| Asymptotic state of RI systems |         | Thermodynamics of RI systems |
|--------------------------------|---------|------------------------------|
|                                | 0000000 |                              |
|                                |         |                              |

# Mathematical analysis of some open quantum systems : the repeated interaction systems

Laurent Bruneau

Univ. Cergy-Pontoise

November 10, 2011

▲ロト ▲帰 ト ▲ヨト ▲ヨト ニヨー のくぐ

|              | Asymptotic state of RI systems | Two concrete models<br>00000000 | Thermodynamics of RI systems |
|--------------|--------------------------------|---------------------------------|------------------------------|
| Open Systems |                                |                                 |                              |

Open system = a "small" system S interacting with an environment  $\mathcal{R}$ . Goal: understand the asymptotic  $(t \to +\infty)$  behaviour of the system S (asymptotic state, thermodynamical properties).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● ●

|              | Asymptotic state of RI systems | Two concrete models | Thermodynamics of RI systems |
|--------------|--------------------------------|---------------------|------------------------------|
| Open Systems |                                |                     |                              |

Open system = a "small" system S interacting with an environment  $\mathcal{R}$ . Goal: understand the asymptotic  $(t \to +\infty)$  behaviour of the system S (asymptotic state, thermodynamical properties).

- 2 approaches: Hamiltonian / Markovian
  - Hamiltonian: full description, spectral analysis, scattering theory.
  - Markovian: effective description of S, obtained by weak-coupling type limits or if S undergoes stochastic forces (Langevin equation).

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

|              | Asymptotic state of RI systems | Two concrete models | Thermodynamics of RI systems |
|--------------|--------------------------------|---------------------|------------------------------|
| Open Systems |                                |                     |                              |

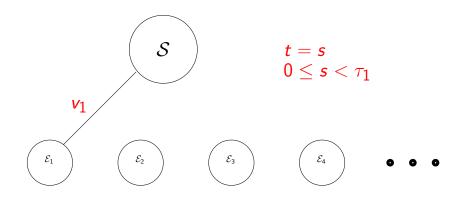
Open system = a "small" system S interacting with an environment  $\mathcal{R}$ . Goal: understand the asymptotic  $(t \to +\infty)$  behaviour of the system S (asymptotic state, thermodynamical properties).

- 2 approaches: Hamiltonian / Markovian
  - Hamiltonian: full description, spectral analysis, scattering theory.
  - Markovian: effective description of S, obtained by weak-coupling type limits or if S undergoes stochastic forces (Langevin equation).

Both at the same time : Repeated Interaction Systems (start with work of Attal-Pautrat)

Thermodynamics of RI systems

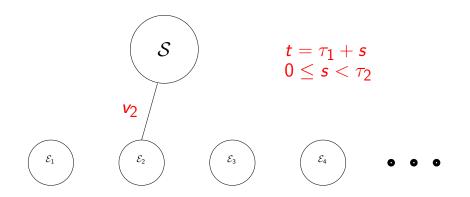
## Repeated Interaction Systems (RIS)



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Thermodynamics of RI systems

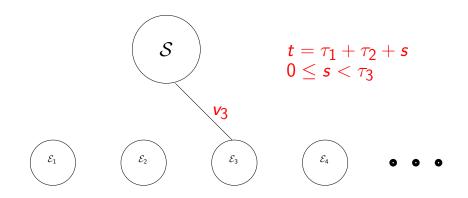
## Repeated Interaction Systems (RIS)



◆□ > ◆□ > ◆三 > ◆三 > ・三 ● の Q @ >

Thermodynamics of RI systems

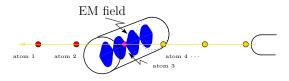
## Repeated Interaction Systems (RIS)



◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」のへで



#### Physics: One-atom maser (Walther et al '85, Haroche et al '92)



◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

- S= one mode of the electromagnetic field in a cavity.
- $\mathcal{E}_k = k$ -th atom interacting with the field.
- $\mathcal{C}$ : beam of atoms sent into the cavity.

| Asymptotic state of RI systems | Two concrete models | Thermodynamics of RI systems |
|--------------------------------|---------------------|------------------------------|
|                                |                     |                              |

