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Introduction

Les systémes ouverts

Le cadre général de la plupart des résultats présentés dans ce mé&hoehkiedes Systémes
Quantiques Ouverts. Par opposition avec un systeme fermé (ou isoléystémeS est dit
ouvert lorsqu’il est en contact/interagit avec un ou plusieurs autigérags souvent appelés
réservoir(s) ou environnement. Un exemple typique d’un tel systéemetasteelui d'un atome
en interaction avec le champ électromagnétique, mais on trouve de nombtesxexemples
dans divers domaines de la physique tels que la physique du solide, I®pjiguntique,etc. lls
servent aussi de paradigme a la mécanique statistique quantique a et hégaidibre.

Bien qu’un tel systéme puisse étre considéré comme un gros systéeme fempnsé de
plusieurs morceaux, ces derniers sont habituellement traités a desxniiéérents. Il faut
d’abord penser au systénd® comme étant beaucoup plus petit que son environnement, par
exemple nombre fini versus nombre infini de degrés de liberté. Ensuiteirbeanement étant
habituellement trés grand, il est souvent trés difficile d’avoir des infooms précises dessus et
I'on est plutdt intéressé par comprendre les effets que celui-ci peutsaw la dynamique du
petit systémeSs. On pensera par exemple a des phénomeénes de dissipation.

Pour étudier les systemes ouverts, deux approches distinctes ont étésitibses la littéra-
ture aussi bien mathématique que physique: I'approchdditd@ltonienneet celle ditemarkovi-
enne

L'approche hamiltonienne est plus fondamentale au sens ou I'on relgady@amique du
systeme total d’un point de vue microscopique: on s'intéresse a ungadiesccompléte du sys-
téme (petit systéme + environnement). Les deux parties du systéme sdtetsd@&spectivement
par des espaces de Hilbét et H.,, représentant les états du systéme, et des hamiltofigns
et Heny. L'espace des états du systeme total est alors donrg pafs @ Heny €t la dynamique
du systéme couplé décrite par un hamiltonien de la faiime Hgs ® leny + 1.s @ Heny + Hint OU
H;,,: décrit I'interaction entre les deux parties. Le but est alors de commréadomportement
dynamique du systéme total en utilisant les outils habituels de la mécanique qadatialyse
spectrale et théorie de la diffusion) [BFS, DG1, DG2, JP1, JP2, MMS].

A l'inverse, dans I'approche markovienne, on abandonne l'idée derdde systéme dans
son ensemble et on se concentre sur le petit systemeiquement, la philosophie étant que
I'environnement est trop compliqué a décrire (dans I'approche hamiltoajeseuls des envi-
ronnements trés simples tels que des champs libres ou des gaz idéauxrdediatmfermions
ont été traités avec succes), voir méme est tel que I'on n'a pas accég@uxations le concer-
nant. A la place, on considére uniqguement la dynamique effective dursyStgui est créée par
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cet environnement. L'évolution d& est alors gouvernée par une équation maitresse quantique
du type

dp . 1 * * *

T Llp) = —i[H, p] + 5 > (2LjpLj — LiLjp — pL;Ly).

J
Celle-ci engendre sur I'espace des état§ dm semi-groupe d’applications complétement posi-
tives et préservant la trace. Il y a en général deux facons d'whtea telle dynamique effective:
soit dans une certaine limite de la dynamique hamiltonienne du systéme total (comme la limite
de couplage faible de van Hove [Dal, Da2, DJ2, DF]), ou bien commelétagsultat de forces
stochastiques agissant stir(équations de Langevin quantique [HP]). Pour une introduction
plus compléte sur ce sujet, on pourra consulter [AJP].
Dans ces deux approches, les questions auxquelles on s'intérasse@endant similaires

et concernent le comportement a grand temps du systéeme: y a-t-il un €y invariant
(pourS ou pour le systéme total)? a-t-on convergence d’'un état initial vers ¢etédaant? a
quelle vitesse? quelles sont les propriétés de cet état invariant?

Les systémes en interactions répétées

La majeure partie de ce mémaoire, les Chapitres 1 et 2, est consacrée lassseparticuliére
de systémes ouverts qui est devenue récemment trés populaire, tarseadeanouvelles ap-
plications physiques que du fait de leur structure mathématique particulié&resyséeme en
interactions répétées (IR). Dans ces systémes, I'environnemenhettw® d'une suite de sous-
systemes indépendarfig, &, . .. Le petit systéme interagit avec; pendant un intervalle de
temps|0, 71 [, puis avecg, pendant un intervallér;, 7 + 72|, et ainsi de suite. Pendant qde
interagit avec le sous-systérgigles autres éléments de I'environnement évolue chacun indépen-
damment selon leur propre dynamique libre. L'évolution du systémedSotaf; + - - - est donc
déterminée par la suite de tempso, . . ., la dynamique propre de chacun dgsainsi que la
dynamique couplée de chaque paite- £,. On peut noter que, puisque I'environnement est
constitué d’une infinité de sous-systéme, il n’est pas nécessairerdfr@res derniers “grands”
afin d’avoir un gros environnement.

Limportance des systémes quantiques avec interactions répépétégmiditde vue théorique
aussi bien que pratique, est mise en évidence par des expérientesadtion matiére-lumiére
dans lesquelles des atomes interagissent avec des modes du champ éeetiigura quantifié.
Dans cette situation le “petit” systénsereprésente un (ou plusieurs) mode du champ dans une
cavité et I'environnement représente un faisceau d'atafpegui sont envoyés dans la cavité.
De tels “Masers a un atome” dans lesquels le faisceau est réglé de fegqua chaque instant
un seul atomeoit dans la cavité ont été réalisés en laboratoire [MWM, WVHW].

Dans les modéles en interactions répétées les plus simples, toutes les intesaariidden-
tiques (on parlera alors d’interaction répétées idéales). Plus précisé&hagues,, est une
copie d’'un méme sous-systerfier,, = 7, et les dynamiques de%, et des paires + &, ne
dépendent pas deet sont engendrées par des hamiltoniigs Hse. La structure particuliére
de systemes IR les placent alors a mi-chemin entre les approches hamiltagtierar&ovienne:
ils sont & la fois hamiltoniens (avec une hamiltonien dépendant du temps) eiearkn temps
discret (pour des tempsr la dynamique effective d§ est décrite par un semi-groupe discret
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d’'applications complétement positives, voir (7) ci-dessous). Ces mofiglasssent ainsi un
cadre intéressant pour développer notre compréhension des systérads.

Description mathématique des systémes IR
On décrit maintenant de fagon plus précise le cadre mathématique des syat@mimterac-
tions répétées, et en particulier on montre comment leur structure partiquéiemest d’obtenir
une dynamique markovienne en temps discret goapartir de la dynamique hamiltonienne du
systeme total.
Les différents éléments nécessaires pour décrire un systéme IR sont:
1. un espace de Hilbelits et un hamiltonierhs décrivant le petit systems “seul”,
2. des espaces de Hilbéyg, et des hamiltoniensg, décrivant les sous-sytemes,
3. une suite de temps d'interacti¢n, ), our, > 7 > 0 pour toutn et pour un certain. Le
tempsr,, repréente la durée de l'interaction enffet le sous-systemg,,
4. des opérateurs, décrivant les interactions entfeet les sous-systéemes.
L'espace de Hilbert décrivant le systeme IR est alors

b:=bs @ benv,  benv = (X) be,-

n>1

On notera également := 71 + - - - + 7,,. Pendant l'intervalle de temgs,_1, t,), le systémes
interagit avec lex-eéme sous-systéme, i.&,, et aucun autre. L'évolution compléte du systeme
est alors décrite par le hamiltonien

h(t)=hs+ Y he, + > Xn(t)vn,

n>1 n>1

ou x,, est la fonction caractéristique de l'intervallg_1,t,). On utilisera aussi les notations
suivantes:
hn=hs +he, + v, and hyi=hy+ > he,.
k#n

En particulierh(t) = h, pourt € [t, 1,t,). On a également omis les facteurs “identité”
triviaux, par exemplé, s devrait étrehs ® Tepy.

Etant donnés un état initialdu systéemeS au tempg = 0 (i.e. p est un opérateur positif de
classe trace suys avec tracd), et une suitép¢, ),, d’états initiaux pour les sous-systéntgs
I'état du systéme IR total aprésinteractions est alors donné par

tot (n) — eflTnhn . eflTlhl ps ® ®P€k elTlh1 . elTnhn'
E>1

p

On s’intéresse surtout au systedigvoir cependant la Section 1.3 pour des observables plus
générales), c'est-a-dire a la valeur moyenne d'observables du type

0 =05 Q) 1g,.

k>1
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On est donc intéressé pain) := Try, ., (p*°*(n)), la matrice densité réduite st Celle-ci est
définie comme étant I'unique état sfitel que, pour toute observbléks du systemes,

Ty (p(n)Os) = Try | p'(n) x | Os ® R) 1,
k>1

Pour obtenir I'étap(n) du systemeS aprésn interactions on prend donc la trace partielle suiv-
ante

p(n) — Trhcnv e~ iThn | o—iTih P ® Pe, elth | oiTnhn | 1)
k>1
Bien entendu le calcul ci-dessus est un peu formel. En effet, un prtahgoriel infini
d’espaces de Hilbert est défini via une suite stabilisante, i.e. une suitectiuxs(1),, ), avec
Y, € bg,. L'espace de Hilberb,,, est obtenu comme la complétion de I'espace vectoriel des
combinaisons linéaires finies d’éléments de la forme 1 ¢, OU ¢, € bg,, dn = 1y, EXCEPLE
pour un nombre fini d’indices, et pour la norme correspondant adugrscalaire

(®nPn, Ondn) = H {@n, ¢n>f)sn‘

n

En général, le produit tensoriel infig), -, pg, N'a alors pas de sens. Il n'est cependant
pas difficile de donner un sens a I'’équation (1): au tempsseuls lesn premiers éléments
de I'environnement ont déja joué un rble et on peut donc rempl@g1 pe, par péﬁ% =
Xi_, pe, et la trace partielle sur tout I'environnement par celle sur le produit texidoni

p(n) =Tr

env

n
e—iTnhn L e—i‘rlh1 (ﬂ ® ® pgk> eiTlhl . _eiTnhn] . (2)
k=1

Remarque. Une autre possibilité serait de définir le produit tensoriel infini “par raypa la
suite d’étatg p¢,, ),,”. Pour cela, on représente d’abord les états, comme des états vectoriels
avec vecteurs représentatifs, (en utilisant la représentation GNS), puis on consideére la suite
stabilisante(V,,),,. Cela conduit & la description “Liouvillienne” du systéme qui sera prééen
de facon plus détaillée dans la Section 1.1.

La structure trés particuliére des systémes avec interactions répétées geréécrirg(n)
d’une fagon beaucoup plus pratique. Les deux caractéristiquefyatiee de ces systémes sont:
1. Les différents sous-systémes de I'environment n’interagisserdipggement entre eux
(seulement vig), i.e. [hg, , he,] = 0 pour tousk # n,
2. Le systém interagit une et une seule fois avec chacun des sous-sységretsaavec un
seul a la fois, i.efhg, , hy,| = 0 pour tousk # n.
On obtient alors la décomposition suivante qui sert a isoler la dynamiqueadessystémes qui
n’interagissent pas a un instant donné

e—m’nhn . ,e—lTlhl — ur_:, % e—m’nhn . e—lTlhl % U:L_a (3)
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ou

1

u, = exp (—i Z(tn — tk)hgk> etu = exp <—iztk—1h5k —it, Z h5k>

k=1 k=2 k>n

sont les propagateurs au tempsdes sous-systemes apres leur interaction aves, respec-
tivement avant leur interaction. En insérant (3) dans (2) on obtient

n
e—imhn . e—inhl <p ® ® Pe, (tk—1)> ei7'1h1 L. eimhn] ’

k=1

p(n) =Tr @

env

OUpg, (tr_1) = e th-1hey po olte-1he, est'état duk-€me sous-systéme juste avant qu'il n’interagisse
avecS. Cette expression est bien entendu beaucoup plus simple si I'état jgjtiast invariant
sous la dynamique libre d®,, un état thermique par exemple, ce qui sera souvent le cas par la
suite.

Il est maintenant facile de voir que I'évolution deest markovienne: I'étgi(n) ne dépend
que dep(n — 1) et de lan-eéme interaction. Plus précisément, on a

p(n) = Ln(p(n —1)), 4)

ou
Ln(p) = Try,, |e” ™" p & pg, (tn-1) €™ . (5)

Definition 1. L'application £,, définie sui3' (hs) est appeléapplication de dynamique réduite
au tempsa.

N.B.: B!(hs) est I'espace des opérateurs de classe tracgssur

Les propriétés suivantes des applications de dynamique réduite décdindsiement de
leur définition.

Proposition 1. Une application de dynamique réduifeest une application contractante, com-
plétement positive et qui préserve la trace.

Une conséquence immédiate du fait gligréserve la trace est queest toujours valeur
propre de I'application dual€* (pour la dualitéB'(hs)/B(hs)) avec état propre I'opérateur
identite.

L'application£,, décrit la dynamique effective dgsous l'influence dw-éme sous-systéme.
Pour tout état initiap du systémes, (4) implique que

p(n) =LyoLn10---0Li(p) (6)

Dans le cas particulier d’'interactions idéales, et splessont invariants pour la dynamique
libre des€,,, on aL,, = L pour toutn et (6) s'écrit simplement

p(n) = L"(p). (7)
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L'application £ est le générateur d’un semi-groupe discret d’applications compléeterasit p
tives et préservant la trace sur I'espace des états. den d’autres termes, la structure partic-
uliére des systémes en interactions répétées conduit a une descrigaiivefie la dynamique
de S semblable a celle de I'approche markovienne, en partant de la descriptiniitdnienne
du systéme total et sans étre dans un quelcongue régime limite.

L'étude du comportement & temps long&ese réduit alors a I'analyse de I'application de
dynamique réduiteC définie par (5). On peut également noter que, dans le cds; ast de
dimension finie, le fait qué& préserve la trace entraine quest également valeur propre de
et il y a donc toujours au moins un état invariant lorsge= L. Par contre, lorsquis est de
dimension infinie peut avoir ou non un état invariant (cf Sections 2.1 et 2.2).

L'étude générale des systémes en interactions répétées fait I'objetghiti€H dans lequel
plusieurs situations seront considérées: interactions idéales dangitasnSe8, avec un alea
supplémentaire dans la Section 1.4, et lors§uest couplé a un réservoir additionnel dans la
Section 1.5. On illustrera les divers résultats a travers un exemple simpléadaestion 1.6.
Les résultats présentés dans ce chapitre proviennent des article$,[BIJM3, BIJM4].

Deux modéles spécifiques de systémes en interactions répétées semigzrdans le Chapitre
2. Dans la Section 2.1, on considere un modéle pour I'expérience duetMasn atome”
mentionnée ci-dessus, dans laquelle le syst&meprésente un mode du champ électromagné-
tique dans un cavité interagissant avec un faisceau d’atomes a 2 niiadaMr moment élec-
trique dipolaire et dans I'approximation des ondes tournantes (c’estidtbaien de Jaynes-
Cummings, voir I'équation (2.1). On étudie ici le probléme du retour a I'équililpeut-on
thermaliser un mode du champ dans une cavité au moyen d’atomes a 2 niveasixisrniers
sont intialement a I'équilibre thermique? Dans la Section 2.2 le petit systéme é&tairon
sans spin, dans I'approximation des liaisons fortes (i.e./%(#)), soumis & un champ élec-
trique constant, et qui va interagir avec une chaine d’atomes a 2 nigdaguilibre thermique.
Lorsque I'électron est seul, les oscillations de Bloch empéchent unritalgas’établir dans le
systéme et on montre que l'interaction avec cet environnement thermigpersagces oscil-
lations et conduisent a un courant stationnaire. Les résultats prégamgses deux sections
proviennent respectivement des articles [BP] et [BDP].

Systémes IR dans divers régimes limites

Dans tous les travaux décrits dans ce mémoire la seule limite considérée edesaenps
longs: tous les paramétres du modéle sont fixes et on s’intéresse aurtemgrt du systeme
lorsque le nombrex d’interactions tend vers l'infini. Mis & part ce régime de temps long, les
systeémes avec interactions répétées ont également été étudié dans la limitepdesoitinus,
c'est-a-dire lorsque le temps d’interactiortend vers zéro (avec un changement d’échelle ap-
proprié dans l'interaction) [AJ2, APa, Pel, Pe2], ainsi que dans la limhéuelle du couplage
faible [AJ1].

Le premier travail dans cette direction est [APa]. Les auteurs montrentigus la limite
des temps continus, et a température nulle (les sous-systgmamt supposés étre initiale-
ment dans un état pur), la dynamique effectiveleonverge vers un semi-groupe continu
d’applications complétement positives associé a une équation de Langewitiggie dans lequel
I'environnement est décrit & I'aide de bruits quantiques (a températiled.ritn particulier, ce
travail permet de “justifier” des équations du type Langevin comme étarindiéss continues
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de certaines évolutions hamiltoniennes. Ce travail a ensuite été étendiAdahay cas de la
température positive conduisant ainsi a des “bruits quantiques therrhiques

La limite des temps continus dans les systémes avec interactions répétéesregéaté
utilisée dans le contexte des mesures continues. Des expériencesgébaptigue quantique
[G-al], basées sur des mesures indirectes sur I'environnement, otrénfiémolution aléatoire
de I'état d'un systéme ouvert quantique et en particulier des sauts questiges modeéles cor-
respondants sont décrits par des équations différentielles stochastiopeléegquations de
Schrddinger stochastiquesi équations de Belavkjret leurs solutions desajectoires quan-
tigues Dans le cadre des interactions répétées l'idée est d'effectuer ungarses les sous-
systemeg,, juste apres leur interaction avec De tels systemes sont alors un analogue discret
des processus de mesure continue. Dans les travaux [Pel, Pe2lji’awontre que les proces-
sus a temps discret obtenus par des interactions répétées suivies desnsesuergent dans la
limite des temps continus vers des solutions d’équations de Schrodingdrasttigoes.

Finalement, la dynamique effective du petit systé$néans des modeéles avec interactions
répétées a également été étudiée dans certains régimes limites reliés a la limijd algeciaible
de van Hove, et dans lesquels non seulement le temps d’interaqbieut tendre vers zéro, mais
ol la constante de couplageentre également en jeu [AJ1]. Le résultat de telles limites est
une évolution effective markovienne en temps continu, gouvernée pgainsegénérateurs de
Lindblad dépendant de I'interaction et du régime limite considéré. En particldseauteurs
montrent que n'importe quel générateur de Lindblad peut étre obtentiradhan modéle simple
d’interactions répétées (les sous-systémes sont identiques et de dimferisjodans le régime
T—0etA=1/yT.

Hamiltoniens sur I'espace de Fock symmeétrique

Dans le troisiéme chapitre de ce mémoire on s’intéresse a des hamiltoniens linaajresira-
tiques sur I'espace de Fock symmeétrique (décrivant I'environnemeirjeeagissant éventuelle-
ment avec un petit systéme confiné. Dans ce chapitre on se place dansdfahamiltonienne
des systémes ouverts et on étudie les propriétés du hamiltonien du systémedstasultats
présentés proviennent des articles [BD1, BD2]. Formellement, les dizsses de hamiltoniens
auxquels on s’intéresse peuvent s'écrire sous la forme

H =Hs1+1® / h(k)a*(k)a(k)dk + /v(k) ® a*(k)dk + /v(k)* ® a(k)dk,
agissant suH = Hs ® ', (h) ouh = L2(R% C"), et

Hy; = /h(k:)a*(k)a(k)dk + % / (v(k, Ka*(k)a* (k') + v(k, k" )a(k)a(k'))dkdk' + c,
agissantsut{ = I', (h) ol = L?(K, dk) avec(K, dk) un espace mesuré. Les hamiltoniens du
type H; seront appelés hamiltoniens sigin-boson généralisg¢gs sont parfois appelés hamil-
toniens de Pauli-Fierz [DG1, DJ1, GGM, Ge]) et on les étudie dans la Se&xtiorhes hamil-

toniens du typef, seront eux appelés hamiltoniens Blegoliubovet étudiés dans la Section
3.2.
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Ces hamiltoniens sont utilisés en tant que versions simplifiées de hamiltonieraiapant
dans divers contextes en physique quantique telles que I'approximatiolaidépde la QED
non-relativiste. Dans les deux cas, notre objectif est d'étudier ces haiertsous les condi-
tions les plus générales possibles. Par exemple, I'opérateur d“interactsera souvent défini
uniquement au sens des formes. En ce qui concerne les hamiltonienm-t®spn général-
isés, on étend un résultat de type Théoréme HVZ concernant le spestrdiel et prouvé dans
[DG1] ainsi qu’un théoréme d’existence d'état fondamental obtens flaa], en considérant
des hypothéses plus générales. Pour les hamiltoniens de Bogoliubogeadtaterme quadra-
tique dans I"interaction”, donner un sens aux opérateurs de la féfgn@n tant qu'opérateurs
auto-adjoints) n’est déja pas si évident lorsque I'on considerey dessez généraux. Par ex-
emple, nous verrons que dans certaines situations il est nécessdim@ddiire un contre-terme
infini dans la définition dd,, c’est-a-dire que la constantesubit une renormalisation infinie.

Un peu de matrices aléatoires

Dans le Chapitre 4 on présente enfin deux résultats concernant les saké@amwires. Bien qu’a
priori pas directement reliées aux systemes ouverts quantiques cediggacaissent naturelle-
ment lorsque 'on étudie des systémes en interactions répétées dansexiecalétoire. Cet
alea peut avoir des origines diverses comme des temps d’interaction @gadeis états initiaux
aléatoires pour les sous-systérggqvia leur température par exemple), etc. Dans tous les cas,
chaque interaction est alors décrite par apglication de dynamique réduite aléatoifdw).
L'équation (6) montre que I'étude de la limite & temps long de la dynamique rédvienté
comprendre le produit infini d’applications aléatoi®gv) vérifiant certaines propriétés. Au
moins lorsque le petit systéme est de dimension finie cela correspond bigoraduit de ma-
trices aléatoires qui sera I'objet de la Section 4.1. Les résultats contéamanvergence de ces
produits de matrices aléatoires proviennent de I'article [BIM2].

Finalement, dans la Section 4.2 on présente brievement un autre résulieg matrices
aléatoires obtenu dans [BG] qui est cependant disjoint des autresixravésentés ici. Ce
résultat concerne l'invertibilité de grandes matrices alétoires dans le das oaefficients de
celles-ci sont des variables indépendantes mais pas nécessairemeguément distribuées.



Introduction

Open Systems

The general framework of most of the results presented in this thesis igftigten Quantum
Systems. By opposition with a closed/isolated system, a quantum sgsienalledopenwhen
it is in contact (interacts) with one or several other systems often called/oegs) or environ-
ment. A typical example of an open gquantum system is that of an atom interagtimghe
guantized electromagnetic field, but there are numerous example comingdrimuas branches
of physics such as solid state phyics, quantum optics, etc. They alsaedradic paradigms of
(non-)equilibrium quantum statistical mechanics.

Although such a system could be considered as a bigger bipartite (vakpadite) closed
system, the various parts are considered on a different level. Firsthoikd think of the system
S as much smaller than its environment, e.g. finite versus infinite number of dexfrieeedom.
Second, since the environment is usually very big, it is often very harettorgcise information
on it, and one is rather interested in understanding the effects of this hugeranent on the
dynamics of the small syste& like dissipation phenomena.

