Sect. 4.2), and the result follows. 2

5.3 Proof of Theorem 3.1

We have seen that the only thing we had to check was condition (iv) of Lemma
5.1. The unit ball of H is weakly compact, so there exists a sequence σn → 0 and
ψ ∈ H such that ψσn

converges weakly to ψ. It then su�ces to prove that ψ 6= 0.
The idea is to �nd a compact operator K such that for n large enough one has
such an estimate:

‖Kψσn‖ ≥ δ > 0. (5.5)

This will ensure that ψ is non zero. Indeed, K is compact, so Kψσn
tends strongly

to Kψ. If ψ was zero then ‖Kψσn
‖ would go to zero, which contradicts (5.5).

Let us then take F ∈ C∞0 (Rn) and G ∈ C∞0 (Rd) satisfying the conditions of
Lemma 5.7. Remembering that p is the variable conjugate to x, i.e. p = −i∇x on
L2(Rd+n, dx dk), one has the following inequalities:

(1− Γ(FS(y)))2 ≤ (1− Γ(FS(y))) ≤ dΓ(1− FS(y)), (5.6)

(1− Γ(GR(x)))2 ≤ N(|x| > R

2
), and (1− Γ(GP (p)))2 ≤ N(|p| > P

2
). (5.7)

Finally, let χ(s ≤ s0) be a function with support in {|s| ≤ s0} and equal to 1 in
{|s| ≤ s0

2 }. For any non negative θ, P,R and S, we de�ne

K(θ, P,R, S) := χ(N ≤ θ)χ(H0 ≤ θ)Γ(FS(y))Γ(GR(x))Γ(GP (p)). (5.8)

The assumptions on F,G, χ and ω ensure that K(θ, P,R, S) is compact for any
θ, P,R and S.

Using Lemmas 5.3 and 5.4, there exists θ0 > 0 such that, for all n, one has:

‖(1− χ(N ≤ θ))ψσn‖ ≤
1
10
, ‖(1− χ(H0 ≤ θ))ψσn‖ ≤

1
10
. (5.9)

Likewise, using Lemmas 5.5 and 5.6 together with (5.7), there exist R0, P0 > 0
such that, for all n, one has:

‖(1− Γ(GR(x)))ψσn
‖ ≤ 1

10
, ‖(1− Γ(GP (p)))ψσn

‖ ≤ 1
10
. (5.10)
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Finally, using Lemma 5.7 and (5.6), there exist S0 > 0 and n0 such that, for all
n ≥ n0, one has:

‖(1− Γ(FS(y)))ψσn‖ ≤
1
10
. (5.11)

Then, for any n ≥ n0, using the last three estimates, we have

‖ψσn
‖ ≤ 1

2
+ ‖K(θ0, P0, R0, S0)ψσn

‖.

But ‖ψσn
‖ = 1 for all n, thus ‖K(θ0, P0, R0, S0)ψσn

‖ ≥ 1
2 , for any n ≥ n0, which

is an estimate of the form (5.5). 2

5.4 Proof of Proposition 3.2

The idea of the proof is adapted from [DG2]. Once again, one of the main tools
is the pullthrough formula, which comes from the commutator between H and
annihilation operators

[H, 1l⊗ a(x, k)] = −ω(k)1l⊗ a(x, k)− ρ1(x−Q)
ρ̂2(k)√
2ω(k)

⊗ 1l. (5.12)

In order to get our result we will need to use this formula taking into account the
membranes alltogether, which, on a formal level, means that we will integrate the
previous formula over the �x-space�. It is therefore more convenient to look at the
Hamiltonian not in the (x, k) variables but in the (p, k) variables, where p is the
variable conjugate to x via Fourier transform, and then consider the value p = 0.
In such variables, the pullthrough formula just becomes

[H, 1l⊗ â(p, k)] = −ω(k)1l⊗ â(p, k)− ρ̂1(p)e−ipQ ρ̂2(k)√
2ω(k)

⊗ 1l. (5.13)

Suppose now that Ψ ∈ H satis�es HΨ = E0Ψ, where E0 is the ground state
energy of H.We will show that Ψ = 0.We apply equation (5.13) on such a vector.
One then gets the following equality

1l⊗ â(p, k) Ψ = −(H + ω(k)− E0)−1

(
ρ̂1(p)e−ipQρ̂2(k)√

2ω(k)
⊗ 1l

)
Ψ.

We denote with an exponent (m) the component of a vector in the m-particle
sector. We have, for any m,

(1l⊗ â(p, k) Ψ)(m)(p1, k1, . . . , pm, km) =
√
m+ 1Ψ(m+1)(p, k, p1, k1, . . . , pm, km)

and the righthand side is square integrable with respect to all its arguments because
Ψ ∈ H. Therefore, for all m,

Φ(m)(p, k) :=

(
−(H + ω(k)− E0)−1 ρ̂1(p)e−ipQρ̂2(k)√

2ω(k)
⊗ 1l Ψ

)(m)
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is square integrable with respect to (p, k). On the other hand, it is a continuous
function on Rd × (Rn − {0}). Then, for any p0 ∈ Rd, Φ(m)(p0, k) is a well de�ned
function of k and it is square integrable. As we have said previously, we consider
the value p0 = 0. But

Φ(m)(0, k) =
ρ̂1(0)ρ̂2(k)√

2ω(k)
3
2

Ψ(m),

which is not square integrable if the infrared condition is violated, unless ρ̂1(0)Ψ(m) =
0. By assumption, ρ̂1(0) 6= 0, so Ψ(m) = 0 for all m which means that Ψ = 0. 2
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