Two distinct approaches to the study of open systems have been usediterttiare, both
in mathematics and in physics: thkamiltonianapproach and thilarkovianapproach.

The Hamiltonian approach is more fundamental in the sense that one csrsicemplete
description of the microscopic dynamics of the entire system: small systenirérement. Both
parts are described by their state spageandH.,, and Hamiltoniang{s and H.,,. The cou-
pled system is then described by the total state spaee? s ® Heny @and a Hamiltonian of the
form H = Hs ® leny + s ® Heny + Hing WhereH;,,, describes the interaction between the two
parts. The goal is then to understand the behaviour of the total systesnthiecdynamics gen-
erated byH, using the traditional tools of quantum mechanics (spectral analysis attdratg
theory), see e.g. [BFS, DG1, DG2, JP1, JP2, MMS].

On the other hand, in the markovian approach, one gives up the ideaaflieg the en-
tire system and concentrates on the small sysfeanly. The philosophy behind this is that
the environment is too complicated to describe (in the Hamiltonian approach emnlysinple
environment, like free fields or ideal bose and fermi gases, have bheeesfully considered) or
even one does not have access to it. Instead, one considers onljetttevefdynamics on the
systemsS which is induced by the environment. This evolution is governed by a quamtaster

13
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equation of the form

do _

3 = L) =il ol + 5 > (LjpLj = LiLjp — pLiL;),

J

which defines a semi-group of completely positive, trace preserving nrapiseostate space
of S. There are two ways to get such an effective dynamics: either as agstiaiit of the
microscopic (Hamiltonian) dynamics of the coupled system (e.g. the van Heak @oupling
limit [Dal, Da2, DJ2, DF]), or as the result of driving the systéhwith stochastic forces
(quantum Langevin equation [HP]). For a more complete introduction to thjiecuwe refer to
[AJP].

In both approaches the questions one is interested in are however sindlaomarern the
large time behaviour of the system: is there a (unigue) invariant statg (fothe entire system)?
do initial states converge towards this invariant state? at what speedangtibe properties of
the invariant state?

Repeated interaction systems

The main part of this thesis, Chapters 1 and 2, will be devoted to a partidaks of open
systems which, motivated by several new physical applications as well #wel attractive
mathematical structure, has recently become very popular in the literatuss-tatled repeated
interaction (RI) systems. In Rl systems the environment consists in a seEakmdependent
subsystemg’, &, ... The small systens interacts with€; during some time intervdD, 7 [,
then with&, during an interva[r, 71 + 72, etc. WhileS interacts withe,,, the other elements
of the environment evolve freely according to their intrinsic (uncouplgwachics. Thus, the
evolution of the joint syster§ + &, + - - - is completely determined by the sequengcers, . . .,
the individual dynamics of eacf, and the coupled dynamics of each pdi# &,,. Note that
since the environment consists in an infinite number of subsystems one atoesed to take
each of them extended in order to have a “large” environment.

The theoretical and practical importance of repeated interaction quapstenss is exempli-
fied by systems of radiation-matter coupling, where atoms interact with modes qtiantized
electromagnetic field. In this setting, the syst8rdescribes one or several modes of the field in
a cavity and the environment represents a beam of afprtizat are injected into the cavity. So-
called “One-Atom Masers”, where the beam is tuned in such a way thachtgven moment
a single atomis inside a microwave cavity have been experimentally realized in laboratories
[MWM, WVHW].

In the simplest RI models all the interactions are identical (we shall speakalfiepeated
interactions). Namely, ead, is a copy of som¢&, 7,, = 7, and the dynamics &, andS + &,
are independent of, generated by some Hamiltoniafs, Hse. The particular structure of R
systems then makes them at the same time Hamiltonian (with a time-dependent Hamiltonian)
and Markovian (for discrete timesr, the effective dynamics af is described by a discrete
semigroup of completely positive maps, see (15)). For that reason, ligeebthat these models
provide a useful framework to develop our understanding of varispe@s of the quantum
statistical mechanics of open systems.
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Mathematical description of Rl systems

We now describe more precisely the mathematical setup of repeated intesystiems, and
explain how their particular structure allows one to derive a Markoviaoyelis-time, dynamics
for S from the Hamiltonian dynamics of the entire system.

The various elements needed to describe a RI system are:

1. the Hilbert spacés and Hamiltoniarhs describing the small systes “alone”,

2. Hilbert space§¢, and Hamiltoniangg, describing the various subsyteifis

3. a sequence of duration times,),, wherer,, > 7 > 0 for anyn and some given. The

time 7,, is the amount of time the systefinteracts with the subsyte#),,

4. operators,, describing the interactions betweSrand the subsystends,.

The Hilbert space describing the RI system is then

h = hS ® henv; henv = ® bc‘)n-
n>1
We also denote, := 71 + - - - + 7,,. During the time intervalt,,_1, t,,), the systens interacts
with then-th subsystem, i.€£,,, and with none of the others. The full evolution of the system is
thus described by the Hamiltonian

h(t) =hs+ > he, + > Xn(t)vn, (8)
n>1 n>1

where x,, is the characteristic function of the interv@a),_;,¢,). We will use the following
notation:

hn:=hs +he, + v, and hy:=hy+ > he,.

k#n
Note thath(t) = h,, whent [tn—1,tn). We have also omitted trivial factoiks e.g.hs should
behs ® leny.
Given any initial state for the systen® at timet = 0 (i.e. p is a positive trace class operator

on hs with trace one), and a sequerge, ),, of initial states for the subsysterfis, the state of
the total repeated interaction system afteénteractions is thus given by

ptot (n) = efiTnhn . efiTlhl oS ® ® pgk ei‘l’lhl . eiTnhn'
k>1

We are mainly interested in the systéhgsee however Section 1.3 for more general observables),
i.e. in expectation values of observables of the form

0 =0s® () I,

k>1

Therefore, we are rather interestegiim) := Try_,. (p*°*(n)), the reduced density matrix ¢h
It is defined as the unique state pg such that, for any observabigs on S,

Tryg (p(n)Os) = Try | p(n) x | Os ® X)L,
E>1
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To obtain the state(n) of the systemS after these: interactions we thus take the following
partial trace:

p(n) — Trhenv e*iTnhn . .efi"rlhl P ® P, eiTlhl . eiTnhn ) (9)
E>1

Of course, the above calculation is a little bit formal. Indeed, in order to eeficountable
tensor product of Hilbert spaces one should specify a stabilizing seguee. a sequence of
vectors(i,, ), Wherey,, € be, . The Hilbert spacé.,, is then obtained by taking the completion
of the vector space of finite linear combinations of the forps. | ¢,,, whereg,, € be, , ¢, = ¥y,
except for finitely many indices, in the norm induced by the inner product

<®n§0na ®n¢n> = H (‘Pn’ ¢n>f)gn'

n

In general, the infinite tensor produ@k21 pe, then does not make sense. It is however easy
to make sense of the formal expression (9). Indeed, at tjmenly then first elements of

the environment have played a role so that we can reg#dge, ps, by péﬁl = Q1 Pe:
and the partial trace over the environment by the partial trace over the timiser product

env. ®k: 1[]6%!'9

p(n) =Tr @

e—iTniLn . —17—1h1 (P ® ® p€k> ir1hy . lTnhn] . (10)
Remark. Another possibility would be to define the infinite tensor product “with resfec
the sequence of statése, ),,”. For that purpose one should first represent the states as
vector states with vectob,, (using the GNS representation), and then consider the stabilizing
sequencéV¥,,),. This then leads to the “Liouvillian” description of the RI system which will be
presented in details in Section 1.1.

The very particular structure of the repeated interaction systems allowsewrite p(n) in
a much more convenient way. The two main characteristics of these sys&ems ar
1. The various subsystems of the environment do not interact directly (e S), i.e
[he,, he,] = 0 for anyk # n,
2. The systens interacts only once with each subsystém and with only one at a time,
i.e. [he, , hy] = 0foranyk # n.
We therefore have the following decomposition which serves to isolate thandga of the
subsystems which do not interact at a given time

e*lTnhn . _eflf1h1 _ u; % e*lTnhn . _eflTlhl > UI7 (11)

where

n—l
U, —exp( i hgk> andu;” = exp <—1Ztk 1he, — ity Zh5k>

k=1 k=2 k>n



CONTENTS 17

are respectivley the propagators at titneof the subsystems;, after their interaction witls,
and the one before their interaction. Inserting (11) into (10) we get

n
efi‘rnhn . efi‘rlh1 (P ® ® pe, (tk1)> eiT1h1 . ei‘rnhn] 7

k=1

p(n) ="Tr o

env

wherepg, (t,_1) = e "-1her pe olfe-1hey js the state of thé-th subsytem when it begins to
interact withS. Of course, this formula is simpler jfg, is invariant under the free dynamics of
&, e.g. athermal state, which will often be the case.

It is now easy to see that the evolution®fis Markovian: the statg(n) only depends on
the staten(n — 1) and then-th interaction. More precisely, one can write

p(n) = £7L(p(n - 1))a (12)

where . _
Ln(p) = Trye, [€77M p@ pe, (tn-1) €™ | (13)

Definition 2. The mapZ,,, from B! (hs) to itself, is called theeduced dynamics mgRDM) at
timen.

Note: B!(hs) denotes the space of trace class operatolgson

The following properties of a reduced dynamics map follow directly from ifsdin.
Proposition 2. A RDM L is a contracting, completely positive and trace preserving map.

As a corollary of the trace preserving propeitys always an eigenvalue of the dual mép
(for the B (hs)/B(hs) duality) with eigenstate the identity operator.

The map.,, describes the effective evolution Sfunder the influence of the-th subsystem.
Using (12), we therefore have for any initial statef the small systen$

p(n)=LyoLy_10---0Li(p). (14)

In the particular case of ideal interactions, and if tie are invariant for the dynamics of
&n, we then havel,, = L for all n and (14) becomes simply

p(n) = L7(p). (15)

The map. is the discrete-time generator of a semi-group of completely positive, trasermpr
ing maps on the state space&®f In other words, the particular structure of Rl systems leads
to an effective description af as in the markovian approach, starting from an Hamiltonian
description and without any further scaling limit.

The study of the large time behaviour Sfreduces to the analysis of the RDMdefined
in (13). Note that, in the case whelg has finite dimension, the fact thAtis trace preserving
implies thatl is also an eigenvalue @ so that there is always an invariant state wiign= L.
However, ifhs has infinite dimension; may have an invariant state or not (see Sections 2.1 and
2.2).
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The general analysis of repeated interaction systems will be the purpGsapter 1 where
various situations will be considered: ideal interactions in Section 1.3,endmne randomness
is added in Section 1.4, and whéns connected to an additional reservoir in Section 1.5. We
also present an instructive and illustrative (toy) example in Section 1.6.réudts presented
in this chapter are taken from the articles [BIJM1, BIM3, BIJM4]. Two morecete models
of repeated interaction systems will then be presented in Chapter 2. Inrs2ctiove consider
a mathematical model for the “One-Atom Maser” experiment we have mentiovieete the
small systen® is one mode of the quantized electromagnetic field in a cavity and interacts with a
beam of 2-level atoms through its electric dipole moment and in the rotating wavexamation
(this is the well-known Jaynes-Cummings Hamiltonian, cf equation (2.1), ancbn&der the
problem of thermal relaxation: is it possible to thermalize a mode of a QED cayitydans of
2-level atoms if the latter are initially at thermal equilibrium? In Section 2.2 the smakisys
consists in a spinless electron in the single band tight-binding approximatidsusiect to an
homogeneous static electric field, which will interact with a chain of two-letggha in thermal
equilibrium. For the electron alone Bloch oscillations prevent a current fiseing set up in
the system and we show that the interaction with this thermal environment wpkesgp the
Bloch oscillations and lead to a steady current. The results presentedénltesections come
respectively from the articles [BP] and [BDP].

RI systems in various limiting regimes

In all the works described in this thesis, the only limit which is considered is the tame
limit. In other words, all the parameters are fixed and we consider a largéera of inter-
actions, eventually infinite. Besides this usual large time regime, repeateakctiarquantum
systems have also been used in the continuous time limit, i.e. when the interactiangimae
to zero (with approriate rescaling in the interaction Hamiltonian) [AJ2, AP&, Pe2], and also
in the usual weak coupling limit [AJ1].

The first work in this direction is [APa]. It is shown than in the continuous time limit,
and at zero temperature (the subsysteinsare assumed to be initially in a pure state), the
effective dynamics of converges towards a continuous semigroup of completely positive maps
associated to a quantum Langevin equation and where the environmeastitdd by means
of quantum noises (at zero temperature). In particular, it justifies hamdygpe equations as
continuous limits of certain Hamiltonian evolution. This work has been furthenebed in
[AJ2] to the positive temperature situation and leading to “thermal quanturasiois

The continuous limit of repeated interaction systems have also been usedriantiesvork
of continuous measurement. Some recent experiments in quantum optitjs 4@dabased on
an indirect measurement on the environment, have shown the randonti@valtithe state
of an open quantum system and in particular quantum jumps. The condisganodels are
described by stochastic differential equations usually cadethastic Schrodinger equations
or Belavkin equationsand their solutiongjuantum trajectoriesin the framework of repeated
interactions, the idea is to make measurements on the subsy§ieight after their interaction
with §. Such systems are then a discrete analogue of the continuous measyreroedtrre. It
as been shown in [Pel, Pe2] that the discrete-time processes dessritegmbated interactions
and measurement converge in the continuous time limit to solutions of Stochdsta®ger
equations.
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Finally, the effective evolution of the small systefrin repeated interaction models has also
been investigated in certain regimes related to the van Hove weak coupling lonitlere not
only the interaction time can go to zero but the coupling constaris involved as well [AJ1].
The result is a continuous Markovian effective evolution, driven byage Lindblad generators
depending on the interaction and on the asymptotic regimes consideredtidnlpa, it is shown
that any Lindblad generator can be derived from a simple (the subsyaternagentical and finite
dimensional) repeated interaction system in the regime 0 and\ = 1/./7.

Hamiltonians on the bosonic Fock space

In the third Chapter of this thesis we consider linear or quadratic Hamiltoniatiseobosonic
Fock space (describing the environment), and possibly interacting withfamed small system.
In this chapter, we stick to the Hamiltonian approach of open quantum systehssualy prop-
erties of the Hamiltonian of the full system. The results presented here comalie articles
[BD1, BD2]. Formally, the two classes of Hamiltonians we consider can ieewias:

Hi=Hs®1+1® / h(k)a* (k)a(k)dk + /v(kz) ® a* (k)dk + /v(k)* ® a(k)dk,
acting onH = Hs ® I', (h) whereh = L*(R%; C"), and
H, = /h(k‘)a*(k‘)a(k)dk + % / (v(k, Ka*(k)a*(K') + v(k, k" )a(k)a(k'))dkdk' + c,

acting onH = ', (h) whereh = L*(K, dk) for some measure spa¢k, dk). Hamiltonians of
the typeH; will be calledgeneralized spin-bosdAamiltonians (they are also sometimes called
Pauli-Fierz Hamiltonians [DG1, DJ1, GGM, Ge]) and are studied in Sectiant&afniltonians

of the typeH> will be calledBogoliubovHamiltonians and considered in Section 3.2.

These Hamiltonians are used as simplified versions of Hamiltonians arisingdus&on-
texts of quantum physics (the dipole approximation of non-relativistic QED tisi® form). In
both cases, our goal will be to analyze these Hamiltonians under as bemddions as possi-
ble. For example, the “coupling” operatarsvill often be defined only as unbounded quadratic
forms. For the generalized spin-boson Hamiltonians, we extend the H\&&gorem of [DG1]
about the essential spectrum and the theorem about the existenceoninal gtate from [Ge]
to a larger class of Hamiltonians. For Bogoliubov Hamiltonians, due to the gtiaterms in
the “interaction part”, already giving a sense to operators of the fipnis not so obvious if
we allow for general’s. For example, we shall see that there are situations where one needs to
introduce an infinite counterterm in the definitionf#$, i.e. the constant undergoes an infinite
renormalization.

A little bit of random matrices

In Chapter 4 we finally present two results concerning random matridésough a priori not
directly related to open quantum systems they appear naturally when studpieated inter-
action systems in a random context. This randomness can have varioins dikg random
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interaction times, random initial states of the subsystégm@hrough a random temperature for
example), etc. In any case, each interaction is then describeddndam reduced dynamics
mapL(w). From (14), one can see that the study of the large time limit for the redyceairdcs
amounts to understand the infinite product of random mpsg satisfying certain properties.
At least when the small system is finite dimensional, this indeed correspordprtmluct of
random matrices and will be the purpose of Section 4.1. The results cimg#ne convergence
of products of random matrices come from the article [BIJM2].

Finally, in Section 4.2 we briefly present another result about randomaoasiwbtained in
[BG] which is however disconnected from the other works presenteal Adis result concerns
the singularity of large random matrices in the case where its entries areeimikrg but not
necessarily identically distributed.



Chapter 1

Repeated interaction systems in
guantum mechanics

We start this chapter by giving another way to describe Rl systems, udinguaillian” formal-
ism. We will start from the standard algebrdi¢ description of quantum statistical mechanics
and then explain how to rewrite things in a Hilbert space setting. This formaliirnenmpor-
tant when dealing with leaky RIS (when an additional reservoir is addedlso allows one to
consider rather general subsystefnsf the environment (see the examples in [BIM1, BJM3])).

Contrary to the usual context of open systems, in Rl systems the total Hamilierf@iece-
wise constant) time-dependent as we can see from (8). Hence thg ehdng full system is
not necessarily constant. It is constant during each interaction (vitvetetal Hamiltonian is
constant) but we may have energy changes when one switches frorteeaciion to the next
one. In other words, the switch from one interaction to the other may regoire external
work. In Section 1.2 we show how to define an “external work” obdglevaWe also consider
entropy production in RI systems and relate it to the external work.

In Sections 1.3 to 1.5 we then analyze general Rl systems in various coidesisor iden-
tical) interactions in Section 1.3, where we add some randomness in Sectiarddtla some
additional leak in Section 1.5. Unless explicitly mentioned, we will work in this Litian
formalism and we assume thé&its a finite dimensional system, i.éim(hs) < +oco. Finally in
Section 1.6 we analyze in detail a simple concrete (though instructive) exa@tpler examples
may be found in [BIJM1, BIJM3, BIJM4].

1.1 Liouvillian description of Rl systems
In this section we give an alternative description of Rl systems using thadgegof algebraic
guantum statistical mechanics, and starting fromdtie dynamical system formalism. There

are several reason for that:

1. This allows for more general systems, e.g. take the subsystetade thermal reservoirs
described by infinitely extended Fermi gas.

21
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2. Include an extra-reservoiR with which S will interact (leaky RIS) and get a unified
description of the full model.

3. Even if it is not our main concern, show how to construct the full systeahiding the
infinite tensor product.

We first briefly recall some basic concepts of algebraic quantum statisteethanics that
we need here. We refer to e.g. [BR, P] for a more complete introduction teubject. A
C*- dynamical system is a paj®l, o') where2l is a C*- algebra (describing the observables
of the physical system under consideration) ang o' is a strongly continuous group ef
automorphisms ofl (describing the evolution of the observables). A state of the system is
described by a positive linear functionabn 2l satisfyinge(1) = 1. Following [JP2], a triple
(2, o, 0), wheregp is an invariant state (i.ea o ol = p), is called a quantum dynamical system.
As an example, if a quantum system is described in the Hamiltonian formalismilyeattspace
‘H, HamiltonianH and density matrixp, then the corresponding quantum dynamical system is
the triple(B(H), o, o) wherea! (A) = e Ae~" andp(A) = Tr(pA).

Each componentt = S, &, of the RI system will be described by a quantum dynamical
system(, af#, o4). The “reference” states,. determine the macroscopic properties of the
systems, e.g. they are KMS states at some inverse tempegtatue also assume that they are
faithful states, i.e. for anyl € 2, o4 (A*A) = 0 = A = 0 (this would correspond tp > 0).

To analyze the (time) asymptotic behaviour of the system, we will use a spappadach.
For that purpose, it is convenient to have a “Hilbert space descriptibitfie system. Such
a description is easy to obtain via the GNS-representatithy., 74, ) of the algebragl.,
associated to the stateg. Since thep, are faithful, ther,. are injections and we can identify
2, andmy(2x) (we will therefore simply writeA for w(A)). We setty, = 7x(Ax)” C
B(H4), where” denotes the double commutant. Thg, form the von Neumann algebras of
observables. Finally, by construction the representative vedtgrare cyclic fordt, and we
assume that they are also seperating vector¥fgri.e. AV, =0 = A=0foranyA € My
(note that since. is faithful, this is automatic whed € 7 (4)). Typically, the¥. describe
the equilibrium states at some fixed temperatlize> 0.

The free dynamicm;ﬁéﬁ of each constituent is implemented in the GNS-representation by
self-adjoint operatorg. called Liouvillians, i.e. the Heisenberg evolution of an observabte
M, attimet is given bye™ # Ae™ """+ . In other words we havey (o, (A)) = e #my (A)e "+,
Since thepy were invariant states, one can also chose the Liouville operdtgrso that
Ly V., =0 (actually such ard. is unique).

As an illustration of the above formalism, let's see how all this work for finiteesys.
Consider a quantum system described by the Hilbert spage C™, the Hamiltonianh and
the invariant state = ) p;|¢;)(¢;| where{«;} is an orthonormal basis of eigenvectors of
h. The corresponding quantum dynamical system is described by thealgebbservables
2A = M,(C), the dynamicsx!(A) = e Ae " and stateo(A) = Tr(pA). In the GNS
representation, the Hilbert space, the observable algebra and thdlleimperator are then

We recall that the GNS (Gelfand-Naimark-Segal) representation8f-aalgebra2l associated to a stateis a
triple (H, m, ¥) where? is a Hilbert spacer ax- algebra morphism fror to B(#), and¥ a unit vector i such
that{m(A)¥, A € A} isdense itH ando(A) = (¥, 7(A)¥) forany A € 2.
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given by
H=h®Hb, M= B(h) @1, L=h@1-1®h,

and the representative vectérby ¥ = > /p;¢; ® ;. (The morphismr is defined as
m(A)=A®1.)

Each component of the RI system is thus now described by a von Neungebraa (of
observables), acting on the Hilbert spac#/y, a self-adjoint operatof.. on H. which
implements the dynamics and a unit vectog € H4 which represents some reference invariant
state. The Hilbert spacK.,, for the environment is then the infinite tensor product of factors
e, , taken with respect to the stabilizing seque(¥g, ),,. The vectoq,, = ®,>1 V¢, is the
reference vector for the environment, and the algebra of observahlgsof the environment
is the von Neumann algebfal.,,, = ®,>1M¢, acting on#.,,, which is obtained by taking
the weak closure of finite linear combinations of operators.; A,,, whereA4, € Mg, and
Ay = 1y, except for finitely many indices.

In summary, the non-interacting system is described by a von Neumanmatijeb 9is ®
Menv, acting on the Hilbert spack = Hs ® Henv, and its dynamics is generated by the (free)
Liouvillian

Lo=Ls+)» Lg,.

n>1

The operators governing the couplings betwSeand¢&,, are given by operators
Vi € Ms @ Mg,

(If the system is initially given in the Hamiltonian formalism, the€p = s ® ¢, (v,).) The
evolution of the interacting system is thus generated by the Liouvillian

L) = Lo+ 3 al®)Va
n>1
In the same way as for the Hamiltonian description, we will denote

Ly:=Ls+Le, + Vo, and Ly=Ln,+ Y Le,
k#n

sothatL(t) = L,, whent € [t,_1,t,). We will also denote by/ (¢, 0) the associated propagator,
i.e. fort € [t,,t,+1) ONe has

U(t, 0) — e_i(t_t7l)Ln+1e_i7'7an . e_iTILl.

Finally we denote by
aky(A) == U(t,0)*AU(t,0)

the evolution of an observablé € 91 at timet.

As in the Hamiltonian description, we now explain how to reduce the analysigeteation
values of observables @hto the product of “Reduced Dynamics Operators” acting#nonly.
In order not to muddle the essence of the argument, let us assume that thestiaieof the
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entire system is given by the vectdy = U5 ® V., (See [BIM1, BIM3] for more details). If
As € Ms we thus want to calculate

<AS>(n) = <\Il07 a%I(AS & ]lenv)\Ij0> (11)
— <\I’0, eiTnL" . eiTlLl AS ® ]lenv e*iTlLl . .efiTnLn\Ij0>.

The first step consists in the following decomposition which serves to isolatéytiamics
of the elementg which do not interact at a given time, and which is the equivalent of (11):

e—lTnLn L e—1T1L1 — U”;le—lTLn L. e—l’T‘L1 UT—L&—’

where

n—1 n
U, = exp (—iZ(tn - tk)Lgk) . Ul =exp (—iZtlegk —itn Y L5k> :
k=1 k=2

k>n

One easily sees that v, = ¢ and that/,, commutes withAs ® 1y, SO that (1.1) can be
written as

<AS>(n) — <‘I]07 eiTlLl . eiTnLnAS ® ]lenv e—iTnLn . e_iTlLl\IJ0>, (12)

The second step is to replace, for all the LiouvilleanL,, by another (non selfadjoint)
generatork,, of the interacting dynamics, called a C-Liouville operator, which satisfies the
following additional property:

K, Vs® \I/gn =0, (13)

i.e. it “kills” the reference vector. The C-Liouville operator has been thiced in [JP2] to
study non-equilibrium steady states (NESS).
Remark. For the existence of such a generator, we refer to e.g. [JP2]. Onalsamget an
explicit expression for it in terms of the Liouvillean and the modular data of #ie(fts ®
Me,, Vs ® \I/gn) [AJP, BR, JP2].

Since the operatork,, are also generators of the dynamics, and using (1.3), (1.2) becomes

(As)(n) = (Wg, eMEL .. ol™En (46 @ Topy ) W), (1.4)

The last step is to use the independance of the various elements of theneresitcand to
rewrite (1.4) in terms of a product of “reduced dynamics operatbfs. Let

P:= ]lHS ® |\I]env><\ljenvy (1.5)

denote the orthogonal projection oty ® CV.,, = Hs. If Bis an operator acting oH then
we identify PB P as an operator acting dis. Note thatP¥, = ¥, hence

<A5>(n) = <\Il07 PeiTlKl oo 'eiTnKnP(AS X ]lenv)\II0>.
The structure of RI systems gives

Pl B oIk p — (PelTi K1 Py s (PeiK2p) i L. x (Pel™ i P
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(this is nothing but the Markov property). Hence, introducilg := Pel™%i P (considered as
an operator acting oK.s), we finally get

(As)(n) = (¥s, My --- M, AsVs). (1.6)

We have thus reduced the analysis to the one of the product of the agévato- - M,,.

At first sight, and despite the fact that the operafdisgive the desired reduction procedure,
their definition may look quite obscure. Actually they are nothing but the GNSare of the
dual £} of the RDM’s L,, as we shall now explain, see (1.7). We suppose that the Rl system
is given in the Hamiltonian formalism. Let, B € As = B(hs). We consider the quantity
(rs(B)¥s, Mms(A)¥s) (we drop the index to simplify notation). One can then write

(ms(B) @ 1 Vs @ Wepy, eiTKﬂ'S(A) RUAVs @ Vepy)
(T(BRDVs ® Uepy, e TEm(A@ N)e ™ Ws @ Uy )
(s @ Uepy, m(B* @ M71(e™ A® Le ™) Ws @ Wepy)

= Tr (ps ® Penv X B* @ 1 x ™ A® ]le_iTh)

(rs(B)¥s, Mms(A)¥s)

= Tr <pr* ® Peny X e A® lle_iTh>
— Tr(psBLY(A))
(Vs,ms(B*L*(A))¥s)

= (ns(B)¥s,ms(L*(A))Ts).

SinceVg is a cyclic vector this proves that, for adye s,
M WS(A)\IIS — Fg(ﬁ*(A))\I/S. (1.7)
Of course, the properties of a RDElimmediately translate into properties bf

Proposition 1.1. The operator) is a contraction on the Banach spa€e= {AV¥s | A € As}
endowed with the nori|¢||| = |||A¥s]|| := ||Al|. Moreoverl is an eigenvalue foi/ with
corresponding eigenvectdrs.

These two properties correspond respectively to the contracting aredgraserving prop-
erties of £. Note also that when the small system has finite dimension the BanachGjmce
simply Hs.

1.2 External work and entropy production in Rl systems

External work.

As already mentioned, since the total Hamiltonian/Liouvillian of a repeated ini@nagys-
tem is time-dependent, the total energy is not necessarily constant: to switth interaction
to the other may require some external work. To define the correspoteliteynal work” ob-
servable, we first come back to the usual Hamiltonian formalism described inttioduction.
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Since the total system is infinite (there are infinitely many subsystgsthe total energy
makes no sense. However, energy variation does. Formally, the totgyextdimet is simply

u(t,0)*h(t)u(t,0),
whereu(t, 0) is the propagator between timeandt, i.e. if t € [t,, t,+1) then
u(t,0) = e it=tn)hny1 g—itahn  o—imih1
The change of energy between timand timet’ is therefore
AE(t,t) = u(t',0)*h(t"u(t',0) — u(t, 0)*h(t)u(t,0).
Now, fort,,_1 <t < t, <t <tp41,Iitis easy to see that
AEt) = u(tn, 0)* (vpt1 — vn)u(tn, 0) =: w(n).

The observablev(n) is the work observable at timg,. If S is initially in the statep, one
therefore has

0E(n) = Try(p® Q) pe, x w(n)) = Try(p""(n) X (Up41 — vn))
k>1
= Trosene, ,, [P(1) @ peoy(tn) vnr1] (1.8)

7Trh$®h€n [p(n - 1) ® pgn (tnfl) eiTnhnvne_iTnh7z:| ,

and the mean work per time unit, i.e. the power delivered to the system, is tieefiéfbexists),

1 n
AW := lim — > SE(k).
k=1

n—00 ty,

When turning to the Liouvillian description, it is now natural to define the wdrkepvable
as
W(n) = W(w(n)) - U(tnv 0)* (Vn—H - Vn) U(tnv 0) = Q%I(VR-FI - Vn) (19)

If o is the initial state of the (entire) system, the power delivered to the system éddtee(if it
exists)

n

AW = Tim =3 o(W(n)). (1.10)

n—oo t,, —

Entropy production
If o and g, are two normal stat@sn 9, the relative entropy of Araki of the statewith
respect tag is denoted byEnt(g|gp)¢. We here adopt the same convention as in [BR, JP2], so

PA statep on a von Neumann algebfa is normal if it is c-weakly continuous
“For finite systems, and i§ and go are given by density matricgs and po respectively, therEnt(o|oo) =
—Tr(plog p — plog po).
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thatEnt(g|op) < 0. The reference stat@ will naturally be the vector state it determined
by the vectorly = Us ® Uepy.
We are interested in the mean entropy production per time unit, i.e.

1 1 tn
AS = lim —-= [Ent(o 0 afloo) —~ Bnt(eloo)]
and its relation to the external work. (Note that since the relative entromgetive, the entropy
production is indeed a positive quantity.)

Remark 1.1. For a thermodynamic interpretation of the entropy and its relation to the total
work, when we will deal with entropy we will always assume that all theeefar stateg.,. are
(B, a‘;&)—KMS states for some inverse temperatutgs

The analysis of the entropy production relies on the so-catepy production formula
[JP3] (see 1.11) which we recall here for the sake of completenesssideo a quantum dy-
namical systenf2l, o!,w). We moreover assume thatis a(—1, 0%, )-KMS state for somé&*-
dynamicss}, with generatoi,,. LetV € Dom(é,) and consider the perturbed dynamics
defined in the natural way:

ol (A) = at<A)+Zin/0 dtl/oldt2-~~/0n_ldtn[at"(V),[--~[atl(V),A]--~],

n>1

(if &4 is the generator of’, the one ofx!, is d,, + i[V, -]). Then for any state:

t
Ent(n o ol |w) — Ent(n|w) = —/0 1o aj (0,(V))ds. (1.11)

In the particular case of a composite syst@n= @, A, anda’ = ®;, ) where the reference
statew is of the formw = ®; wj;, and where thev;, are (8, o} )-KMS states, one can take
o' = @, a;, "', In the GNS-representation, if the, are implemented by Liouvilliang;, then
ot is generated by, = — Z B Ly, so that,, (V') becomes-i Z BilLi, V1.

k k

In our RI setting (1.11) translates as follows:

Ent(0 o af|00) — Ent(e|eo)

[Be0 (afi(Vi) = afi (Vo) + (e, — Bs)e (affi(Ls) — afi* (Ls))]

NE

i

1

= =) Beo W)+ Breo (affy(Vir) — afiy ' (V) (112)
k=1 k=1

3

+ > (Be, — Bs)e (aif(Ls) — agi ' (Ls) )
k=1
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Note thatLs is a priori not an observabldg ¢ M) andak,(Ls) neither. However the dif-
ferencesi (Ls)—ay ' (Ls) are observables. This follows from the fact thiat“x L Lk —
Ls € Ms @ Mg, , which in turn is proven by noting that

. . Tk . . Tk, .
ek Lge TRl — [g = / ek [iLy, Lgle ™ rdt = / [V, Lgle " Hrdt,
0 0

where[iV}, Ls] = —%eitL‘SVkefitL‘S li—0 € Ms ® Me, .

1.3 lIdeal RI systems

We start our analysis of RI systems with the simplest “ideal” case of identitzbictions, i.e.

&, =&, m = 7, etc. In this case, the reduced dynamics operatfygio not depend on and

we are essentially led to the study of powerd6f SinceM is a contraction ofi{ s for the norm
defined in Proposition 1.1 (recall that throughout this chagtés a finite system so that the
Banach spacé on which M is a contraction is the full of{s), its spectrum lies in the complex
unit disk. Moreover, sincé is an eigenvalue fol/, it is also an eigenvalue fav/*. The idea is

that M* is the GNS version of the RDM. Hence this means that the system possesses at least
one invariant state which is therefore a natural candidate for the limiting $tdite system. The
results of this Section come from [BIJM1].

1.3.1 Asymptotic state

System observables

We first consider observables on the small systeme. A = As ® Leny. AS We argued
in the previous section, the asymptotic behaviour of expectation valuesdoibservables can
be reduced to the analysis df" asn goes to infinity (at least if the initial state is the reference
state). In all this section we will assume the following ergodicity assumption whiatkind of
Fermi Golden Rule.

(E) The spectrum oM on the complex unit circle consists of the single eigenvale This
eigenvalue is simple (with corresponding eigenvegtgj.

Since?s is finite dimensional)/* also had as a non-degenerate eigenvalue. We denotgdby
the unique corresponding eigenvector normalizedby, ¥s) = 1. In particular, there exists
v > 0 such thatV/™ = |Us)(¥s| + O(e™").

The reduction process described in Section 1.1 makes use of anotlezatgperof the in-
teracting dynamics than the Liouvillian, the so-called C-Liouville operator. ¥fdi@t form
involves the modular datg/, A) of the pair(Mis @ Me, ¥s @ Ve), see e.g. [AIP, BR]. More
precisely, it can be written as

K=Ls+Le+V —JAVPVA~2]

In order to make it simple, we shall assume that



1.3. IDEAL RI SYSTEMS 29
H) AYV2ZVA-12 € Mg @ M.

This ensures thak” generates a strongly continuous greify of bounded operators cHs ®
He (this assumption can certainly be relaxed, see [JP2]).

Theorem 1.2.[BIM1] Suppose Assumptidi)-(H) are satisfied. Then there exists> 0 such
that for any normal initial state» on 9t and any observabld s € Mg,

0 (aR1(As ® lepy)) = (Us, AsUs) + O(e™ ™), Vn € N. (1.13)
The stateps -, defined oMis as

ps+(As) = (U5, AsVs), (1.14)
is the (unique) asymptotic state of the RI system.

Note that the asymptotic state does not depend on the initial st&tésirice? s is finite dimen-
sional any initial state of is normal), and in particular it does not depend on the choice of the
reference vecto¥ s.

Remark 1.2. If the ergodic assumptio(E) is not satisfied then the limitim M™ still exists,

n—oo
in a weaker sense. Namely, if there are eigenvalues different fram the circle, then the
N-1

. . . . 1 1 .
limit exists in the ergodic mean sensg; S MT = [Ts)(Ts| + O (N) Further, if 1
n=0

is a degenerate eigenvalue 8f then the limit is the projectiom onto ker(M — Id) along
Ran(M — Id) = ker(M* — Id)*. This reflects in Theorem 1.2 in the following wayl 1§ non
degenerate, but there are other eigenvalues on the circle, then Theh holds with (1.13)
replaced by

L V-l c
N ZO 0 (oj1(As @ Leny)) — ps.+(As)| < N

If on the other hand is degenerateps + is not anymore the unique invariant state. Hence one
can still prove thap o a7 has a limit but the latter will depend on the initial stade

Instantaneous observables
Besides observables on the syst&nthere are other observables of interest. To investigate
the external work, one has to consider the quantity (see (1.9)-(1.10))

¢ (ar1 (Va1 = Vi)

The observable of interest,, .1 — V,,, is not strictly speaking an obervable because it varies
with time: at timenr it lives on S and the subsystents, and&,, ;. One may also think of

S as being fixed in space and of the environment as a beam passing tli#@agkhat when

t € [n1, (n + 1)7) the subsysterfi,, . is located nea&. A detector placed in the vicinity af

can measure at this moment in time observables afd of the(n + 1)-th element in the beam,
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i.e. an “instantaneous observable” of the foA® ® 9,,+1(A¢), whereAds € Mg, As € Mg,
andd,, : Me — My is defined by

Im(Ag) =leg @ lg ® Ag @ Tg - - (1.15)

where theA¢ on the right side of (1.15) acts on theth factor in the environment. Recall also
the processes leading to continuous measurements: one makes a medsargubpsystems,
right after their interactions witks, i.e. at timenr one measures an observable of the form
Is ® ﬁn(AE)

More generally we may be interested in the expectation value of “obsesvatiflthe form

[As; AD|(t) := As @—_y Dy 01(AD), (1.16)

where As € Mg, ACO, ... A0 AU ¢ 9, wherem(t) is the integer part of /7,

and ¥ is given in (1.15). The parametefsr > 0 are not displayed in the l.h.s. in (1.16).

As represents an observable measured on the small system,(%hés the “instantaneous”
observable, measured in the elemerit) + 1 of the chain (the one in contact with at time

t), while the AY) with negative and positive index are the quantities measured in the elements
preceding and following thém(t) + 1)-th.

Theorem 1.3.[BJM1] Suppose Assumptidi)-(H) are satisfied. Then there exists> 0 such
that for any normal initial statey on 9t and any instantaneous observahlgs; AY)],

o (fF (45 A9) (7)) ) = 04 (145 A | < Ce™™,
where
0+([As: AD)) = (W5 ® Veny, 0fy (As© AT @+ 0 AD) Ws © W)
= ps (Pofi(As® A0 s e A P),

with ps 4 as in (1.14). (Recall thaP is the projection ontd{s.)

1.3.2 External work and entropy production

Equations (1.9) and (1.10) show that the mean work per time unit in the systkroes to the
asymptotic behaviour of the instantaneous observihle — V,, (at timenr, it acts onS and

the n-th and(n + 1)-th subsystems of the environment). As a direct consequence of Theore
1.3 we have

Proposition 1.4. [BIJM1] Suppose Assumptidi)-(H) hold. Then for any normal initial state
0, the power delivered to the system is

1

1 . .
— ;<\I/j§ ® Ve, (V- ™ Ve ™) U ® Tg),

whereL = Lg + Lg + V acts onHs ® He.
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Remark 1.3. One actually proves that
e (W(n)) = ps+ (PVP — Pag(V)P) +O(e™").

Moreover, in the invariant states ;- the external work is of course constant, i.e. for=
PS4+ @ Penv Wherepeny = (Weny, - Yeny), 0Ne haso(W(n)) = ps 4 (PVP — Pag(V)P).

We now turn to the entropy production. For that purpose we thus assumghé¢heefer-
ence states are KMS-states at some inverse temperatgiressp. 5¢. The entropy production
formula (1.12) then simplifies as

Ent(g o aggy|eo) — Ent(eleo)

= —Be>_o(W(k) + Beo (o (Var1) — Vi) + (Be — Bs)e (o (Ls) — Ls) -
=1

As a consegence, we have the following

Proposition 1.5. [BJM1] Suppose Assumptidi)-(H) hold, and thatV, Ls], [V, Lg] € Ms ®
Me. Then for any normal initial statg, one has

AS = nl;rglo —; [Ent(g o a%\go) — Ent(g[@o)] = Be AW.

Since the environment is in thermal equilibrium (all the subsystems have thetsaper-
ature), the above formula is nothing but the 2nd law of thermodynamics. tHergwith the
positivity of entropy production this proposition also shows that the exteroek is positive as
well. The only issue is therefore whether these quantities are strictly positiwet. One can
answer this question only for concrete systems, several examplevenamyiBIJM1]. We will
see in Section 1.5, that the situation is differerf ifs coupled to an extra reservai.

Remark 1.4. The assumptions oV, Ls] and [V, L¢| ensure that, with the notation of (1.11),
V € Dom(é,,) so that we can apply the entropy production formula (1.12).

1.4 Random RI systems

In this section, we turn to a more general situation where the various interaieie not iden-
tical. Of course, if one considers arbitrary interactions it is hopelessgeotxany convergence
(even in the ergodic mean) to some invariant state. As we mentioned in Sectjaed.(l.6),

the asymptotic behaviour of the system is essentially described by the padfdeduced dy-
namics operatorsM; --- M,,. If the M,,’s are more or less arbitrary, anything can happen.
We shall consider here the case where the interactions are randostiflintlependent iden-
tically distributed). Closely related results can be found in [NPe]. Thisaamess may have
various origins: the interaction time, the reference state off'®(via e.g. the temperature),

the subsystems§, themselves (and hence the interaction operators),... All these parameters ar
eventually encoded in the RDO and our assumption will be that the sequéfige will be
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independent and identically distributed (i.i.d.). We are thus reduced to thesenaf a product
of i.i.d. random matrices and we can apply the results presented in Section 4.1.

To motivate this analysis, consider the “One-Atom Maser” experiment evhdbeam of
atoms interacts with modes of the quantized electromagnetic field. It is clear thatual
experiments, neither the interaction time nor the reference states of the subsystémsan
be exactly the same for all! Typically, the interaction time will beaandom(because of the
random velocities of the atoms in the beam, see [BRH, FIM]), given e.g.Gauasian distri-
bution around some mean value, and the state of the incoming atoms will be rasdeeil,
for instance determined by a temperature that fluctuates slightly around aeneaerature (in
experiments, the atoms are ejected from an atom oven, then they are coatedoda wanted
temperature before entering the cavity). One could also imagine that thgstermse,, them-
selves are not all the same (e.g. different kind of atoms, or maybe sometiegur

Another motivation is to consider a non-equilibrium situation. In the genetapsof open
guantum systems one gets a non-equilibrium situation when the environmertésofrseveral
reservoirs, each of them being in an equilibrium state but with differemsinte thermodynamic
parameters (different temperatures for instance). Then one expe@atisystenS+Rq+- - -
to relax towards a non-equilibrium steady states (NESS). Such statebdeweonstructed in
[R, AH, JP2, AP, MMS, CNZ]. They carry currents, have non vaimigtentropy production
rate,... These transport properties were investigated in [FMU, CIJMPAD]. The linear re-
sponse theory (Green-Kubo formula, Onsager reciprocity relati@mrad limit theorem) was
developed in [FMU],[JOP1]-[JOPA4],[JPP].

In the framework of RI systems, we can create a non-equilibrium situatiompgsing
the initial state of the subsysterfis to be for example thermal equilibrium states at different
temperatures. In other words, we assume that the sySterteracts withK “reservoirs” at a
priori different temperatures, i.e. foramy e N, V¢ . = Wg , Ve .., = Vg, etc... where
Uz is the representating vector for the KMS-stateCoét inverse temperaturgé. (One could
imagine a “One-Atom Maser” where the field in the cavity is coupledtbeams at different
temperatures.) However, the particular structure imposed here leads todad Benmetry and
in particular the system is not at all time reversal invariant (rese/aiways interacts right
after reservoirl while the inverse is not true). As we will see in the toy example of Section
1.6, a direct consequence is that Onsager reciprocity relations dwlgot®@ne way to restore
symmetry is then to chose the temperature ofitiih subsystem in a random way from the set
{b1,...,Bk}, each temperature having probabil%yto occur (see Section 1.6.5). The results
of this Section come from [BIM3].

1.4.1 Asymptotic state

Let (©2, F,p) be a probability space. To describe the stochastic dynamic processcatvien
introduce the standard probability measdieon Q := QY

dP = szldpj, where dpj =dp, Vj € N*.

We denote byo = (w,), the elements of). As we already mentioned, we will assume that
the various interactions are independent and identically distributed (i.i.d9.iSprecisely the
meaning of the following randomness assumption



1.4. RANDOM RI SYSTEMS 33

(R1) Thereduced dynamics operatdi are i.i.d. random operators. We writé, = M (wy),
where)M : Q — B(Hs) is an operator valued random variable.

Throughout this section, we will assume, without further mentioning it, thaugption(H)
is satisfied, i.e. A/2V,,A=1/2 ¢ Ms @ Mg, , and that(R1) is satisfied. To indicate the
randomness, we will also writey; ; instead ofag;. Finally let Mg be the set of RDO's
which satisfy the ergodic assumpti¢h).

We first consider expectation values of observables on the small sy&térhe following
theorem shows that the RI system relaxes almost surely in the ergodic meads@ determin-
istic asymptotic state, and is a direct consequence of Theorem 4.3 of S&dtion the product
of random matrices and of Proposition 1.1.

Theorem 1.6. [BIJM3] Suppose thap(M (w) € M(g)) > 0. Then there exists a s8% C Q,
s.t.P(Qp) = 1, and s.t. for anyo € Qg, any normal state and anyAs € M,

N
1 tn (@) « .
fm 7> (el (45)) = (¥", AsWs) = p (4s),

N—o0

where U* is the unique invariant vector oE(M*(w)) normalized by(¥v* ¥s) = 1, and
tn (@) = 7T(w1) + -+ + 7(wn)-

As for ideal interactions, and having in mind the application to the study of reterork
and entropy production, we also consider instantaneous observahbies.we will be interested
in observables liké&/,, 1 — V,, (see (1.9)), not only these observables are instantaneous, but they
can be random as well. The philosophy of instantaneous observables isé¢measure the
same physical observable but the system on which it is measured variesméatmamely at
time ¢ the observabled() is measured on the subsystémn, ,,, ;)1 (see (1.16)). Hence, we
shall replace (1.16) by

[As; A(j)](ta w) = As ®§:—z ﬂm(t)Jerrl(A(j)(wm(t)+j+1))'

Of course, in the case where the subsystémare not identical, i.e&,, = £(wy,), one should
have in mind thatt ) (w) € M)

Most of the analysis (essentially the reduction procedure to obsenable®nly) is done
in a deterministic way, i.e. for fixed € Q). However, once the reduction is performed, we
really turn to probability theory and we need that the relevant quantitiesededima fiderandom
variables. In view of Theorem 1.3, we introduce the following observable

N:Q 30 P@)afs (Ag A (W) @ ® A (WWH))P(@) € B(Hs),

whereP (@) is defined as in (1.5).

(R2) The observabléV(w) is a well-defined random variable.
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Note that actuallyN () only depends ofw;, . . . , Wyt r41)-

Theorem 1.7.[BIM3] Suppose thap(M (w) € M gy) > 0. Then there exists a s@ C Q,
s.t. P(©;) = 1, and s.t. for anyo € Q4, any normal statey and any instantaneous observable
[As; AU)] satisfying(R2),

N ~ .
Jim 5 o (ol (Asi A0, ) = o1 (B

wherep is as in Theorem 1.6.

1.4.2 External work and Entropy production

The following result on external work is a direct consequence of{(IL9)0) and Theorem 1.7.

Proposition 1.8. [BJM3] Suppose thap(M (w) € M g)) > 0. Then

3

AW = lim 1

n—oo t, ((Z)

> o (0l (V(wrn) = Vi)

k=1
_ E(17—)Q+ (]E [P(V . eiTLVefiTL)P]>7 P—a.s. 2.17)

Note that not only the external work exists and does not depend on the &téte, but is a
deterministic quantity.

Similarly, if the reference stat&¢(w) is a f¢(w)-KMS state, using (1.12) together with
Theorem 1.7 we have

Proposition 1.9. [BJM3] Suppose thap(M (w) € M g)) > 0. Then

. 1 (@
AS = lim ——— [Ent(goa;éw)‘go) — Ent(g|go)} ,

n—oo  t, (w)

_ 1 itL —itL
= 5% (E [Bs P(Ls +V —e™(Ls + V)e )P]), P—as  (1.18)
As for the external work, the entropy production is also deterministic.

A priori, the link between external work and entropy production is notesr@s in the ideal
case. Actually, one can prove that[E(P(Ls — a”(Ls))P)] = 0 (see [BIM3]). Hence, we
may rewrite (1.17) as

1 iTL —iTL
AW = mg+<E[P(L3 +V =T (Ls +V)e T P]), P-aus.
Comparing with (1.18), one can recognize a sort of 2nd law of thermadizsa If in particular

the inverse temperature: is not random (i.e. we are in equlibrium), théxS = AW as
expected. Of course, if¢ is not constant, we are in a non-equilibrium situation and the fact that
there is no clear relation betweénS and AW should not come as a surprise.
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1.5 Leaky RI systems

In this section, we consider the situation where, besides the repeatedtiotesavith the sub-
systemsfy, the systensS also interacts with another reserv@rin a continuous way, i.e. the
Liouvillian of the system is now of the form

L=Ls+Y Le, + Y xalt)Vse, + Lz + Vsr, (1.19)

n>1 n>1

whereLy, is the generator of the free dynamics of the reservoirlapgdescribes the interaction
between the systes and the reservoiR. Note thatR is not directly coupled to the subsystems
En. We will also stick to the situation where the repeated interactions are identical.

The motivation to study such systems is twofold. First, it describes for examfime-
Atom Maser” in which one also takes into account some losses in the cavitgitinebeing not
completely isolated from the exterior world, e.g. from the laboratory [FJMje assumption
“R is not directly coupled to the subsystef)s is physically reasonable. Indeed, again for the
“one-atom maser” experiment, the idea is that the atoms are ejected fronearowoe by one
just before they interact with the cavity and moreover the atom-field interatitianr is typi-
cally much smaller than the damping time due to the presence of the heat resEnewsafore,
the atoms do not have enough time to feel the effects of the reservoirebafadrduring their
interaction with the field.

A second motivation is the study of non-equilibrium quantum systems. Sugfies®ought
into contact with several reservoifg;, each of them being in a thermal equilibrium state but
with different intensive thermodynamic parameters. The interaction betWeenl the various
reservoirs is most often “continuous”, i.& and theR; interact for all time (said differently,
the generator of the interacting dynamics is time-independent). We haveoalsidered in the
previous section the case where the various reservoirs are all offibateel interaction type
(chosing e.g. reference states which are randomly distibuted with unifstribdtion over
a fixed set¥q,...,¥k). In the system considered in this section we have a situation with
two various reservoirs of different nature: one is described by ay®em and the other one
interacts withS in a continuous way, and we want to understand the relative effectsse thve
reservoirs.

In a sense, one can consider this entire system as a Rl system butSumesdeen replaced
by § + R, i.e the “small” system becomes large as well. The general approach tstehsy,
as described in Section 1.1, can therefore be used. However, treededynamics operatadv!
now acts on the spadés ® Hx and, as we shall see, its spectral properties are of course much
more complicated. The results presented in this section come from [BJM4].

1.5.1 The additional reservoir

The reservoirR is a thermal reservoir of free Fermi particles at a temperatigre> 0, in the
thermodynamic limit. Its description was originally given in the work by Araki sviss [AW]
(see also [JP1]). We give directly the descritpion in the GNS-reprasamtand refer to e.g.
[AW, JP1, BJM4] for a precise derivation starting from the usual deson via C*- dynamical
systems.
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The Hilbert space is the anti-symmetric Fock space

Hr =T_(hr) == A" br,

n>0

over the one-particle space
bhr = L*(R, ®), (1.20)

where® is an ‘auxiliary space’ (typically an angular part lik&(5?)). In this representation,
the one-particle Hamiltoniahy is the operator of multiplication by the radial variable (extended
to negative valuesg € R of (1.20), i.e. forp € L*(R, ®)

(hrep)(s) = sp(s)-

The Liouville operator is the second quantizatiorhof

Lg = dl(hz) = P Zn: nd),

n>0 j=1

whereh%) is understood to act ds; on thej-th factor ofA™ hz and trivially on the other ones.
The von Neumann algebf& % is the subalgebra &( ) generated by the thermal fermionic
field operators (at inverse temperaturg), represented ol r by

¢(98r) = \2 [a*(9pr) + algpr)]-

Here, we define foy € L?(R,, &),

B 1 (s) ifs>0
9pr () = \/Z{ §<_3> if 5 <0,

Finally, we choose the reference state to be the thermal equilibrium stateseaped by the
vacuum vector of{y,
U = Q.

1.5.2 Translation analyticity

As already mentioned, the reduced dynamics operatas now defined as an operator on the
larger spacéi{s ® Hr and will have more complicated spectral properties. To understand why,
let's switch off the interactions. Then, clealy = ¢"s ® eI7F® which, besides some eigen-
values, has continuous spectrum equal to the whole cfrtléVhen turning on the interaction,
this continuous spectrum survives. In order to seperate it from thewglyes, we use analytic
spectral deformation methods, see e.g. [BFS, JP2, MMS, RS4], ancewdlitrto perturbation
theory. For that purpose, we therefore add coupling constants in thadtta, i.e. (1.19)
becomes

L=Ls+Lr+ Y Leg, +AsrVsr + Ase D xn(t)Vse,

n>1 n>1
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and the perturbation will be in term of the coupling constant (A\sr, Ase) € R2. We will
also writeV (A) = AsrVsr + AseVse and denote by (\) the reduced dynamics operator.

As in Section 1.3, ifA denotes the modular operator of the p@Rs @ Mr @ Me, Ts @
Ur ® Ue) we shall assume that

H) AYVZV(NAY2 € Ms @ Mr @ Me.

Moreover, since we will be using analytic spectral deformation methodseofatitorH  of H,
we need to make a regularity assumption on the interactionRLetd — T'(0) € B(Hr) be
the unitary group defined by

T(0) = '(e %) on I'_(L*(R, &)),

where for anyf € L*(R, &),
(€% f)(s) = f(s —0),

i.e. we use the generator of translation. In the following, we will abuse natatid (for sim-
plicity) also writeT'(9) for 1s ® T'(0) ® 1g andls ® T'() ® Leny. Note thatT'(§) commutes
with all observables acting trivially ol z, in particular withPsg = 1s ® g ® |Yeny) (Venvy |-
Also, we haveT ()P = P for all 8. The spectral deformation technique relies on making
the parameteff complex.

(A) The coupling operatdiVsz := Vsr —JAY2Vsr A=1/2 ] is translation analytic in a strip
kg, = {z : 0 < Imz < 6} and strongly continuous on the real axis. More precisely,
there is &, > 0 such that the map

R3 60— T HO)WsrT(9) = Wsr(h) € Ms @ Mx,

admits an analytic continuation infoc xg, which is strongly continuous ds#é | 0, and
which satisfies

sup  [|[Wsr(0)]| < oc.
0<Imf< 0y

The reduced dynamics operator will also be deformed as
Mp(N\) :=T(0) ' M(NT(6).
The ergodicity assumptio(E) will now be written for this deformed operatdiy(\). More

precisely, we will assume that the following Fermi Golden Rule condition holds

(FGR) There is &, € kg, and a\o > 0 (depending ord; in general) such that, for aNl with
0 < |A| < Ao, My, (N)) satisfieqE).
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Of course, an important issue in the analysis of concrete models is the at#gifiof this
Fermi Golden RuleassumptionfFGR). Let us denote the eigenvaluesiof by Eq,--- |, E,.
When# € kg, andAsg = Asg = 0. Then

MG (O) — eiT(L5+LR+9N) eiTLs ® eiTLReiTHN’

whereN denotes the number operatorBn(hx ), and hence
sp(Mp(0)) = {e™EE} ) o gy U{elle™™ ™0 1 € R} jene.

The effect of the analytic translation is to push the continuous spectruWy (i) onto circles
with radiie=7™™¢ j = 1,2, ..., centered at the origin. Hence the discrete spectruigb),
lying on the unit circle, is separated from the continuous spectrum by andésta— e~ 7%,
Analytic perturbation theory in the parameteisg, A\ss guarantees that the discrete and con-
tinuous spectra stay separated for small coupling. As a consequemcé#ieation of (FGR)

for concrete models, like the one of Section 1.6, is done via (perturbatiadysasonly of the
discrete eigenvaluesf My(\).

1.5.3 Asymptotic state

As in Section 1.3 we will consider what we calledtantaneous observables. “observables”
of the form

[Asr; AD(t) := Asr ®f=—r ﬁm(t)+j+1(A(j))a
whereAsg € Ms @ Mp andAD | A0 A0 o,

Definition 1.10. An observabled is called analytic if the map — T'(9) "1 A¥q, where¥, =
Us ® Ur ® Yeny, has an analytic extension tbe x4, which is continuous on the real axis.

Note that for an instantaneous obervablgr; AU)](t), sinceT acts orHx only, this is equiv-
alent toT'(#)~! Asgr ¥ having such an extension.

Theorem 1.11. [BIJM4] Assume that assumptioiisl’), (A) and (FGR) are satisfied. Then
there is a\g > 0 s.t. if0 < |A| < A, the following holds. There exists a state y on Mis @
Mz such that for any normal initial state on 9%, and any analytic instantaneous observable
[Asr; AD)(2),

lim Q(Oé?ﬁ([ASR; AU)]@”))) = P+ (PSR af(Asr ®—_, A(j))PSR)-

n—0o0
In particular, if Asg € Ms @ Mz, one has
lim p(afi(Asr)) = pea(Asr)-
Moreover, for analyticAsr € Ms ® N, we have the representation
piA(Asr) = (Y5, (V[T(01) " Asr¥s @ Vr),

where; () is the unique invariant vector of the adjoint operatddy, (A)]*, normalized as
(g, N|¥s @ Ug) = 1.
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1.5.4 Thermodynamic properties

Besides the external work and the entropy production, the presetwe efivironments/reservoirs
induces other quantities of interest, namely the heat fluxes. Starting frokfetindtonian for-
malism, one defines the variation of energy in the sysfethe environmendnv = & +&+- - -

and the reservoiR between time:r and(n + 1)7 as

SES(n) = wu((n+1)7,0)*hsu((n + 1)7,0) — u(n7,0)*hsu(nr),
SER(n) = wu((n+ 1)7,0)*hgu((n+ 1)7,0) — u(nt, 0)*hgu(nt),
SE™(n) = u((n+1)7,0)"he, u((n+1)7,0) — u(nt,0)*he, u(n).

For the energy variation in the environment, recall that between timand (n + 1)7 only

the (n + 1)-th subsystem interacts with and can thus exchange energy. When turning to the
Liouvillian description one thus define8E# (n) = n(6E#(n)) for # = S,R,env. As a
consequence of Theorem 1.11, we have the following

Proposition 1.12.[BIM4] If (H’), (A) and(FGR) are satisfied and if the commutatdi&z, Ls]
and[Vsr, L] define analytic observables, then for any normal initial state

1 1 .
AE# = lim — " o(AE#(n)) = ;P-‘,—,)\(PSR]#PSR)a # =R, env,

n—o0o NT
k=1

where

F = i/ OztRI([)\SgVSg, Lg]) dt, jR = i/ atRI([)\SRVSRv LR]) dt.
0 0

n

1 .
andAE® = lim — Y " o(AE®(n)) = 0. The external work is

1
AW = ~p.a(PsrV (N Psr = Psrafa(V (V) Psr )

and we have
AW = AE® + AE®™.

If moreover, the reference states de\/ S-states at inverse temperaturds, Sz and S¢, the
entropy productiom\ S exists and satisfies

AS = Be AE™ + BRrAE™.

As expected, the energy gain in the system (due to the external worlgriscsbetween the
reservoirR and the environment. The details of how the energy variations are sheineddn
the subsystems depends on the particulars of the model considerecectiom 3.6.4 for an
explicit example. Moreover, note that contrary to what happened in $eti®) the external
work might be positive or negative.



40 CHAPTER 1. REPEATED INTERACTION SYSTEMS IN QUANTUM MECHANIS

1.6 Atoyexample

We end this chapter with the analysis of a specific example, which is the simplegtivial
example of RI system, namely all the subsysteaid thef's) are 2-level systems (or spin
%). Our purpose is twofold: on one hand we want to illustrate the genesaltsedecribed in
the preceeding sections, on the other hand this model is a toy version @tecAtom Maser”
which we will consider in Section 2.1 and it is therefore an instructive ptayga to further
analysis of this (and other) more realistic model (e.g. in the non-equilibriumtigity).

We describe the model in the Hamiltonian formalism. For most of our purpose ibwill
sufficient and we shall stick to it. Only when we add an extra reservoir (tstiite the leaky
situation) we will turn to the Liouvillian formalism.

1.6.1 Description of the model

The Hilbert spaces fof and thes,, are copies ofC?. Let E, Ey > 0 be the “excited” energy
level of S and of€, respectively. Accordingly, the Hamiltonians are given by

0 O 0 0
h3—<0 E) and hg-(o Eo>'
We will denote by|0), resp.|1), the ground state, resp. excited stateSafr £. If we denote by
a/a*, resp.b/b*, the annihilation/creation operators fyresp.£, i.e.

01 « . (00
a-b-(o O)’ a*=b —(1 O)’ (1.21)

hs = Ea*a, and hg = Egb*b.

we can then write

The interaction operator is
A
v(A) = §(a Rb*+a*@0b).
It induces an exchange process betw&emd the subsyste#). it is coupled to:S flips from its
ground state to its excited state whilgflips the other way around, or vice versa (the parameter
A is just a coupling constant). Note thahas the particular feature that it commutes with the
total number operataV**t = a*a ® 1+ 1 ® b*b.
It remains to specify the reference states of the subsysfemhey will be thermal states
at some inverse temperatusg:

—Brhe
© —1,—Brhe

PEC = Ty (Brhey — 2 = o

The calulation of the RDMCz associated to a subsystefmat inverse temperaturg and
interacting withS for an amount of time- is a straightforward calculation sinée= hs + hg +
v(A) can be easily diagonalized. One gets

‘Cﬁ(p): Z VoroPVyig

o,0'=0,1
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where the operatorig,, are given by

1 ._E+E, 1 . E+4E
Voo = e ITETN O(N), Vip = eV §(1 - N)a,
V28 V23
—-BEo/2 —BEy/2
Vo = © TN S(NYa¥, Vig = C e ITEEN O(1 - N,

V7

with N = a*a the number operator f&¥,

C(N) = cos (%N) +i% sin (%N) , S(N)= %sin (%N) ,

and whereA = E — E, andv = VA2 + )2, Itis now easy to derive the spectral datalpf.
" . . A
Proposition 1.13. The eigenvalues afz are1, e = et S <cos (%) +i—sin (V2T>> )
14

2

Ay qvT . . —B*hg
andep = 1 — _z sin (7) . Corresponding eigenstates agpg g« := W

%B, |0)(1] (for e4), |1)(0] (for e—) and|0)(0| — |1)(1|. Moreover,|e], |eg| < 1 with equality
iff v € 27N.

whereg* =

Note the renormalization facto% in the inverse temperature of the invariant state. Note
also that the ergodicity assumpti¢B) of Section 1.3 holds ifivr ¢ 27N, which is a kind
of non-resonant condition (a similar phenomenon holds for the “One-Afaser’” model, see
Section 2.1).

In the next sections we illustrate the general results about RI systenrihéesa the previ-
ous sections. For simplicity, the initial states of thewill be the reference states;, .

1.6.2 Ideal case (or return to equilibrium)

Proposition 1.14. Letr,, = 7 and 3,, = 5. If v ¢ 27N, then for any initial state of S there
existsC' > 0 such that
lp(n) — psp-ll < Ce™™,  VneN,

wheres* = £2 g andy = —log <\/1 — s’ (VzT)>

In other words, “return to equilibrium” holds at some explicit renormalized tagpre.
This renormalization can be understood as follows. The interaction is dramege process in
the numberof excitation, but not in energy: each interaction involves an amounteiggrE,
for the environment buk’ for S.

We can then compute the external work (and thus the entropy productiong isystem.
Since we are in the ideal case with invariant initial states or€th€1.8) is now simply

6E(n) = ATrygene [p(n) @ pg v] — ATrygene [P(n —1)® pg elThye i

Hence, using Proposition 1.14 and the fact hag- ® pg commutes withh, we get
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Proposition 1.15. Let7,, = 7 and 5, = S. If v7 ¢ 2xN, then for any initial statep we have
0E(n) = O(e™"). HenceAW = AS = 0.

Remark 1.5. That the entropy production and the external work vanish is specific tonthitel.
If one changes the interaction, e.g. taking the full dipole interactios a*) ® (b + b*), this is
not true anymore. Namely, one then has

lim §E(n) AT 2Et h<BE0> sinc? (4 ) sinc? (&)
s 2 an sinc (%) + sinc? (77) ’

n—o0

wherep = /(E + Ep)? + A2 andsinc(z) = Sm(””) . To switch from one element of the environ-
ment to the other therefore requires some non -trivial external work.

Remark 1.6. It is easy to see that one can rewritdV (N) := Zf:[:l JE(n) as

Z Trpg o, [ ~1)® pg (eiThhge_iTh - hg)] +o(1), (1.22)

where theD(1) refers to theV — oo limit. The sum in the right hand side is clearly the amount
of energy which flows into the environment. In other words, Eq. (1ig®)lg says that, up to
some bounded term, the energy which is added to the system is spreacgnvitoement (the
systens is finite and can therefore not continuously gain or lose energy).

1.6.3 Random case

Proposition 1.16. 1. Random interaction time.Suppose thas,, = [, and thatr(w) >0
is a random variable satisfying (v7 ¢ 27N) # 0. Then there exists a s&; C 2 of
probability one and a constamt > 0 such that for allo € Qq, for all inital statesp

lo(n,@) — ps,p-|l < C@)e™™",  VneN, (1.23)
for someC'(w) > 0 and withs* = SEy/E.

2. Random temperature 6f Suppose that(w) is a random variable, and that, = 7 > 0
satisfies/r ¢ 27N. Then there exists a s@ C (2 of probability one s.t. for allv € 4,
for all initial statesp,

i Z p(k, @) = E [ps,g+(w)] = ps.p

. _ -1 _
with 3 := —E~!log (E[Zsﬁ(w)Eo/E] —1).

Remark 1.7. The better convergence in (1.23) than expected from Theorem 1.6 is the to
fact that the random RDM actually possesses a deterministic invariant stdkeswe can use
Theorem 4.4 instead of Theorem 4.3.
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An application of Propositions 1.8 and 1.9 then gives
Proposition 1.17. Suppose that (v7 ¢ 27N) # 0, and letk = Ey(1 — eg). Then

1 1
E(T) COV </€, 1—|—e_BEO> s P— a.s.,

1 1
= WCOV (BK], 1—|—e_5E0> s P—a.s..

Note thats = Eg(1 — eg) = Eoﬁé sin? (%) is a random variable vid&y, 7 or v. We then

specify to the two situations considered in Proposition 1.16:

AW =

AS

1. If only 7 is random, thelAWW = AS = 0. As in the ideal case, there is no external
work for this system, and since we are still in an equilibrium situation there isitnoggy
production.

. K
2. Ifonly g is random, theddW = 0 andAS = ;Cov ([3, Fpnpe=icn

iff 5(w) = E(B) a.s. In other words, there is still no external work to switch from an
interaction to the other. However, as soon as there is some randomnesteimpeeature
we are in a non-equilibrium situation and hence the entropy production igysprisitive.

> > 0 with equality

1.6.4 Leaky case

For the reservoir, we consider a bath of non-interacting and nonwistatifermions at inverse
temperaturedr. The one particle space I$(R?, d*k) and the one-particle energy operator is
the multiplication operator byk|?. The interaction between the small syst&§rand the reservoir
R is chosen of electric dipole type, i.e. of the foigr = (a + a*) ® pr(f) wheref € bhr

is a form factor andor (f) = %(an(f) + ax(f)). We shall not explain here how to get a
description similar to the one given in Section 1.5.1, and refer the reader.tdA\ JP1,
BJIM4].

The situation wheré is interacting witiR alone has been treated in previous works, see e.g.
[JP1]. Normal initial states approach the joint equilibrium state, i.e. the equitibstate of the
coupled systen$ + R at temperaturéf;zl, with speecc™"7"th (we consider discrete moments
in time, ¢ = n7, to compare with the repeated interaction situation). On the other hafidsif
coupled only to the subsyster§s initial normal states approach the equilibrium stateScdt
inverse temperaturg: wherej3: = 65%, and with speed """+, The convergence rates are
given by

. T
= My +00R),  with 20 = TVEIFVE)P,

1 A2
N = ——log (\/1 - %sm2 (W)>
T v 2

= )\25'8'7512) + O()\gg), with "}/1512) = TSin(32 <A> ,
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wheresine(z) = sin(x)/z and|| f(VE)|? 1= /S f(VE o)Pdo.

In order to satisfy the translation analyticity hypothg#iy, we need to make some assump-
tion on the form factorf. Let I(§) := {z € C, |Im(z)| < §}. We denote byH?(§) the Hardy
class of analytic functions : 1(§) — L?(S?, do) which satisfy

Al zr2(5) == sup / |h(s + i0)]|*ds < oc.
0]<o JR

(A) Thereis & > 0 such tahe= =s/2 f;(s) € H?(5) where

| s [ f(J5o) s >0,
fols): 8% 30 =5 {f(\/?sa) if s < 0.

Remark 1.8. The functionfy appears in the representation of the interaction operdtgy in
the Liouvillian formalism, namely

Vsr = ((a + a*) &® ]1((:2) X gO(fBR) € Ms R Mp

wherefs, € h = L*(R,ds; L?(S?,do)) is related to the initial form factoff € L?(R3, d%k)
by

(f5=(5)) (o)

Hencefo is f3,—o-

1 |s|/4 {f(\/ga) if s >0,

T V2Vite Brs | f(V=s0) ifs<0.

Proposition 1.18. Assumef satisfiegA), ||f(VE)| # 0 andAr ¢ 277Z. Then the asymptotic
statep. » is given by
PN = (’YPS,,BR +(1- 7)98,5;) ® pr.or + O(N),

wherep g is the Gibbs state oft (= S, R) at inverse temperaturg and where
2
y= )\2972%(}1)

2 2)°

)\2972%(11) + )\255%(1)

Remark 1.9. The assumptiol\r ¢ 27Z corresponds, in the perturbative regime, to the non-
resonant conditionr ¢ 27N.

Remark 1.10. The fact that the asymptotic staig ) is a convex combination of the two asymp-
totic statesps, s, and ps,g: holds only because the systeins a two-level system and is not
true in general.

An application of Proposition 1.12 then gives the following explicit valuegtierexternal
work, the entropy production and the energy fluxes.
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Proposition 1.19. Assumef satisfiegA), || f(VE)|| # 0 and At ¢ 27Z. Then
AE™ = kB (e PR — e HEF) 4+ O(NY),
AER = kE (e—ﬁéE - e—ﬂRE) + OO,
AW = w(Ey— E) (e—ﬁnE _ e—ﬁ;E) OO,
AS = k(B - rE) (¢ — e HE) 4 O,

A2 7(2) A2 7(.2)
71 -1 SR 'th SE Iri
wherex = ZS,BRZS,BE v ) @

2
SRYih T Asen

Remark 1.11. 1. The constant is positive and of ordeA. Moreover it is zero if at least one
of the two coupling constants vanishes (we are then in an equilibrium situatidthere is no
energy flux neither entropy production).

2. The energy fluA E°" is positive (energy flows into the environment) if and only if the
reservoir temperaturé’p, = 57;1 is greater than the renormalized temperatdie = (3%) ! of
the environment, i.e. iff the reservoir is “hotter”. A similar statement holdsfie energy flux
AET. Note that,as for return to equilibrium, it is not the temperature of the enviesriwhich
plays a role but its renormalized value.

3. When both the reservoir and the environment are coupled to the s§siamAsr Asg #
0, the entropy production vanishes (at the main order) if and only if the twipégatures’z
andTy are equal, i.e. if and only if we are in an equilibrium situation. Once again, ibisthe
initial temperature of the chain which plays a role but the renormalized one.

4. As mentioned at the end of Section 1.5, the external work can be aifigy@ or negative
depending on the parameters of the model.

1.6.5 Non-equilibrium situation

As we mentioned at the beginning of Section 1.4, one can create a non-gguilgtuation in
the framework of RI systems if the initial state of the subsystémare for example thermal
equilibrium states at different temperatures, i.e. we assume that the sysiet@racts with
K “reservoirs” at a priori different temperatures. More precisely,talee, for anym € N,
PEmwi1 = PBrr PEmxre = PBs» €IC... We denote by, Ls,... the corresponding RDM's. The
state ofS at timen is therefore

p(n) = (LjoLjro---LioLlgo---o0Lj1)" (Ljo---0Li(p)), n=mK+j (1.24)

Non-Equilibrium Steady State

Generically, in non-equilibrium situation, the usual limit— oo of p(n) does not exist
and one has to resort to limits in the ergodic mean. However here, in viewa#)(the K
subsequencegm K + j) will generically converge as: goes to infinity. This is due to the fact
that the maps{:;.‘oneq =LjoLj_10---L10Lko---0L;i; have the same kind of spectrum
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as L in the equilibrium case: they have a simple eigenvdlwehile the other ones lie inside
the open unit disk ofC. Indeed, thel;'s have almost the same spectral data. By Proposition
1.13, only their invariant states differ, otherwise they have the same eigesy, ande with

the same eigenstates. Hengeandell are eigenvalues of any of tflé?oneq (with eigenstates
|0){(0] —|1)(1], |0)(1] and|1)(0]) and, provided'T ¢ 27N, have modulus strictly less than It
thus remains to find their invariant state.

Theorem 1.20. Suppose that the spiigs, 1 ; are initially at temperatureé’j‘l,j =1,....K
and assumer ¢ 27N. Then, the unique invariant state 6F°**“ is

G) _ 1—eo K-1
Ps],+ 1 ek (Ps,ﬁ; teopspr_, Tt e PS,,B;H) .

As a consequence, for any initial stateve have

lim p(mK%—j):ng, j=1,....K.

m— 00

In particular, we have

1 N—-1 1 K () 1 K
: _ _ J _
Jim RZO pln) = ps.+ = ; PSh =1 ; ps,:-

The above theorem shows that the NES&S. is simply the average of the equilibrium states at
the renormalized temperaturgs, j = 1,..., K.

The patrticular structure of repeated interaction systems leads to a stresg#rthan the
usual convergence in the ergodic mean to the NgSS$, namely the convergence of “comple-
mentary” subsequences to partial NESSes. Each of these partial BIBESIggives a part of the
information on the large time limit of the system. However, as we will see, theyeappgurally
in the study of the heat fluxes.

Fluxes and entropy production

Obviously, thej-th beam can exchange energy only when it interacts @jtthat is in the
time intervals(mK + j — 1)7, (mK + j)7). During such an interval, and if the systefis in
a statep at the beginning of the interaction, the amount of energy lost by the beam is

AE; = Tryses, [p@p/jj (hg _ eifhhge—ifh)}
_ ZE;A; sin? (%T) Trs [p X (e—ﬁon|0><0| . y1><1|)] . (1.25)

Since any of the beams interacts wittor a fractionl /K of time, it is reasonable to define the
energy flux observable for theth beam as

P, =
J KrZg, v2
=(1—ep)

Bo N (%) x <e—ﬁjE0\o><0| - |1><1\) , (1.26)
v 12/
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= Trs [p®;].

The first idea would be to define the various energy fluxes in the NESS|ag , @;]. Itis
actually not the right choice. Indeed, as we have seen there araldd#3S’es: a “global” one
and K “partial” ones. WhenS will start to interact with thej-th beam, i.e. when heat flux is

possible through this beam, it is asymptotically in the partial NE§§1). It is therefore more
natural to define the flux in thgth beam as

¢j = Trs [Pg+1) q)j} :

It is easy to see that for any initial staief S, the total lost of energy in thgth beam between
time 0 and time(mK + j)7 is

AE;(mK + j) ZTr3®g [ (IK+j—1)® pg, (hg - eiThhge*iTh)} ,

so that asymptotically the variation of energy per time unit injttle beam is indeed

. AEj(mK +j) (i—1) o eimh )| —
Wy oy gy i Trsee [0 0, (e —hee ™) | =

A simple calculation leads to

Eo(1 — eg)?

K
SO0 T O N (7ol L gLy plimkl 1.27
Kr(1 - (56{) ( )€ ’ ( )

¢ = 5.~ 28,
k=1
where[j — k — 1] is the residue class gf— £ — 1 mod K. One easily checks th@j ¢; =0,
i.e. (as in the equilibrium situation) no external work is added to the system.

One can then calculate the entropy production and get

K
AS = =) Bid, (1.28)
j=1
EO 1—60)2 Kol 1
Kt 1—65() ZZ:: Zﬂj B[J - 1) €0)

which is striclty positive unless all the temperatures are the same. (Oneeémseach sum

Zle ﬁj(Z/;jl — ij[l l 1]) is positive and non-zero unless all the temperatures appearing in the
S

sum are the same.)

Remark 1.12. As usual, in the case of 2 beams, the positivity of entropy production and the
conservation of energy show that heat flows from the hot beam to theweld

Linear response
The next step in the study of the non-equilibrium situation is the linear resgbasry, i.e.
how the system will react to a small perturbation from the equilibrium.
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Let X, := B — B; denote the thermodynamical forces which drive the system out of equilib-
rium andX = (X1,..., Xg). Using (1.28) together with the conservation of energy, we may
write

K
dSy(X) =) Xj6;(X).
j=1

(We have emphasized here that the fluxes and the entropy productienddep the thermody-
namical forces.) Note also that all the fluxes vanish wier: 0. Our concern here is with the
kinetic coefficients
1. . 99
ik = v

Taylor’s formula then gives

K K
¢j = LyXp+O(X?), and dSi= > LjX;X)+o(X?).
k=1 Jk=1

K

The positivity of entropy production implies that the quadratic forfn L;, X; X}, is non-
j.k=1

negative. However, this does not imply that thiex K matrix L is symmetric!

Our main concern here is not really with the explicit value of the kinetic coeffis (this
is a trivial computation using (1.27)) but rather with the Green-Kubo forranththe Onsager
reciprocity relations. The Onsager reciprocity relations assert that théxnia= (L), is
symmetric. The Green-Kubo formula expresses the kinetic coefficientsnirs tefr theequilib-
rium current-current correlation function, i.e. 6fj,(n) = Trs [((ﬁ;)"(cbj) X %) psﬁ*}
Whereﬁjg is the dual ofCz (here we evolve an observable), namely

Lin = 3 Cie(n)r = 3" Tus [((L£5)"(®5) x @) ps,p-] 7. (1.29)
n=0 n=0

Remark 1.13. In continuous time models the Green-Kubo formuld js = £ [ Cji(t)dt,

Here we do not have the factérbecause the system is defined only for positive times, and the
extra factorr corresponds to our discrete time-stegt".

From (1.27) one readily computes

2 _ —BEy _ .
I E5(1 —eg)e y (6j _l-eg egk1]>. (1.30)

T K7(1 + e PFo)2 1—eff

In particular one can immediately see that the Onsager reciprocity relatiomst dhmld! This
should not come as a surprise since the system is not at all time reves@himy Indeed, the
various beams interact with the sp#hin a precise order 1,2,...,K,1,2,... It is therefore
reasonnable to expect that a change of temperature in begithhave a greater influence on
the flux in bean® than on the one in beaild. In the same spirit, one expects that a change of
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temperature in bearmwill have a greater influence on the flux in bearthan a change in beam
2 on the flux in bean, i.e. |Lo1| > |L12|, and the largek the greater should be the difference
(beam2 arrives right after beanh while we need to wait an amount of tiMié&l’ — 2)7 before
beam1 comes back after beaft). More generically, the further beaynarrives after beank
the smallerL j;, should be. This is precisely what (1.30) tells us : fo£ k, the factore([f_k_l]
shows that L ;| decays exponentially with — k. The only hope to have Onsager relations is
thus to restore some symmetry in the system.

Although Green-Kubo formula is expected to hold only for time reversariamasystems,
for the sake of completeness we compute the current-current correflatiction and compare

it to the kinetic coefficientd. ;.
We may rewriteC;;,(n) asCjx(n) = Trs [@-Lg (Pg, x psﬁ*)} , and hence get, using (1.26)
together with Proposition 1.13,

S Cjunyr = ZEL—cole P
GE\T)T = D) 5 .
= K TZB

If we compare with (1.30) we get

. 1—eo [jok
n=0

0

In a sense, Green-Kubo formula (1.29) holds up to this asymmetric preféc(tdjk — ll;iggo(eg—’“—”) .
Restoring Symmetry

One way to restore the lack of symmetry is to makekhbeam arrive in a random way, with
uniform probability distribution. Another way to say it is the following: the tengpere of the
n-th atom is randomly chosen from the §ét, ..., Sk }, each temperature having probability
% to occur. The calculation of the NESS and entropy production are thtisydar cases of
Section 1.6.3. One gets

Proposition 1.21. Supposé(w) is a random variable uniformly distributed ovéf,, - - - , Bk }
and assumer ¢ 27N. Then, for any initial state of S we have

N—o0

N K

. 1 - 1

lim > " p(n,@) =E (ps p)-) = 174 > pspr = ps+,  P—as, (1.31)
n=1 j=1

and the entropy production is

Eg(l — 60)
T

K
%« Cov (B(w) 71 ) — M E 5.(2—1 —Z_l)
P EBw) ) T K2r - I B, Br /-
jk=1

AS =

We now turn to heat fluxes. The heat fluxes in the NESS are defined as

0j = Trs [ps+ @], (1.32)
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with @; as in (1.26). One may wonder why this definition is the right choice in this rando
situation, while we argued that it wastin the previous “deterministic” situation. To understand
why, let us come back to the total variation of energy injfie beam. Using (1.25), the variation
of energy in thej-th beam between timer and(n + 1)7 is

AENG) =

2 . T ~ _A. .
£ sn® () Tos [p(n,@) x (= #510)(0] = 1D(1)] 1 if Blwnr) = By
0, otherwise.

Hence, if we define the “randopath flux observable®;(w) as

)\2
e x Cgsin® (T ) < (B I0)(0] - [){1]) i Bw) = B,
~—

=(1—ep)
0, otherwise,

Pj(w) =

we thus have .
A (@) = Trs[®;(wne)o(n, 0))

Proceeding as in Section 1.4, we indeed gethata.s.

) AEj(N,cD)
R iy o

Inserting (1.26) and (1.31) into (1.32) we find

= Trs [E (pspw)) X E(®j(w))] = Trs[ps 4+ ;).

Eo(1 — eg) =
_ Eo(l —eo 1 1
k=1
K K
One of course easily checks that ¢; = 0 and thatAS = — ) ~ 8¢,
j=1 =1

We finally turn to linear response theory, which was the reason why wéeddo restore
symmetry. The current-current correlation functiop, (n) is exactly the same as before (it is
calculated in equilibrium). It thus remains to compute the new Kinetic coefficiejts From
(1.33) on gets
E2(1 — eg)e BP0

which as to be compared with
o0
E2(1 — eg)e PEo
Y Cikln)T = o 60)2
K?rZ
n=0 B

Again, Green-Kubo formula holds up to the prefactéfé;, — 1), but “Symmetry” has been
restored in the system and indeed Onsager reciprocity relationshgle: Ly;.



Chapter 2

Applications of RI systems: two
concrete models

In this chapter we present two concrete models of the repeated interagimnTiiese models
show how repeated interaction systems can be used to adress somellyhhgsie@nt situations,
and are presented in Sections 2.1 and 2.2 respectively.

1. A specific model describing the “One-Atom Maser” experiment witeiethe quantized
electromagnetic field in a cavity through which a beam of atoms, the subsystgriss
shot. Such systems play a fundamental role in the experimental and thddretisa
tigations of basic matter-radiation processes. They are also of practicaftanpe in
guantum optics and quantum state engineering [MWM, WVHW, WBKM, RHSYANe
consider here only the ideal case, i.e. the question of thermal relaxatibipossible to
thermalize a mode of a QED cavity by meanédével atoms if the latter are initially at
thermal equilibrium? One particular feature here is that the Hilbert space efhll sys-
tem S is not finite dimensional. There are very few models of open quantum systems in
the literature with an infinite small system and for which return to equilibrium iggro
The RI structure of the model allows us to provide such a model. Moreorerusually
makes use of perturbation theory in the coupling constant (as in Section tb.@ddain
information on the spectrum of the relevant operator. Here, we do no¢ mnsk of any
perturbation theory, i.e. our results do not restrict to small coupling cotsst@he results
described here come from [BP].

2. A model where the systeshdescribes a spinless electron in the single band tight-binding
approximation and subject to an homogeneous static electric field. For th®elalone,
Bloch oscillations prevent a current from being set up in the system(gsgg)). It is
furthermore expected that if the electron is in contact with a thermal envinotprire
resulting scattering mechanisms will suppress the Bloch oscillations and leadeady
current. In the model considered here, the environment is describadcbgin of two-
level atoms with which the electron interacts in the Rl scheme. We show thatiaréot
is indeed created due to the interaction of the particle with its environment. ltcsdit
drifting in the direction of the applied field, the electron diffuses around itsrpeaition.

51
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We also study the energy transfer between the particle and its environraevi|las its
entropy production (we are here in a non-equilibrium situation becautieeafonstant
electric field). The results concerning this model come from [BDP].

2.1 The “ideal” one-atom maser or thermal relaxation in a QED
cavity

2.1.1 Description of the model and the RDM

We consider the situation where the atoms of the beam are prepared in aastatioxture of
two states with energies < Ej, and without loss of generality we sBt= 0. We assume the
cavity to be nearly resonant with the transitions between these two stategctivegthe non-
resonant modes of the cavity, we can describe its quantized electromaiigldticy a single
harmonic oscillator of frequencyf ~ Ey.

The Hilbert space for a single atomlis = C2 ~ I'_(C), the Fermionic Fock space over
C. The Hamiltonian of a single atom is thus

he = Eob*b,

whereb*, b denote the creation/annihilation operatorsign see (1.21) in Section 1.6. The
Hilbert space of the cavity field igs := ¢?(N) = I', (C), the Bosonic Fock space ovér Its
Hamiltonian is

hs = Ea*a = EN,

wherea*, a are the creation/annihilation operators g satisfying the commutation relation
[a,a*] = TandN is the number operator dn; (C).

In the dipole approximation, an atom interacts with the cavity field through its ieleigbiole
moment. The full dipole coupling is given tg(a +a*) ® (b+ b*), acting onhs ® he, where
A € Ris a coupling constant. Neglecting the counter rotating te®h+a* ®b* in this coupling
(this is the so calledotating wave approximatignieads to the well known Jaynes-Cummings
Hamiltonian

1
h=hs®1e+1s® he + Mv, vzi(a*@)b—l—a@b*), (2.1)

for the coupled syster§s + £ (see e.g. [Ba, CDG, Du]). (The toy model studied in Section
1.6 is very similar. One simply replaces the bosonic Fock spgce T'(C) by the fermionic
onel'_(C) = C2.) The rotating wave approximation, and thus the dynamics generated by the
Jaynes-Cummings Hamiltonian, is known to be in good agreement with experirdataaas
long as the detuning parametér= F — E; satisfie§A| < min(Ey, F) and the coupling is
small|\| < Ey. To our knowledge, there is however no mathematically precise statemertt abo
this approximation.

Finally, the initial state of the atoms will be the equilibrium state at inverse tempenatur
i.e. pg g = e e [Tr e=FPhe,



2.1. THE“IDEAL” ONE-ATOM MASER OR THERMAL RELAXATION INA QED CAVITY 53

As for the toy model of Section 1.6, using the fact thatommutes with the total number
operatorN** = a*a ® 1g + s ® b*b, we can calculate explicitly—'"" and hence the RDM 3
associated to this Rl system. One gets

ﬁﬁ(p) = Z VU’UpVg*’gv (2.2)

o,0'=0,1

where the operatorig,., are given by

1 : 1 ;
Voo = e TEN O(N), Vio = e TEN (N + 1) q,
V' Zep V' Zep
e—BE0/2 EN e—BE0/2 EN (2.3)
Vor = e TN S(N)a*, Vip = e TPV CO(N + 1),

ngﬁ \/Zg#—}

3

with

1/2 sin(mVEN +n)
EN+n EN+n

are the dimensionless detuning parameter and coupling constant.

C(N) = cos(m/EN +n) +in

and where

2.1.2 Spectral analysis of the RDM

We know from the general results on RI systems thats a contraction o#8! (hs) (Proposition
2 in the Introduction), and that the staté:) of S evolves according to the discrete semigroup
5 1-e. p(n) = Lj(p). To understand the asymptotic behaviorpofi), we shall thus study

the spectral properties ag. In particular, we will be interested in its peripheral eigenvalues
e, for § € R, and especially in the eigenvaluigthe corresponding eigenstate(s) will give the
candidates for the asymptotic state(s)).

To understand the difficulty in the spectral analysis, assume that the aldnodigling is
turned off. The reduced dynamics is then nothing but the free evolutidh ot. Lz(p) =
e~ hs peiThs It is easy to see that the spectrumf is then pure point:

sp(Lp) = sppp (L) = {77 |d € Z}.

This spectrum is finite iff £ € 27Q and densely fills the unit circle in the opposite case. In
any case, all the eigenvalues (and in particaleare infinitely degenerate. This explains why
perturbation theory in fails for this model. Note also that singg has infinite dimension, it is
not automatic tha s hasl as an eigenvalue (we only know that it is in the spectrum since it is
in the one ong).

To describe the spectral results, we need to introduce a notion of resariRecall that such
a resonance phenomenon already occured in the toy medef 27N). An essential feature
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of the dynamics generated by the Jaynes-Cummings Hamilténéae Rabi oscillations. In the
presence of photons, the probability for the atom to make a transition from its ground state to
its excited state is a periodic function of time. The circular frequency of thudlatson is given

by v A2n + AZ. (In our units,\ is thus the one photon Rabi-frequency of the atom in a perfectly
tuned cavity.) If the interaction timeis a multiple of the Rabi-oscillation period farphotons,

then no transition will be possible from thephoton state to the previous one. Suecksonance
occurs when, for some integkr

2
r=k—— = fntn=k

VAt A

wheren and¢ are defined in (2.4). We therefore introduce the following set

Definition 2.1. R(n,€) := {n € N|én +n = k? for somek € N}. An element € R(¢,n) is
called a Rabi resonance.

The Hilbert spacés thus has a decompositityy = ;. bg“), wherer — 1 is the number
of Rabi resonancea,fsk) = (?(Iy) and{I; |k = 1,...,r} is the partition ofN induced by the
resonances. We cajfgk) the k-th Rabi sector and denote I#; the corresponding orthogonal
projection.

It is easy to show that, according to the arithmetic properties aid (rational or not),
the setR(n, ) possesses either no, one ore infinitely many elements ([BP], Lemma 3.2). We
shall say accordingly that the system is non-resonant, simply resontfiyagesonant. A fully
resonant system will be called degenerate if there exist{0} U R(n, £) andm € R(n, ) such
thatn < mandn+1,m+1 € R(n,§), i.e. there are two pairs of consecutive Rabi resonances.
(Such degenerate systems exist, if €g= 840 andn = 1 then(1,2) and(52, 53) are pairs of
consecutive resonances. We refer to [BP] for more details on dejersystems.)

The main ingredients for the spectral analysi€gfare:
1) The gauge symmetry.

For anyd € R, L(e Npe?N) = e N (p) eV, which follows from [h, N**'] =
[he, pe 3] = 0. As a consequencé,s leaves invariant the subspaces

BYD(hs) = {X € B'(hs) [e N XN = "X forall 6 € R},
and hence admits a decomposition

d
s =D,
deZ

so that one can analyze separatelyzﬂé‘@.

2) How £ acts on diagonal states, i.e. &) (hs).
Because of the gauge symmetry,pifis an invariant state so is its “diagonal pagly =
S, (n|pn)|n)(n| € B, Itis thus important to understand the diagonal invariant states.
If we denote byz, the diagonal elements of € B-(?)(hs), we can identifyB(?) (hs)
with /1 (N). Introducing the number operatoNz),, = nx,, and the finite difference operators

(v2), = {

ZQ forn =0,

V), =z, — x forn >0
Tp — Tp—1 fOrn >1, ( In n T Sntl =
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a simple algebra from (2.2)-(2.3) leads to

L) =1 V*D(N)e PENgeIEN, (2.5)
where ) N
N):= ——  sin?(m/EN . .

In particular, the diagonal invariant stajeare solutions oD (N )e #FoNyefFoN , — 0. Hence
they satisfy(e AFoNVefEoN p) = 0 < p, = e PFop, | unlessD(n) = 0, i.e. n is a Rabi
resonance. We therefore have three situations:
¢ If the system is non-resonant, it follows from (2.6) tatn) = 0 if and only if » = 0 and
—BEoN
hence there is a unique diagonal invariant s BN = PS8 wheresg* = B% if
re
B > 0 (this is the same renormalization as for the toy model of Section 1.6) and none if
B <0.

e If the system is simply resonant there exigsise N* such thatD(n) = 0 if and only if
n = 0 orn = ny. The eigenvalue equation then splits into two decoupled systems

pn=ePEp, 1 nel ={1,...,n —1},
pn=ePEp, | nel,= {n1+1,...}.
The fi . . . e—BEoNpl NG
e first one yields the invariant sta&ﬁm = Ps g for any 5 € R. The
NP o)

second system gives another invariant sﬁm = p;ﬁ*, provideds > 0.

e If the system is fully resonanf)(n) has an infinite sequeneg = 0 < n; < ng < ---
of zeros. The eigenvalue equation now splits into an infinite number of finiterdiioral
systems

—BEo

pn=¢e"p,_1, nely={ng_1+1,...,n—1},

wherek = 1,2,... For anys € R, we thus have an infinite humber of invariant states
e PPN P — »%)_one for each Rabi sector
Tr (e=PENP) Ps,pe> '

3) The following Perron-Frobenius type Theorem due to Schrader (jSdtdorem 4.1).

Theorem 2.2. Let ¢ be a2-positive map orB!(#) such that its spectral radius(¢) = || 4.

If X\ is a peripheral eigenvalue af with eigenvectorX, i.e. ¢(X) = A\X, X # 0, |A| = (o),
then| X | = v X*X is an eigenvector ab to the eigenvalue(¢): ¢(|X|) = r(¢)|X].

Since the RDMLj is completely positive trace preserving map we can apply Theorem 2.2
to it. Hence, ife'? is a peripheral eigenvalue afgd) for somed, with eigenvectorX, then

~ ’ f)g IS an Invariant state , whnich we a NOWw.
X| e B4 (ps) is an invari omg” hich Il k

Putting all these ingredients together we have a full description of the pealdigenvalues
of ,Clg.
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Lemma 2.3. [BP] 1. The only peripheral eigenvalue mg)) is 1.

2. If the system is not degenerate, then the only peripheral eigenvaifig is 1 and the
corresponding eigenvectors are diagonal.

3. If the system is degenerate we ndt@), ¢) := {n € {0}UR(n,&)|n+1 € R(n,£)} and
D(n, &) :={d=n—m|n,m € N(n,&),n # m}. Inthis case the set of peripheral eigenvalues
of Lz is given by

{1y U {0 | d € D(n, )}

2.1.3 Convergence results

Thermal relaxation is an ergodic property of the m&pand of its invariant states. For any
density matrixp, we denote the orthogonal projection on the closur&®efip by s(p), the
support ofp. We also writey < p whenevers(u) < s(p).

A statep is ergodic, respectively mixing, for the semigroup generated bwhenever

: 1 n
Jm o 2 (£30) (4) = p(4), 27)
respectively
Jim (L5(p)) (A) = p(A), (2.8)

holds for all stategt < p and allA € B(hs). p is exponentially mixing if the convergence in
(2.8) is exponential, i.e. if

‘(Eg(ﬂ)) (A) — p(A)‘ < CA,M efom,7

for some constant’, ,, which may depend od andy and somex > 0 independent ofi and
1. A mixing state is ergodic and an ergodic state is clearly invariant.

A statep is faithful iff p > 0, thatiss(p) = Id. Thus, ifp is a faithful ergodic (resp. mixing)
state the convergence (2.7) (resp. (2.8)) holds for every gtatel one has global relaxation. In
this casep is easily seen to be the only ergodic state€gf Conversely, one can show thatf
has a unique faithful invariant state, this state is ergodic:

Theorem 2.4. [BP] Let ¢ be a completely positive trace preserving map®ii#). If ¢ has a
faithful invariant statep;,, and1 is a simple eigenvalue @fthenp,, is ergodic.

Using Lemma 2.3, we have the following theorem which is the main result of thi®sec

Theorem 2.5. [BP] 1. If the system is non-resonant th€p has no invariant state fo < 0
and the unique ergodic state
e B hs
PS8 = Tre Ihs
for 8 > 0. In the latter case any initial state relaxes in the mean to the thermal equilibriat® s
at inverse temperaturg* = B%.
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2. If the system is simply resonant thép has the unique ergodic staﬁé{) .if 8 <0and
two ergodic state;ag’)ﬂ*, pfgz)ﬁ* if 5 > 0. In the latter case, for any initial state one has

N
Jim =37 (£3(0)) (4) = p(P2) p. (4) + (P) o). (4),
n=1

forall A € B(hs) (recall Py is the projection onto thé-th Rabi sector).
3. If the system is fully resonant then for aty= R, L3 has infinitely many ergodic states

pg“)ﬁ k=1,2,... Moreover, if the system is non-degenerate,

N

1 n( -
Jim > 7 (£5(0)) (A) =D p(Pi 0) P e (A), (2.9)

n=1 k=1

holds for any initial statep and all A € B(hs).

4. If the system is non-degenerate, any invariant state is diagonalamterepresented as
a convex linear combination of ergodic states.

5. Whenever the sta@s’f)ﬁ* is ergodic, it is also exponentially mixing if the corresponding

Rabi sectomgk) is finite dimensional.

Remarks. i) In the non-degenerate cases, this result implies some weak form dielecme in
the energy eigenbasis of the cavity field: the time averaged off-diaganabithe statecg(p)
decays with time.

ii) If the system is degenerate, (2.9) and the conclusions of Assertiaiil4oéd provided
a further non-resonance condition is satisfied. Namely'(if*+¢™d £ 1 for all d € D (see
Lemma 2.3), then all eigenvectors 6f to the eigenvalug are diagonal.

iii) Numerical experiments support the conjecture that all the ergodic stagemiaing.
However, our analysis does not provide a proof of this conjectdr%c)lﬁs infinite dimensional.
In fact, we will see in the next section thd has an infinite number of metastable states in
the non-resonant and simply resonant cases. As a result, we ekpedte. non-exponential,
relaxation.

2.1.4 Metastable states

If the system is non-resonant we say thatc N* is a Rabi quasi-resonance if it satisfies
D(m) < D(m =+ 1): these are the values ot for which, although it is non-zero, the tran-
sition rate from|m — 1) to |m) is small (and hence more difficult to occur), see (2.5)-(2.6).
Let (my)ren+ be the strictly increasing sequence of quasi-resonances. It is stomightél to
show thatD(my,) = O(k~?) ask — oo. This implies that for largé: the “quasi Rabi sectors”
2({my, ...,mp41—1}) are very weakly coupled and explains why one expects slow relaxation.
To make this statement more precise let

[0 if n € {my,ma,...},
Do(n) := { D(n) otherwise
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andﬁ(ﬁ% =1 — V*Dy(N)e PENYTeAEN  One immediately concludes that

£y =+, (2.10)

where7 is a trace class operator. The analysis of the fully resonant case shatsis an
infinitely degenerate eigenvalueﬁg%. The corresponding positive eigenvectors

ﬁ(k) _ e*ﬁ*hsﬁk

whereP,, denotes the orthogonal projection ortg{0, . .., my, — 1}), are metastable states of
the system. Because of these almost invariant states, the global relaxatesgis extremely
slow in the non-resonant and simply resonant cases. In spectral {&m3) shows that is
always in the essential spectrum 6f. It follows that relaxation can not be exponential in
infinite dimensional Rabi sectors.

One way to see metastable states in action consists in cooling the cavity with cold atoms
Figure 2.1 shows the result of such a calculation. The solid line is the initialsftéte cavity
which we chose to be thermal equilibrium with an average photon number. oft&2 dashed
line is the stationary states g+, thermal equilibrium with an average of 7 photons. The broken
line is the state of the cavity after 5000 interactions. The vertical dashediiasthe positions
of the Rabi quasi-resonances,. The picture shows clearly that local equilibrium is achieved in
each intervalmg, my1[: the slope of the broken line agrees with that of the invariant state on
these intervals. However only the first three intervals have reachethmaon equilibrium. The
average photon number at this stage is still slightly larger than 17. It reck®@00 interactions
for this number to drop under 10. Figure 2.2 shows the corresponditegodtine cavity.

Another way to see these metastable states is to compute the evolution of thetstaivie

stateﬁg)ﬁ* and the relative entropies

Di(n) := Ent (cg (ﬁg)6*>

7,

see [BP], where the relative entropy of two stateBiis(; | v) = —Tr u(log u — logv) and is a
measure of the “distance” betwegrandv.

2.2 Diffusion in a tight binding band

2.2.1 Description of the model

The small system.

The systens consists in a spinless particle on the one-dimensional ldftiaed submitted
to a constant external forde > 0. The quantum Hilbert space and Hamiltonian of the patrticle
are

hs = (3(Z), hs = —-A— FX,
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Figure 2.1: Cooling the cavity: 5000 interactions.
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Figure 2.2: Cooling the cavity: 50000 interactions.
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whereA is the discrete nearest neighbor Laplacian Anthe lattice position operator
A= 2(2 z) (x| — |[z+1)(z] — |z)(z+1]), X = Zx |2) (z].
T€EZ zeZ

We shall also identifyys with L2(T*, d¢) via the discrete Fourier transform, so that
—A =2(1 —cosé), X =i0.

HereT! ~ [0, 27| is the first Brillouin zone and the crystal momentum. If = Z |z+1) (x| =
TEL
e~ denotes the translation operator, one easily shows that:

1. WhenF = 0, hs has a single band of absolutely continuous spectewths) = [0, 4],
and the motion of the particle is described by

T(t) = ethsTe iths =T X (t) = s Xeiths = X +{(T — T*)t,
showing its ballistic nature.

2. WhenF # 0, hs has discrete spectrump(hs) = 2 — FZ. This is the well-known
Wannier-Stark ladder. In the position representation, the normalizedveigteny, to the
eigenvaluer, = 2 — Fk is given by

2

Up(z) = Jh—s (F) , (2.11)

where theJ, are Bessel functions. From their asymptotic behavior for largeee e.g.
Formula (10.19.1) in [OLBC]) we infer that

1 e |k—x|
xT) ~ for |k — x| — oo,
vila) 27|k — x| <F\k—x!> | |

which shows that)(z) is sharply localized around = k. The motion of the particle,
described by

T(t) — eithsTe—iths — e—itFiZ"7
. . 4 Ft Ft (2.12)
X(t) _ eltthe—lths =X + f sin <2) sin <§ + 2> ,

is now confined by Bloch oscillations.

The environment.

As in Section 2.1, it consists of 2-level atoms, each of which has a quaniilertspace
he = C? which we identify withT'_(C), the fermionic Fock space ovél, and a Hamiltonian
given by

he = Eb*b,
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where E > 0 is the Bohr frequency of the atom amnt, b are the usual Fermi creation and
annihilation operators.

The initial state of the two-level atoms will be their equilibrium state at inverse teahpe
[ described by the density matrix

pg = Zﬁ_le_ﬁhf, Zg = Tr(e Phe) =1 4 e PF.

The interaction.

The interaction between the particle and the two-level atom is chosen so tef¢dsis to
give a right or left kick to the particle, depending on whether the atom is inaisrgl state or in
its excited state. More precisely, we set

v=> (Jz+1){z| @b + [2)(z+1|®@b) =T @b + T* .
TEZ
To understand this interaction, note that whern> 0, the translation operatdf can also be
thought of as a lowering operator for the particle. Indeed, from (2h#)finds

T = Yps1. (2.13)

Similarly, T* acts as a raising operator. As a resultiescribes an exchange of energy between
the two-level system and the particle. The model considered here is thusivalar to the one
studied in Section 2.1 except that the spectrum&fcontrary to the spectrum of the mode of
the electromagnetic field, is not bounded from below. As a result, the systetreat here has
no invariant state (see the end of Section 2.2.2).

2.2.2 Interaction with a single atom. The RDML

As for the Jaynes-Cummings Hamiltonidn= hs + he + Av can easily be diagonalized by
exploiting the fact that it commutes with the “number operator”

= +=£. (2.14)

Introducing the unitary operator
U= (Tbv*b+ bb*)cost — (Th* — b)sin¥,

wheref is chosen such that

cos(20) = E- F, sin(20) = Q,

wo wo

and

wo =V (E — F)2 +4)2,
one gets the following explicit formula for the propagator,

eith  [Jeit(E=F)/2itun(b*b=1/2) iths [ (2.15)
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It follows then that

eithX e—ith — eiths Xe—iths

4N? ONE - F t
wp wj 2

A
—i—(Tb" — T7b) sin(wot).

We conclude that the coupling to a single atom does not substantially alter gtetombehavior
of the particle: it turns the periodic Bloch oscillations (2.12) of frequengy., = F into quasi-
periodic motion with the two frequenciess;,., andwg. In particular, wherF' # 0, the motion
remains bounded. As we will see, the situation is very different for tegaateractions with a
sequence of atoms.

The following result describes the RDE); of this system. It follows directly from (2.15).

Lemma 2.6. For anyp € B'(hs), one hasCs(p) = U o Ls(p) = L o U(p) with
U(p) = e ™spel™s  Ly(p) = p_T*pT + pop + p+ TpT™, (2.16)

where
_ e PE _q _ 1
- = 1+e_5Ep7 bo = b, P+ = 1—|—e_5Ep’
; _AN? 2
withp = o sin (%)
If p describes the state of the particle, tHETYT (respectivelyl' pT*) represents the same
state translated by one lattice spacing to the left (respectively right). Notoverthat

p—+potpr =1,

so that the reduced dynamics consists of a free evolution with the Hamilthgidollowed by

a random translation by-1 or 0, and with probabilitieg+ or po. Note that the dynamics is
trivial if p = 0, i.e. if wgr = 27m with m € Z. In that case there is no translation and the
particle evolves according tios. This can be seen directly on (2.15) by noticing that in such a
caseUhsU* = hs + Fb*b. It follows that the propagator factorizes

eiTh _ (_1)meiT(E—F)/2 eiThS ® eiTFb b7

and, up to an inessential phase factor and a renormalization of the atomidr8wglency, the
particle and the two-level system evolve as if they were not coupled. &b&nbles the “Rabi
oscillation” phenomenon which appears in the Jaynes-Cummings model @@n3el.2). In
the following we will avoid this resonance and assymg 0.

We can now see that the system has no stationary state as we already ntemngortbere
exists no density matriy on hs such thatCz(p) = p. Indeed, it follows from the gauge



2.2. DIFFUSION IN A TIGHT BINDING BAND 63

invariancel s (e s p eiths) = e~iths £ 5(p) eiths that the subspacé® () (hs), d € Z, defined
by

BY@D(hs) = {peB'(hs)|e hspeiths = ¢y forallt € R}
= {peB'(s)|p=>_ prltr) (Wrral},
keZ

are globally invariant undefs. Hence, if a state is stationary, so is its diagonal pai§ =
>k PrlVr) (|, wherepy, = (i |pyy). From (2.16) one gets

B

Pk—1 — Zgpi + e PEpri1 =0,

which implies thaip, = a + be®F* for some constants, b € R. But this contradicts the fact
thatl = Trp = ", pi.

2.2.3 Asymptotic behaviour of the particle

Our first concern is the asymptotic behaviour of the patrticle, and morésphgaevith the large

time behaviour of expectation values of some functions of the posKioGiven an observable
B onbhs, we write (B), = Tr(BLj(p)), for its expectation value at time= nr. As already

announced, the following theorem shows that the repeated interactiorstheaiotion of the

particle diffusive. The motion is characterized by a drift velocity

E
va = va(E, F) = gtanh <52> ,

and a diffusion constant
p 2 BE
D=DFE F)=—|(1-— h* [ — .

More precisely, the following holds.

Theorem 2.7.[BDP] Assume that”" > 0, A # 0 andwyr ¢ 27Z so thatp €10, 1]. Let the
density matrixp € B'(hs) describe the initial state of the particle and denotgythe spectral
measures of the position observabfeon the stateg(n),

o (f) = / £() djin(z) = (FCX)) .

1. The Central Limit Theorem (CLT) holds: For any bounded continuonstion f on R,
T — VgnT

i [ 1 (ST dnte) = [ rlre 2 S

2. If Tr (X?p) < 400, then

(X .
lim @ =g, lim
n—oo NT n—o0 nT
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3. If Tr (e*lp) < +oo for all a > 0, then a Large Deviation Principle (LDP) holds in the
sense that, for any interval C R,

.1 .
Jim —log pn(nJ) = — inf I(z),

where!(z) is the Legendre-Fenchel transform of

cosh(38E + a))

e(a) = log ((1 —p)+p (2.17)

cosh %BE

i.e. I[(z) = sup azx — e(a).
acR

Note that whent = F, the mobility

vq Bsin?(\r1)
F—0 F 27 ’

and the diffusion constant
D=pust <1 — sin?(\7) tanh? <B2F>> ,

satisfy the Einstein relation
lim D =ps ! = ukpT.
F—0

The rate function in Part 3 is explicitly given by

- e (B25)) ()

+00 otherwise

where

_ p = 24 a2l — 22
a (1= p) cosh(BE/2)’ R(z) = /22 4 a2(1 — 22).
It is strictly convex on—1, 1] and satisfieg (vq7) = 0 andl(z) > 0 for z # vq7.

Note that the drift velocity and diffusion constant do not depend on thelisitde of the
particle. The CLT gives us the probability to find the particle at timein a region of size
O(y/n) around the mean value;nr, whereas the LDP gives information on this probability
for a region of sizeD(n). To put it differently, it yields information on the probability that the
particle’s mean speed falls asymptotically in an interval of 6izé). Loosely speaking, it says
that

pin({n(vg + 60)7}) ~ e (vatov)T),

The peculiar symmetry(—SE — a) = e(«) immediately leads to the relatiohz) =
—BEx + I(—x) which tells us that

1 v — v, —
lim lim —logun(n[ v — v, —v + dv|T)

= —0F
Svl0 n—o00 NT un(n[v —(5’0,1}—!-(51)]7') BEv,
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i.e. that negative mean velocities are exponentially less likely than positie oDee can
recognize here a form of fluctuation theorem. Indeed, we shall see imettiesection that the
symmetry of the functiore(«) is a direct consequence of a remnant of the Evans-Searles (or
transient) fluctuation theorem (2.18).

2.2.4 Statistics of energy changes

One can also study the statistics of the energy changes of the particleyvitenerent and the
whole system. Note that contrary to what happened in Chapter 1, the sgsieinfinite, its
Hamiltonian is neither bounded from below nor from above, and can tmticously gain or
lose energy.

To study the change in the energy of the atomic reservoir we use the foll@pigrgtional
procedure. The reservoir being initially in thermal equilibrium at inverse teatpe5 and the
particle in the state, we measure the total energy of the reservoir and the particle just before
the first interaction and just after theth interaction. These successive measurements yield the
four valuesEy, o, £y, , € sp Hp, and Eeny 0, Eenv,n € Sp Heny. It Will be convenient to express
the resulting change in energy in terms of the "entropy like" quantities

ASp,n = B*(Ep,n - Ep,0)7 ASenv,n = _B(Eenv,n - Eenv,())a

whereg* = SE/F (it is the same renormalization procedure as for the one-atom maser and the
toy model). We denote b§" the joint probability distribution oS, ,,, ASey,, and byE™ the
corresponding expectation.

Remark 2.1. When applied to electric charge, or more generally to particle number, tioe tw
measurements process described above goes under thefaltroeunting statistic{see e.g.
[ABGK] and references therein). The present application is closer tafgproach to current
fluctuations found in [dR].

Theorem 2.8. [BDP]

1. P*"[ASpn = ASenv,n] = 1. Hence, in the following we set
AS, = ASpn = ASenvn-
2. The cumulant generating function 4fS,, is given by
log E" [eaAS"] = ne(—afFE).

3. Its mean value and variance are

E" [A:”} = —fEvr,  E" [(AS”JFiE“d"T)T = (BE)*2Dr.

4. The CLT holds: For any bounded continuous functjon

. n ASn—l-ﬁEUdnT B _$2/2d7.1‘
o™ [f( BEVaDnr ﬂ‘/ﬂx)e Ners
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5. The sequencgP™),c satisfies a LDP: For any intervalg C R,

1 AS,
lim — logP" ( S € J> = —inf ¢(s),
n

n—oo N sed

with the rate functionp(s) = sup(as — e(—afFE)).
acR

6. It satisfies the transient fluctuation theorem

P (45 = )

n

PRy

n

= e, (2.18)

Part 1. clearly reflects the fact that the “number operator” (2.14) conmsmvith ~ so that

h henv
B*hS + /Bhenv = BE (8 + ) )

F E

is preserved by the repeated interaction dynamics.

The particle’s drift velocity isvq, and one sees therefore that, as expected, its energy loss
per unit time equals the work done Byper unit time. Simultaneously, the environment gains
energy at a ratévg: indeed, the particle moves on averagesteps to the right per unit time,
which corresponds to4 elements of the chain gaining an enety This leads to an average
energy gain or loss ofE — F')vq for the full system. In the special cage = F, these rates
are equal, and the total system neither looses nor gains energy. Thisrisexjaence of the fact
that the interaction term in the Hamiltonian commutes with the free Hamiltonian in thisloase.
general, the total energy is not preserved, which is a reflection of théhat the Hamiltonian
of the total system is time-dependent.

The transient fluctuation theorem (2.18) traduces the symn@étry = 6(1 — «) of the
cumulant generating functiof(a) = e(—afE) of AS,,, showing that the symmetry fer(«)
observed in Theorem 2.7 is indeed a consequence of the transiendfiloistiheorem. Of course
this symmetry is evident from (2.17), but it is actually a consequence of gwversal invariance
as we shall briefly explain. We refer to [BDP] for more details.

Let £5(A) = Try, ((Il ® pGle MA® p};"‘)eith> (this map appears naturally in the cal-
culation of the cumulant generating function, see [BDP]). One can then Ehatﬁg is also
a completely positive map with spectral radius equal(i@). If now C denotes the complex
conjugation on/?(Z), i.e. Cvy(z) = ¢(z), then the anti-linear involutiod@(A) = CAC*
implements time-reversal of the particle’s dynamics and one can prove thall fo € R,
(L5)"=Co Eé‘o‘ o C, from which the symmetry(1 — o) = 6(«) immediately follows.

Since—’%s ~ X, we expect a very similar result for the position incremad,, = X,, — X
obtained from a double measurementofat timet = 0 and¢ = n7. Indeed, the distribution
Q™ of AX,, satisfies the following.
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Theorem 2.9. [BDP]

1. The cumulant generating function AfX,, satisfies

g(a) = lim 1 log Q" [eaAX”] =e(a).

n—oo n

2. Its mean value and variance satisfy

lim Q" [An)in} . o [(AXn - vdnr)z] _up

3. The CLT holds: For any bounded continuous functjon

s 1 (235527 - 10

4. The sequencg@Q"),cn satisfies a LDP: For any intervalg C R,

1
lim —log Q"

n—oo n

AXn
n xzeJ

€ J} — inf I(z).

5. It satisfies the asymptotic fluctuation theorem

W [AXn ¢ [y So. ot
BE(v —dv) < lim llogQ [nT €[-v v, =V + v]]

< BE(v + 6v),
n—00 1 @”[%e[v—dv,vadv]] < BEW v)

forv €] — 1,1 anddv > 0, small enough.

Remark. This last fluctuation theorem is neither of transient type (it is valid only in thgelar
time limit) nor of stationary type since the dynamics has no stationary state.

Note also the similarity with Theorem 2.7. This last theorem describes the position
crement of the particle instead of the position itself. In particular, it doegeuptire sharp
localization of the particle position at tintg contrary to Theorem 2.7.
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Chapter 3

Hamiltonians on the bosonic Fock
space

In this chapter we study two classes of Hamiltonians which are used as simpéfigidns of
Hamiltonians arising in various contexts of quantum physics. The commorrdeafuhese
Hamiltonians is that they will act, at least partially, on the bosonic (or symmetoch Epace
I'4(h) over the one-particle spade The results presented here come from the two articles
[BD1, BD2].
Throughout the chapter we will denote by, (h) the bosonic Fock space, i.&(h) =

%, @%b, by " (h) := @h then-particle sector and by (h) the finite particle subspace,

ie. T (h) = { = (¥™), e T (h) | ¥ = 0 for all but finitely manyn’s}.

3.1 Generalized spin boson Hamiltonian

In this section, we consider a class of Hamiltonians which arise in quantusigstas simplified
Hamiltonians describing a small quantum system described by the Hilbed Apainteracting

with a bosonic field. For instance, the dipole approximation to nonrelativistid QEf this

form. More precisely, we are interested in self-adjoint operators ofcthme f

H=Hs®1+1 ®/ h(k)a*(k)a(k)dk +/v(l<:) ® a*(k)dk +/ v(k)* @ a(k)dk, (3.1)

acting on the Hilbert spacll = Hs @ I'y(h), whereh = L2(R4; C"). The operatoifis is
assumed to be self-adjoint 6#is, h(k) describes the dispersion relation of the bosons and is a
multiplication operator by a non-negative self-adjoint matrix@h andv (k) is a function with
values in operators 0H.s which is responsible for the interaction between the small system and
the bosons.

There is no universally accepted name for operators of the form (8.][DG1, DJ1, GGM,
Ge] they are called Pauli-Fierz operators or Pauli-Fierz Hamiltonians. Wowsometimes the
same expression “Pauli-Fierz Hamiltonian” is used to denote slightly differgjects [HVV,
HS]. In order to avoid confusion, we will call them “generalized spindmjdHamiltonians (the

69
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usual spin-boson Hamiltonian fits into this framework wH = o, acting onHs = C?, h(k)

is a multiplication operator oh = L?(R%) and represents the energy of a boson of momentum
k, e.g.h(k) = vm? + k? wherem > 0 is the mass of the bosons, angk) = o, x f(k) with

f (k) a so-called form factor describing the interaction).

One of the results about generalized spin-boson Hamiltonians that canrzkih the litera-
ture says that the essential spectruntiois shifted to the right from the bottom of the spectrum
of H by the “mass”inf sp(h). This theorem was first proven in [DG1]. It resembles the HVZ
Theorem about many-body Schrédinger operators [RS4], and adecsil it a HVZ-type theo-
rem. Itis obvious that if the “mass” is positive, the HVZ-type theorem then imapiie existence
of a ground state. It turns out that even in the massless case, undeadditienal assumptions,
one can show that there exists a ground statd dlhat “sits” at the tip of the continuous spec-
trum. This result was first proven in [AH, BFS] for a small coupling constén [Sp] this result
was extended to an arbitrary coupling constant for a Hamiltonian satisfpiag@ropriate con-
dition that allows to use the Perron-Frobenius method. In the work of GfEa] the existence
of a ground state was proven for a large class of generalized spambtesmiltonians without
using the Perron-Frobenius method. See also later work [A, GLL].

In [BD1] we extend the HVZ-type theorem of [DG1] and the theorem alioel existence
of a ground state from [Ge] to a larger class of Hamiltonians. In Equatidr) (@ used the
formalism of “operator valued distributions* (%), a(k), which is a common approach to cre-
ation/annihilation operators. Here, we will not use this formalism and in p&ati@onsider
interactionsy which will not be “fibered” with respect to the variabteand also defined only as
quadratic forms (front{s to Hs ® h). Operators of the form (3.1) appear in various contexts in
guantum physics, and it is therefore natural to consider as genstahpions as possible. For
example, the use of quadratic forms turns out to be of some importance if amts o allow
some weak ultraviolet singularities in the study of the Nelson Hamiltonian [M3].

The use of more general/abstract Hamiltonians leads to somehow generalieetthiques
commonly used in this context. One of the techniques that proved poweth# istudy of 2nd
guantized Hamiltonians is the so-called pullthrough formula. It was used irattheworks of
Glimm, Jaffe and Rosen on constructive quantum field theory, for instaribe work of Rosen
on higher order estimates [Ro]. In [AH, BFS, Ge] it is used as an impostaptin the proof of
the existence of a ground state for Pauli-Fierz operators. The verfsibe pullthrough formula
usually employed has the form

1 a(k) H = (H + h(k)) 1@ a(k) +v(k) ® 1. (3.2)

This formula depends explicitly on the identification of the one-particle spditethhe space
L?(dk), which should not play a role in the arguments. (Besides, the annihilatioatope(k)
is not even closable. It can be interpreted as an operator valued distibwhich is a little
awkward mathematically.) In [BD1], a more abstract version of (3.2) has Ipeoposed. It
takes the form

AH= (H®ﬂh+ﬂy®h)A+v,

whereA : T (h) — ', (h) ® b is a so-called Pullthrough Annihilation Operator (the adjoint of
AissimplyA* : T, (h)@h > ¥ ® f — a*(f)¥ € I'y(h), see Section 4 of [BD1] for more
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details). This abstract version of the pullthrough formula has recently bsed in [GeHPS] to
study the existence of a ground state for the Nelson model on static space-time

3.1.1 Description of the model and Assumptions

We assume thalls is a positive self-adjoint operator dis (actually, bounded from below
is sufficient but we take it positive for simplicity), aridis a positive self-adjoint operator on
h = L2(R%C"). We callm := infsp(h) the mass of the bosons. The free Hamiltonian is
defined as

Hy=Hs® 1+ 1®dIl'(h).

One of the generalization is that we allow for coupling operatonghich are only defined
as quadratic forms frorfs to Hs ® h. Contrary to (3.1) wherey := v(k)y € L?(R%;Hs) ~
Hs ® L*(R?)), we do not necessarily assume thas “fibered” with respect td: and hence
write a(v)/a*(v) for [v(k)* ® a(k)dk / [v(k) ® a*(k)dk. Of coursen(v) anda*(v) will be
defined only as quadratic forms as well.

Let us briefly recall the basic notation on unbounded forms that we will ifise; and#»
are Hilbert spaces, a formfrom #; to H5 is a map

Domy x Dom, 3 (®,¥) — (®,v¥) € C,

whereDom,, are subspaces 6{,,, called the right/left domain of. If v can be extended
to a bounded sesquilinear map, then we denot@djyits norm. If moreoverh;, resp. ha, is
a closed densely defined operator &n, resp. Hz, thenhyvh; denotes the form®, ¥) —
(h3®|vhy W), with right domainDom, (hgvh) := {¥ € Dom(h;)|h1¥ € Dom,v} and left
domainDomy(hovhy) := {® € Dom(h3) | h5® € Domjv}.

We can now describe the interaction operdtorLet Dy be a dense subspace®f con-
tained inDom Hé/Q, ho a dense subspace pfcontained inDom ~'/2, andv a quadratic form
from H s to H.s @b with right domainD, and left domairDy ®41s ho, i.€. v : Do ®aigho X Do >
(¢, ) = (¢, v9) € C, and wherep,), denotes the algebraic tensor product. We define the anni-
hilation forma(v) as a form with left and right domaiR ® .1, I"a15 (ho) (the algebraic symmetric
Fock space oveyy). It is defined for® € Dy ®,1q Fg}g(bo) andV¥ € Dy ®ylg Fglg(bo) as

0, m#n—1,
(®,a(v)¥) :=
V(@ @ 120D W) =n — 1.

The creation formu*(v) is defined as*(v) := (a(v))" . (Here the* denotes the adjoint form.)
The interactiorV/ is then defined as the quadratic form

V =a(v) +a*(v).

For the convenience of the reader, we finally gather here the varisusnaions we will
use throughout this section.

The first assumptiofSB1)is the minimal assumption which serves to define the operator
H=Hy+V.
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(SBL)  lim [|(Tys ® A™/2)o(t + Hs) ™2 < 1.

The second assumption describes the confinment of the small system (ptiemkaf a particle
submitted to a confining potential, or even a finite dimensional system).

(SB2) (1 + Hs) ! is compact.

Our next assumption concerns the dispersion relation of the bosons.

(SB3) h is the multiplication operator by a continuous functi@®f: > k — h(k) € B(C") such
thath (k) is selfadjoint positive for alk, Vh € L>°(R%, B(C")) and|k1|im (inf h(k)) =
—00

—+00.

If we denote byx the operator oy equal tox = —iVy, then, using Assumptio(SB3), one
easily sees that for any> 0, ¢ > 0, the operatot _,., (|x|)1j,4 (k) is compact. Moreover, let
f, g be bounded measurable functions®rsuch thatim,_,, f(t) = 0, lim;— 1. g(t) = 0,

then f(|z|)g(h) is compact. This assumption is used, e.g. in the HVZ-type theorem 3.2, to
perform localization in configuration space.

(SB4) (I, ® h™Y/?)u(1 + Hs)~'/? is compact.

(SB5) (s ® h~Y)u(1 + Hs)~'/? is compact.

Note that AssumptioiSB4)implies (SB1). In fact, (SB4)impIiestlim |(Tgg ® Y 2)u(t +
—00
Hgs)~'/?|| = 0. Note also tha{SB4)implies (SB5)wheninf sp(h) > 0.

(SB6) v can be splitas = Tl @ |2) + Vren, Wherez € Dom(h~1/2) and (g @ h™ ) vgen (1 +
Hs)~'/2 is bounded.

3.1.2 Main results

Of course the first issue is to show that the generalized spin-boson Haarilisrwell defined.
This is the purpose of the following:

Proposition 3.1. [BD1] Suppose that := lim || (I © h=Y2)u(t + Hs)"Y/?|| < co. Then
the formV is form bounded with respect #, with the Hy-form bound< «. As a consequence,
if Assumptior(SB1)holds, then the operatdd := Hy+ V is well defined as the form sum. The
form domains of{, and H coincide, that isDom|H|% = Dom|H0|%.
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The first main result is the HVZ type theorem which says that the essergigtem of H is
shifted to the right from the bottom of the spectrumfbby the “mass’inf sp(h). Our result is
similar to the one proven in [DG1] but with weaker assumptions.

Theorem 3.2.[BD1] Suppose AssumptioiSB2), (SB3), (SB4)are true. Then
SPess = [inf sp(H ) + inf sp(h), +o0].

Our next result concerns the existence of a ground state and is aligatéon of a result of
[Ge]. Theorem 3.2 clearly implies the existence of a ground staté ép(h) > 0. In the case
infsp(h) = 0, we need the stronger assumpti@B5) (recall that(SB4) implies (SB5)when
infsp(h) > 0). Itis well-known that the main issue to prove the existence of a groundistate
related to the so-calledfrared catastrophyif the mass of the bosons is zero, i sp(h) = 0,
one can a priori have infinitely many “soft” bosons (bosons of low ey)argthe ground state
which makes it leave the initial Fock space (one then has to turn to anotitesegpation, see
e.g. [Ar]). The role of assumptiofEB5)is precisely to control the number of these soft bosons.

Theorem 3.3.[BD1] Suppose that Assumptio(SB2), (SB3), (SB4), (SB5)are satisfied. Then
inf sp(H) € sp,,,(H). In other words,H has a ground state.

In the particular case wherecan be splitted as in AssumptigS8B6), our last result gives
a necessary condition for the existence of a ground state. This is aatieaion of a result of
[DG2].

Theorem 3.4.[BD1] Assumev satisfies AssumptidisB1l)and(SB6) If H has a ground state,
thenz € Dom(h™1).

One can see this result as a sort of reciprocal of Theorem 3.3.dndechave the following
corollary.

Corollary 3.5. [BD1] Suppose AssumptioiSB2)and (SB3)are satisfied. I satisfieqSB6)
with v, Satisfying also AssumptioiSB4)and (SB5) Then,H has a ground state if and only
if 2 € Dom(h™1).

3.2 Quadratic Hamiltonian on Symmetric Fock space

In this section we consider purely quadratic Hamiltonians (also called Bogelidbmiltonians
for reasons which will become more transparent later) on the symmetricdpade, that is, of
self-adjoint operators on a bosonic Fock space formally given by pression of the form

H = /h(k)a*(k)a(k)dk:+;/v(k,k’)a*(k:)a*(k’)dkdk’
-1—;/v(k,k’)a(k)a(k’)dkdk’—i—c,

whereh(k) is a real function oy = L?(K,dk) for some measure spa¢f’, dk) = (i.e. the
“free” one-particle Hamiltoniar is a multiplication operatory(k, k') is a complex symmetric
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function onK x K andc is a constant which may be infinite. Actually, as in Section 3.1, we
will not use such a “fibration” with respect foand write (still formally)

H =dI'(h) + %az(v) + %ag(v) +c. (3.3)
When} is finite dimensional this expression is not just formtais then interpreted as a self-
adjoint operator ofy, andv can be usually interpreted in two ways: either as a vectoy?Zi —
a symmetric 2-particle vector, or as an antilinear operatdy satisfyings = v* wheref — f
is a fixed complex conjugation off. The operatorsiz(v)/a%(v) denote here the quadratic
annihilation/creation operator associated to the 2-particle vecod are defined by

ay(V)¥ :=vVn+2Vn+1v eV, U eI (h),

az(V)¥ = vVn +2vVn+1{v| @ 19", T e TH(Y),

where(v| @ 1" : TT2(h) 5 i ® -+ @ frro = (Vi@ f2) f3 @ ® fara € T(h). (These
operators are well defined dii"(h) and can be extended om(N) whereN is the number
operator.)

There exist explicit formulas for various quantities related to BogoliubowmiHanians.
Therefore, they are often used in physics literature as useful exadtgbde models. There
also exists an extensive rigorous literature devoted to Bogoliubov Hamilgnstarting with
the work of Friedrichs [F]. Later many authors, often independentlynefanother, studied this
problem, among them one should mention Berezin [Be], Ruijsenaars [Ri2], Raki and his
collaborators [A, AY], Matsui and Shimada [MS].

Bogoliubov Hamiltonians are very well understood in the case of a finite nuailoegrees
of freedom. Their theory becomes more difficult when the number of dsgwé freedom is
infinite (in other words, when the one-particle Hilbert spgde infinite dimensional), which is
the main topic of [BD2]. (Note, however, that even in the case of a finite eumbdegrees of
freedom properties of Bogoliubov Hamiltonians are interesting.) In theafee® infinite num-
ber of degrees of freedom we will not use the formula (3.3) to define@Bdgpv Hamiltonians.
This is due to several problems, e.g.:

1. v may actually be not an element®h, but only an unbounded linear functional on this
space, which means thaf(v) is not an operator but a quadratic form. (If we consider
as an operator oh, v € ®2h corresponds to a Hilbert-Schmidt operatorpwhile we
will consider operators which are just bounded).

2. ccan be infinite, which means that the definitionfbfnvolves an infinite renormalization,

In order to define Bogoliubov Hamiltonians, we will have to come back to thesSdal
system” associated to the Fock sp&ggh). Bogoliubov Hamiltonians will then appear as gen-
erators of strongly continuous unitary groupst) which implement ol", (), if possible, the

Themapl : h® b > ¢ ® ¢ — |¢) (| € B2(h), the space of Hilbert-Schmidt operators, extends by linearity
and defines an isometry from® b to the set3?(h) of all Hilbert-Schmidt operators oip If moreovery € § ® b,
thenT'(v) = T'(v)*
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group of Bogoliubov automorphisms associated to a given one-parametgyigt¢) of sym-
plectic transformations on the classical space (hence the name Bogolianoidhians), see
Section 3.2.3. Of course, this definition will make Bogoliubov Hamiltonians defimdy up to
an additive constant, and one can ask whether there exists a nattica ttred allows to fix it.
We will introduce two kinds of Bogoliubov Hamiltonians: type |, characteriagthe vanishing
of the expectation value at the vacuum (ice= 0), and type Il, characterized by the fact that
their infimum equals zero. We give sufficient conditions so that they alledefined. We also
show, via a simple concrete example one can fully analyze, that there agist evhen only
type | Hamiltonians are well defined, even though the classical Hamiltoniarsisvygo(which
may be interpreted as a kind of an infrared catastrophe), and casasontyetype Il are well
defined, which means that one needs to introduce an infinite countertermforhula for the
Hamiltonian (i.e.c in (3.3) undergoes an infinite renormalization).

3.2.1 Classical system associated Ia (h)

Classical system
To define the classical system associated to the Fock $padg, we first fix a conjugation

f — fonb. If Aisan operator oh, A will denote the operator defined byf := Af. We then
introduce two real vector spaces:

YV:={(f,f) : feb} and Y:={(z,2) : z€b}.

The spacé@’ has the meaning of thetassical phase spac# our system an@d’ serves as its dual.
The duality is given b@Re(z|f) = (z|f) + (f]2)-

The form onY, which fory, = (f1, f1), y2 = (fg,fg) is given by

o(y1,y2) = 2Im(f1|f2),

makes) a symplectic space.
Elements ofy naturally parametrize the so-called field operators and Weyl operators on
Iy (h). Fory = (f, f) € Y they are given by

o(y) = a*(f) + a(f), W(y) =@ (NHalf),

They satisfy the usual canonical commutation relation (CCR)y; )W (y2) = e~ 30(W1y2),

Quantization of a classical observable

If 3:Y — Cis a function that belongs to an appropriate class, i.e. a classical obkgrva
then its Weyl quantization will be denotéolp(5). Let us list a couple of Weyl quantizations
which will be relevant in this section, and wherés an operator ofy andv € ®2h ~ B2(h)
(the set of symmetric Hilbert-Schmidt operators):

1. Y5 (2,2) = B(z,2) = (z|hz), = Op(B) =dL'(h) + $Tr (h);
LYV 3 (2,2) = B(2,2) = (2 ® 2|v)pey = (2,0Z)y, = Op(B) = aj(v);

2
3.V3(2,2)— B(52) = (v]z® 2)pen = (Z,02)y, = Op(B) = az(v).
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As an illustration, ify = L?(K, dk) then the three above examples become respectively
1. For3(z, z) = [ h(k)z(k)z(k)dE, then

% /K h(k)a*(k)a(k)dm% /K h(k)a(k)a® (k)dk

Op(B)

_ / h(k)a* (k)a(k)dk + S Tr(h).
K 2
2. Forp(z,z) = [, g v(k, k") Z(k)Z(K")dkdK’, then

Op(8) = / o, K)a* (k)a* (k) dkdk'

KxK

3. FOrB(2,2) = [y, 0(k, K')2(K)=(K')dkdK’, then

Op(B) = o(k, K)a(k)a(k')dkdk .
KxK

Symbol of an operator
If z € b, then

2|2

Q= 2 e 0 = W((~iz,i2))0

is the coherent vector localized arount the point in phase sfpaeg € ). This family of
vectors can be used to define the Wick symbol of an opefatacting onl';(h). It is equal to
the function on phase space given by

sp(Z,2) := (1| BQ:).
Let us give examples of Wick symbols relevant here:
1. B=dI'(h) = Y3 (z,2)+— sp(z,z2) = (z|hz),
2. B=a5(v) = Y>35 (z,z2) —sp(zz2) = (2R zv),
3. B=a(v) = Y3 (z2) —sp(zz2) = (vz® z).

In particular, the Wick symbol of the quadratic Hamiltonian (3.3) is

_ 1 1
sp(z,z) = (z|hz) + 5(2 ® z|v) + §<U|Z ® z).

Classical Hamiltonian
Let » be a bounded linear map Qi It can be extended uniquely to a bounded complex
linear map orh @ b, and thus can be represented as

_ (P 9
T—(qp), (3.4)
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wherep is a linear and; an antilinear map of. We say that a mapon ) is symplectic iff it is
invertible and preserves the symplectic fasimit is easy to see that a maps symplectic if and
only

pa—qp = 0, @p*—pg = 0.
In particular, ifr is symplectic, thep*p > 1 and therefore is invertible.

One of the central objects in this section will be strongly continuous grofipgnaplectic
transformations. Let — r(t) be such a transformation (with(¢), ¢(¢) as in (3.5)) and: its
generator, that is;(t) = e'®. Theclassical Hamiltonian of — r(t) is defined as the function
on the phase space given by

*n— g = 1 * *— 1
{p_p 7'q , pp*—qq , (3.5)

_ 1
Y D Dom(a) >4y — x(y) := 50(1/, ay).

(Note that in the case of the classical Hamiltonian we always normalize it sg tthat 0. An
analogous normalization will not be always possible in the quantum case).

Proposition 3.6. Suppose thai can be written as

.( h —v
a:1<@ _;3)’ (3.6)

where h is a selfadjoint operator with dor_naiDom(h), v is a bounded operator such that

v* = v, and Dom(a) = Dom(h) ® Dom(h). Thena generates a strongly continuous one-
parameter grougr(t)):cr of symplectic maps and its classical Hamiltonian is

YNDom(h®h) > (z2) = x(z,2) = (z]|hz) + %(z ® z|v) + %(v\z ® z). (3.7)

A first natural definition of Bogoliubov Hamiltonians would be to consider theyMduan-
tization of the classical Hamiltonian which is indeed of the form (3.3), with 2Tr(h). This
imposes severe restriction én(to be trace class) and is therefore quite restrictive. We shall
therefore define them in different way, and to understand how wecbrstider the simple case
whereh has a finite dimension.

3.2.2 Quadratic Hamiltonians in the case of a finite number oflegrees of freedom

In this section we assume thiahas finite dimension. The theory of Bogoliubov Hamiltonians
is then fully understood. Let(t) = e be a continuous symplectic group 9h Thena is
always of the form (3.6), so that the corresponding classical Hamiltagigiven by (3.7). In
the case of a finite number of degrees of freedom we define Bogoliuamilténians associated
tot +— r(t) by the formula

H = dr(h) + %a;(v) + %ag(v) +e, (3.8)

wherec is an arbitrary real number. Note that wheg: 0 the Wick symbol ofH coincides with
its classical Hamiltonian. The operathris essentially self-adjoint obom (V).
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A special choice of a Bogoliubov Hamiltonian is given by setting %Tr(h). As already
mentioned, this leads to the Weyl quantizatiop(x) of the classical Hamiltoniary. The
following theorem is well known:

Theorem 3.7. Set
k(t) == qt)p(t)~",  1(t) == —p(t)"q(t). (3.9
Then

etOPC) = det(5(t)) "/ 2e~ 2D ((p(t)~1)*)e~22(®) | (3.10)
eitop(X)W(y)e—itOp(x) = W(r(t)y), yel.

One sees from (3.10) that the Bogoliubov Hamiltontar= Op(y) implements the Bogoli-
ubov dynamics defined by the continuous symplectic graap This is this property that we
shall use in the general case to define Bogoliubov Hamiltonians. Of cdbesgeneratofd is
then defined only up to a constant and we shall consider some of its nctioregs.

The first choice, called type 1, is when= 0 and is always defined for a finite humber of
degrees of freedom. The other choice (so-called type Il) will be citeriaed by the fact that its
infimum is zero. Such a choice is possible only if the Bogoliubov Hamiltonian iaded from
below. In the case whefeis finite dimensional we have the following

Theorem 3.8.[BD2] If dim(b) is finite, a Bogoliubov Hamiltonian is bounded from below iff
the corresponding classical Hamiltonian is positive. Then we have

R2—wv ho—oh \'? (ko0

hv —vh h? — o 0 h ’
In this case, the Bogoliubov Hamiltonian of type Il would thus correspond to

W2—w ho—oh \'* (k0

hv —vh h? — v 0 h '

3.2.3 Implementability of Bogoliubov automorphisms. Type land type Il Bogoli-
ubov Hamiltonians

1 1 1
mfsp (A0 + Ga3(0) + joa(e) ) = T

1
C = —ZTI'

If r is a symplectic map opY, then the operatord/,.(y) := W (ry) also satisfy the canonical
commutation relations. (One says that they form another representatiom GZtR.) The map
r is calledimplementabléef and only if there exists a unitary operatbron I', (h) such that
UW (y)U~! = W(ry), Yy € Y. (In other words, the two representatidhandl¥,. are unitarily
equivalent.) If it existslJ is called a Bogoliubov implementer of

We writer = g ; as in (3.4) and defing and! as in (3.9). The following result is
well known (see [Be] Section 1.4, [Rul, Ru2, Sh]).

Theorem 3.9. Letr be a symplectic map. The following are equivalent:

1. r is implementable.



3.2. QUADRATIC HAMILTONIAN ON SYMMETRIC FOCK SPACE 79

2. q € B%(p), or equivalently]r, j] € B%(h © h) wherej = < (1) E)i )

If the above conditions hold, then
(i) the operatorsk andi belong toB2(h) and |||, ||| < 1;

(i) the operator
Unat = det(l — k*k)1/467%a;(k)f‘((pfl)*)e*%tw(l)

is well defined o™i (h), extends to a unitary operator dn (h), and implements. We
call Uy, thenatural Bogoliubov implementer of

(iii) all Bogoliubov implementers of are proportional toU,,;

(iv) Uyat is the only Bogoliubov implementer whose expectation value on the vacuasi-is p
tive: (Q|UpnatQ) = det(1 — k*k)/4 > 0.

The equivalence between 1. and 2. is known as Shale’s Theorem.
We now turn to strongly continuous one-parameter growpsof symplectic maps.

Definition 3.10. A one parameter symplectic groufx) is called implementable if and only if
there exists a strongly continuous unitary groigt) such that, for allt, U(t) is a Bogoliubov
implementer of-(¢). If »(¢) is implementable, the unitary groug(¢) implementingr(¢) is
called a unitary Bogoliubov dynamics and its self-adjoint generafois called a Bogoliubov
Hamiltonian (associated to(t)).

One can actually prove thatt) is unitarily implementable under very weak assumptions.

Theorem 3.11.[BD2] Supposer(t) is a strongly continuous one-parameter symplectic group.
Thenr(t) is implementable if and only ifq(t)|2 < oo, i.e. q(t) € B2(h), for all ¢+ and

lin lg(t) 2 = 0.

Since a Bogoliubov implementer of a symplectic majs unique up to a phase, #t) is
implementable then there existg) € C, |c¢(t)| = 1, such thalU (t) = ¢(t)Upat(t), and where
Unat(t) is the natural Bogoliubov implementer oft). c(t) will be called the natural cocycle
for U(t). Obviously a Bogoliubov Hamiltonian is also defined up to a constant. Letacsitde
more precisely the two natural choices we will consider.

The first one would amount to take= 0 in (3.3). Since we have no explicit formula féf
in the general situation, we need for a definition which bypasses it. Letras back to the case
where dinth) is finite and denote byi; the Bogoliubov Hamiltonian witle = 0. Using (3.10)
we have B

eitHI _ det(ﬁ(t)eith)_l/Qe_%az(l(t))F((p(t)_l)*)e_%“2(l(t)).

The operator: is defined fronp(t) by %p(t) [+=o= ih, and the determinant makes sense pro-
videdp(t)e~*" — 1 is trace class. In the general case, this leads to the following:

Definition 3.12. Lett — r(t) be an implementable symplectic group. We say that it is of type |
if and only if there exists a self-adjoint operatlion i) such that:
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i) there exists a dense subspdgeC h such that, for anyf € b, p(t) f is differentiable at
0 with §p(t) f[i=0= ihf,

i) p(t)e " —1 € Bl(h) forall t € R,
o —ith _ _
i) Lim |[p(t)e 1y = 0.

In this casef is defined uniquely, and we set

Ur(t) = det(p(t)e™) /22 HOID((p(t)~)*)e 2200, (3.11)
cr(t) = det(p(t)e™) " 2det(1 — k(t)*k(t)) /4. (3.12)

The operatorH; = %%Uf(t) [+—0 is called a Bogoliubov Hamiltonian of type .

The second choice is simpler to define. This is the one which corresporiagweéd as
ground state energy df.

Definition 3.13. An implementable symplectic groufx) is of type Il if and only if it has a
bounded from below Bogoliubov Hamiltonian (and hence all its Bogoliubawiltanians are
bounded from below).

If r(¢) is of type Il, we define the Bogoliubov Hamiltonian of type Il to be the unigue a
sociated Bogoliubov Hamiltonian whose infimum of spectruth W&e denote it byH;;. The
corresponding Bogoliubov unitary dynamics is dendtieg(t) = e'*/11.

As we have seen in the previous section, for a finite number of degrde=edbm, all one-
parameter symplectic groups are implementable. They are always of tygehenare of type
Il iff the classical Hamiltonian is positive. As we shall see, the situation is caelgldifferent
in the general case.

3.2.4 Generators of type | and type Il symplectic one-paramigr groups

Contrary to the finite dimensional case, we do not have necessary #iicteaticonditions in
general for the existence of type | or type Il Bogoliubov Hamiltonians. i $kction, we give
some sufficient conditions on the generataf the symplectic group(¢) which guarantee that
r(t) is implementable, i.e. a Bogoliubov Hamiltonian is well defined, is of type |, reg Ity

The first result concerns the implementabilityr¢f) and is essentially due to Berezin [Be]
(Section 111.6, Lemma 3).

Theorem 3.14.[BD2] Suppose that the assumption of Proposition 3.6 is satisfied. Define
t -
w(t) := —i/ e'Thpel™dr. (3.13)
0

Suppose also that for afl w(t) € B2(h), the functiont — |Jw(t)||2 is locally integrable orR
and continuous at = 0. Thenr(t) is implementable.
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Obviously ifv itself is Hilbert-Schmidt, so that,(v) anda3(v) are defined as operators and
not only as quadratic forms, then the above Theorem applies.

Our next result concerns the existence of type | Hamiltonians. Againnibearaced back
to [Be] (Section II.6, Lemma 4).

Theorem 3.15.[BD2] Suppose that satisfies the assumptions of Proposition 3u6t) is de-
fined as in (3.13) and satisifes the assumptions of Theorem 3.14. Ifveotea(t) is trace class
and¢ — ||ow(t)]]1 is locally integrable and continuous at zero, thei) is of type .

Again, the above theorem applies wheis Hilbert-Schmidt. Formally, it is easy to see that
the Bogoliubov Hamiltonian of type | is indeed given by (3.3) wite= 0. We can make this
precise ifv is Hilbert-Schmidt.

Theorem 3.16.[BD2] Supposev is Hilbert Schmidt. Then

1. The operatot; = dI'(h)+ 5 (a3(v) +as(v)) is essentially selfadjoint of := I'i"(h) N
Dom(dI'(h)).

2. Uy andcy defined as in (3.11) and (3.12) satisfy

Ur(t) = lTr (Jy a(s)vp(s)~"ds) _’a2(k(t))r((p(t)—1)*)e Lax(1())

)

C[(t) _ 'Re Tr( fO s) 1ds))

3. Hj is the Bogoliubov Hamiltonian of type I: thatér = U;(¢).

4. LetH be a Bogoliubov Hamiltonian associated witft). Then the vaccuf? € Dom(H)
andH = Hj iff (QHQ) = 0.

Remark 3.1. SinceI'(h) C Dom(a}(v) + a2(v)), the operatorH; is therefore essentially
selfadjoint onDom(dI'(k)) N Dom(a3(v) + a2(v)). The strategy of the proof for the essential
selfadjointness comes from [Be] (Theorem 6.1) and goes back to Carlgbad However, the
proof in [Be] is not completely rigorous. A similar result has also beeovpn in [IH] whenh

is bounded.

Finally we give a result which allows to ConS|d§r(a2 ) + a2(v)) as a perturbation of
dI'(h). In this case both type | and type Il Bogoliubov Hamiltonians exist.

Theorem 3.17.[BD2] Let h be a positive selfadjoint operator dnand suppose that /2 @
h=1/2)w € h @z h andh~2v € B(h). Thenay(v) + a’(v) is dT'(k) bounded with relative
bound less thag||(h~1/2 @ h=1/?)v|.

As a consequence, if morem)(k;‘frl/2 ®h‘1/2)vH < 1 then the operator (3.3) is selfadjoint
on Dom(dI'(h)) and bounded from below. In particular, the symplectic gregf generated
by a given by (3.6) is both of type | and type Il, and (3.3) coincides with the tgmgbliubov
Hamiltonian H;.
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Note that we used different meaningswoin the two conditions on: 2-particle vector or
operator orf). Note also that these conditions resemble the condition one can find forthe Va
Hove and the generalized spin-boson Hamiltonians (see e.g. [D, DJHeidn 3.1), where a
perturbation linear in the annihilation and creation operators, instead dfati@ is involved.

To end this section, we consider the simplest “infinite dimensional” case. Namely
¢2(N) with its canonical basige,,).cy andh andv are both diagonal, i.e.

hi= halea){enl, 0= valen)(@nl, (3.14)

and where thé,, are real numbers so thatis selfadjoint. We can identify @ § with ©,,C?
and the operatat with &, [ Z" :Z” }

Note that (3.14) is equivalent to assuming that = vh and that there exists a basis of
eigenvectors ok.

Our goal is to describe, in this simple situation, what are the one parametefesyimp
groupst — r(t) which are implementable, which are those of type |, and those of type lle Mor
precisely, using the previous theorems, we have

Theorem 3.18.[BD2] Consider on/?(N) the operatorsh andv defined by (3.14).

(i) t — r(t) defines a strongly continuous one parameter group of symplectic mapsd if
only if v is h-bounded with relative bound strictly less than one, i.e. there existg0, 1|
andj > 0 such that for alln € N, |v,,| < ahy,| + 8.

[on |
1+h2

(i) t— r(t)is implementable if and only }f < +00.

[vn|?
T+]hn

(iii)y t— r(t)is of type lifand only ify < 400.

[vn|®

(iv) ¢+ r(t)is of type Il'if and only if2,, > |vy| forall nand} =0 < +o0.

Remark 3.2. The classical hamilotnian is positive if and only:if > |v,| for all n. (iv) there-
fore shows that there are examples where the quantum Bogoliubov Haanlisrunbounded
below although the classical Hamiltonian is positive: w@w}% diverges. Moreover, (ii)
shows that this is due to the small eigenvalues.ofit may thus be interpreted as a kind of
infrared catastroph as we mentioned in the introduction.

On the other hand, (ii) and (iii) show that there are Bogoliubov Hamiltoniah&kware not
of type I. In other words, in order to express them in terms of creatioisamihilation operators
one needs to add an infinite constant, i.e. perform some renormalizatiaeol, (ii) and (iii)
also show that this is due to the large eigenvalueg,afe. to ultraviolet divergencies.



Chapter 4

Some results about random matrices

This chapter contains two results conserning random matrices but widabf &ery different
nature. In the first section we consider i.i.d. matrices and study the cemea®f the product
of a large number of them. In the second section we considay n real matrices whose
entries are non-degenerate random variables that are indepenteahmecessarily identically
distributed, and investigate how the probability that such a matrix is singulavbshwvhem is
large. The results presented in these two sections come respectivelyhiecamticles [BIM2]
and [BG].

4.1 Product of random contractions

In this section we study products of infinitely many i.i.d. random matrices. Thdaestwe
consider satisfy two basic properties, reflecting the fact that theyidledbie dynamics of ran-
dom quantum or classical dynamical systems. The first property is theatbeontractions for
some fixed norm. It reflects the fact that the underlying dynamics is in arcegase norm-
preserving. The second property is that there is a deterministic invagatdry This represents
a normalization of the dynamics.

Our first motivation comes from the study of RI systems. In the Liouvillian deson,
we showed in Section 1.1 that the study of observables on the systand more generally of
instantaneous observables, reduces to the analysis of the pfdduct M,, of the correspond-
ing RDO’s. The general properties of RDO’s (Proposition 1.1) make tfiemto the above
framework: they are contractions because the underlying dynamics isyJaita the fact that
they have a deterministic invariant vector simply traduces that the identitywalisers always
invariant. Another important example of systems falling into this category arkdv&hains in
arandom environmeni.e. products ofandom stochastic matricesvith the || - ||, norm and
the invariant vecto(1, ..., 1)!).

Let M (w) be a random matrix oft?, with underlying probability spac&?, F,p). We say
that M (w) is arandom reduced dynamics opera{®RDO) if

1. There exists a norff| - ||| onC? such that, for almost all, M (w) is a contraction of°?
endowed with the norrjj| - |].

83
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2. There is a vectops, constant inv, such thatV/ (w)ys = s, for almost allw.

We shall normalize)s such that|ys|| = 1 where|| - || denotes the euclidean norm. (In view of
Chapter 1, one should have in mind thiat is the reference vector of.)
To an RRDOM (w), we associate the (iidandom reduced dynamics procéRRDP)

D, (@) = M(wy) - M(wp), &= (wp)p€Q:=0, (4.1)

We will show that®,, has a decomposition into an exponentially decaying part and a generically
fluctuating part (Theorems 4.1 and 4.2). To identify these parts, wegui@sfollows. It follows

from 1. and 2. that the spectrum of an RRDOw) must lie inside the closed complex unit disk,
and thatl is an eigenvalue (with eigenvectgg). Let P;(w) denote the spectral projection of

M (w) corresponding to the eigenvaluigdim P; (w) > 1), and letP} (w) be its adjoint operator.
Define

Y(w) = P (w) s, (4.2)

and setP(w) = |[¢s) (¥ (w)]. We put@Q(w) = 1— P(w). Note that the vectoy(w) is normalized
as(ys, ¥ (w)) = 1. We decomposé/ (w) as

M(w) = P(@) + Q)M(@)Qw) = Pw) + Mo(w). (43)

Note that if{1} is a simple eigenvalue df/ (w) then this is nothing but the spectral decomposi-
tion of the matrixM (w). Taking into account this decomposition, we obtain

P (@) := M(wi) -+ M(wn) = |ths)(¥n(@)] + Mg(w1) - - - Mg(wn),
wherey, (©) is the Markov process
n (W) = M*(wn) - - M*(w2)¢p(wr), (4.4)

As in Section 1.4, leM ;) be the set of RRDOs whose spectrum on the complex unit circle
consists only of a simple eigenvaldié}, and define the probability measut® on Q by

dP = Hj21dpj, where dpj =dp, Vj € N*.

Theorem 4.1(Decaying process)BJM2] Let M (w) be a random reduced dynamics operator.
Suppose thap(M (w) € M(g)) > 0. Then there exist a s€l; C 2 and a constantr > 0 s.t.
P(Q;) = 1 and for anyw € ; there exists’; so that for anyn € N*,

[Mo(wr) - - - Mg(wn)|| < Cpe™".

Remark 4.1. 1. Any stochastic matrix whose entries are all nonzero belongg tg).

2. The choice (4.2) ensures thafw) is an eigenvector oM *(w) and defines dona fide
random variable [Az]. Other choices of measurablgv) which are bounded iw lead to differ-
ent decompositions df/ (w), and can be useful as well. For instance)f(w) is a bistochastic
matrix, then one can take faf(w) the M*(w)-invariant andw-independent vectdf, . .., 1)’.
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The next result concerns the asymptotics of the Markov process @eHote byP; gy the
spectral projection di[M] onto the eigenvaluél }.

Theorem 4.2(Fluctuating process)BJM2] Let M (w) be a random reduced dynamics opera-
tor. Suppose that(M (w) € M(gy) > 0. Then we hav&[M] € M gy. Moreover, there exists
asetQy C Qs.t.P(Q) =1and, forallo e Q,

1 N
lim — an(a)) = wocn
n=1

where

Yoo = (1 E[M(@)]") " E[¢(w)] = P g EWD@)] = Prgpryis.  (45)

Remark 4.2. It follows from the last equality in (4.5) that the ergodic average limitygfw)
does not depend on the particular choice/dtv).

Combining the above two theorems we obtain the following

Theorem 4.3.[BJM2] Let M (w) be a random reduced dynamics operator. Suppgaé (w) €
Mg))> 0. Then there exist®3 C 2 s.t.P(Q23) = 1 and, for all& € 3,

lim 1 ZM(wl) c M(wn) = Pyew) = [¥s) (Yool

wherey is defined in (4.5).

If one can choosé(w) = ¢ to be independent @f, e.g. whenM (w) is a bistochastic matrix,
then one actually hasg, (v) = v for all n, @, and hence the following better convergence result
holds.

Theorem 4.4. [BIJM2] Let M(w) be a random reduced dynamics operator. Suppose that
p(M(w) € M(g)) > 0 and there existg) € C* such thatM (w)*y) = ¢ for all w. Then
there exists a se, C Q, and a constanty > 0, s.t. P(Q4) = 1 and for anyw € 4, there
existsC; so that for anyn € N*,

 es) (¥
(¥, 9s)

Results on the convergence (of some kind) of products of randomasticimatrices, and
non-negative matrices, are numerous, see e.g. [KS, Mu, Se] amdrreés therein. However,
these results mostly concern properties of the limiting distribution, if it exists, mgef the
properties of the distribution of the random matrices. Those results relyiynea the positivity
of the entries of the considered matrices. When studying convergendésribution, the order
of the factors in the product does not matter, and usually products abtire f

M(wy) -+ M(wy) < Cgpe™ ™.

By =M, My, _1--- M

as studied as well (compare with (4.1)). Our techniques still yield resultthéan that are
stronger than those for products (4.1). Namely, we have
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Theorem 4.5. [BIJM2] Supposep(M (w) € Mgy) > 0. Then there exist: > 0, a random
vectory(w) and Qs C Q with P(€25) = 1 such that for anyo € Q5 there exist’; > 0 so
that

2, (@) — WSWOO@)’H < Che ™, Wn e N,

Remark 4.3. 1. Of courseE (1« (@)) = ¥ as expected.
2. A direct consequence of the above theorem is that the top Lyapuponenty; (&)
associated to this process is zero and is almost surely of multiplicity one.

Comments on related results

As we already mentioned, results on the convergence (of some kindyaxdigis of random
stochastic matrices, and non-negative matrices, are numerous and mos#yncproperties of
the limiting distribution, if it exists, in terms of the properties of the distribution of tredom
matrices. The techniques used to obtain those results rely heavily on theipositimatrix
elements. Random matrix products have been heavily studied also for matrGégR), see
e.g. [Arn, G, K]. Again, the main focus of these works is on the study ofpttoperties of
the limiting distribution, if it exists, and on the properties of the Lyapunov egpts In this
case, the group property of the set of invertible matriGégR) plays a prominent role in the
derivation of the results.

By contrast, besides conditions 1. and 2. defining RRDOs, we do noireeaur matrices
to be real valued, to have positive entries, or to be invertible. Moreaxegre concerned here
with the limiting properties of the products only, not with the limiting distribution. On the o
hand, we get a.s. convergence results for the prodeictrheorem 4.5). On the other hand,
in order to eliminate the unavoidable fluctuations in the prod@gtswe resort to a limit in an
average sense, the Cesaro limit (Theorem 4.3).

Getting informations on the fluctuations of the process around its limiting valuetairdg
an interesting and important issue. It amounts to getting informations abouttloétiae vector
valued random variable., of Theorem 4.5, which is quite difficult in general. There are recent
partial results about aspects of the law of such random vectors in egsarthobtained by means
of matrices belonging to some subgroupgf(R) satisfying certain irreducibility conditions,
see e.g. [DGL]. However, these results do not apply to our situation.

Random ergodic theorems for produdts(w) have been obtained in a more general frame-
work in [BS]. They prove the almost sure existence of a Cesaro limit faetipeoducts. How-
ever, the identification of the limit is not provided by this general result. Tkeistification relies
on the detailed properties of the matrices involved, and in particular in theasepeof a fluc-
tuating part from a decaying part in the dynamical process. In this eesged having in mind
the application to RI systems, the contribution of [BIMZ2] consists in identifyorgpetely the
Cesaro limit of products of RRDO.

4.2 Singularity of large random matrices with independent entries

Our second result on random matrices is of a completely different nallyeeconsider real
matricesM,, = (ai;)1<ij<n WhOSe entries are non-degenerate random variables that are inde-
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pendent but non necessarily identically distributed, and we are inteliagtesl probability that
such a matrix is singular in the limit of large

The study of the singularity of random matrices goes back, at least, to Kevhtbshowed in
[Ko1] thatP(M, is singula) = o(1) for independent and identically distributed (iid) Bernoulli
entries, namely,;; = 0, 1 with probability 1/2. Using Sperner's Lemma, Komlos noticed that
the probability wasO(n—1/2) [Bo]. For iid Bernoulli entries, the conjecture is thRt)M,, is
singula) = (c + o(1))" with ¢ = 3. Such an exponential behaviour has been successively
obtained and improved in [KKoS, TV1, TV2] up to= %.

If one turns to general entries, Komlos proved in [Ko2] tiai\/,, is singulaj = o(1)
for independenand identically distributechon degenerate random variables. Furthermore, as
pointed out by Tao and Vu in [TV1, Section 8], it follows from their analytsiat P(M,, is
singulay = o(1) for independent non degenerate entries, provided the following nmifan-

degeneracy property holds:

(UND) There existp €10, 5[ such that for any, j = 1,--- ,n, P(a;; > ;) > p andP(a;; <
z;;) > p for some real numbers;; < x;;

The result proven in [BG] improves the estimateR(d/, is singulay under the same non-
degeneracy hypothesis.

Proposition 4.6. [BG] Let M,, be ann x n matrix whose coefficients are independent random
variables satisfyingUND). ThenP (), is singulan = O(1//n).

The approach of [BG] is to use a Bernoulli decomposition of arbitrarydemenerate ran-
dom variables as developed in [AGKW].

Lemma 4.7. [AGKW, BG] LetM,, be ann x n matrix whose coefficients are independent
random variables satisfyin@ND). We can decompose the entries of the malfijxas follows:
For all 7, j, there exist two independent random variablgesande;; and functionsf;; : |0, 1[—

R andd;; : 10, 1[—]0, +-o0c[ such that

1. ¢;; is a Bernoulli random variable with parametgy; €]0, 1];

2. w;j has the uniform distribution i0, 1[;

3. aij = fij(wij) + 6i(wij)eij-

Moreoverp;; €]p,1 — p[forall 7, j.

This Bernoulli decomposition allows to extend results known for Bernoutlatées to the
general case of independent non degenerate random variabtgsosRion 4.6 is an illustra-
tion of it by extending Komlés’s argument to independent random variablisfying the Prop-
erty (UND). (Itis however not clear whether results in [TV1, TV2], and in partictdalasz-type
arguments, could be extended in a similar way.) The approach of [BG] islibeving:

1. Decompose the;; as in Lemma 4.7;

2. Since thev;; ande;; are independent r.v., do the conditioning with respect to the variables
w;j, SO that, given thev;;’s, M,, becomes a sum of a constant matrix and of a random matrix
with Bernoulli entries with probabilitie§l — p;;, p;;) and amplitudes;; (w;;);



88 CHAPTER 4. SOME RESULTS ABOUT RANDOM MATRICES

3. Estimate, with respect to the Bernoulli variabtgs the probability that\/,, is singular
following the strategy of [Bo];
4. Take the expectation value with respect to the variables
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