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

### Plan



2 Asymptotic state of RI systems

#### Two concrete models

- The one-atom maser
- Diffusion in a tight binding band



| RIS : from Hamilton to Markov | Asymptotic state of RI systems |         | Thermodynamics of RI systems |
|-------------------------------|--------------------------------|---------|------------------------------|
|                               |                                | 0000000 |                              |
|                               |                                |         |                              |
|                               |                                |         |                              |

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

### Plan



2 Asymptotic state of RI systems

#### Two concrete models

- The one-atom maser
- Diffusion in a tight binding band



◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

## Hamiltonian description

- A "small" system  $\mathcal{S}$ :
  - Quantum system governed by some hamiltonian  $h_S$  acting on  $\mathfrak{h}_S$ .
- A chain C of quantum sub-systems  $\mathcal{E}_k$  (k = 1, 2, ...):
  - $\mathcal{C} = \mathcal{E}_1 + \mathcal{E}_2 + \cdots$
  - Each  $\mathcal{E}_k$  is governed by some hamiltonian  $h_{\mathcal{E}_k}$  acting on  $\mathfrak{h}_{\mathcal{E}_k}$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

## Hamiltonian description

- A "small" system  $\mathcal{S}$ :
  - Quantum system governed by some hamiltonian  $h_S$  acting on  $\mathfrak{h}_S$ .
- A chain C of quantum sub-systems  $\mathcal{E}_k$  (k = 1, 2, ...):
  - $\mathcal{C} = \mathcal{E}_1 + \mathcal{E}_2 + \cdots$
  - Each  $\mathcal{E}_k$  is governed by some hamiltonian  $h_{\mathcal{E}_k}$  acting on  $\mathfrak{h}_{\mathcal{E}_k}$ .

Interactions:

- Interaction operators  $v_k$  acting on  $\mathfrak{h}_{\mathcal{S}} \otimes \mathfrak{h}_{\mathcal{E}_k}$ .
- A sequence of interaction times  $\tau_k > 0$ .

.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

## Hamiltonian description

- A "small" system  $\mathcal{S}$ :
  - Quantum system governed by some hamiltonian  $h_S$  acting on  $\mathfrak{h}_S$ .
- A chain C of quantum sub-systems  $\mathcal{E}_k$  (k = 1, 2, ...):
  - $\mathcal{C} = \mathcal{E}_1 + \mathcal{E}_2 + \cdots$
  - Each  $\mathcal{E}_k$  is governed by some hamiltonian  $h_{\mathcal{E}_k}$  acting on  $\mathfrak{h}_{\mathcal{E}_k}$ .

Interactions:

- Interaction operators  $v_k$  acting on  $\mathfrak{h}_{\mathcal{S}} \otimes \mathfrak{h}_{\mathcal{E}_k}$ .
- A sequence of interaction times  $\tau_k > 0$ .

For  $t \in [t_{n-1}, t_n]$ ,  $t_n = \tau_1 + \cdots + \tau_n$ :

- S interacts with  $\mathcal{E}_n$ ,
- $\mathcal{E}_k$  evolves freely for  $k \neq n$ ,
- i.e. the full system is governed by

$$\tilde{h}_n = h_{\mathcal{S}} + h_{\mathcal{E}_n} + v_n + \sum_{k \neq n} h_{\mathcal{E}_k} = h_n + \sum_{k \neq n} h_{\mathcal{E}_k}$$

Thermodynamics of RI systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

## The repeated interaction dynamics

Data:

- Full Hamiltonian:  $h_n = h_S \otimes \mathbb{1}_{\mathcal{E}_n} + \mathbb{1}_S \otimes h_{\mathcal{E}_n} + v_n$ .
- Initial state of S: density matrix  $\rho \in \mathcal{J}_1(\mathfrak{h}_S)$ .
- Initial state of *E<sub>n</sub>*: *ρ<sub>E<sub>n</sub>* (invariant state for the free dynamics of *E<sub>n</sub>*, e.g. Gibbs state at some inverse temperature *β<sub>n</sub>*).
  </sub>

Thermodynamics of RI systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

## The repeated interaction dynamics

Data:

 $\rho^{t}$ 

- Full Hamiltonian:  $h_n = h_S \otimes \mathbb{1}_{\mathcal{E}_n} + \mathbb{1}_S \otimes h_{\mathcal{E}_n} + v_n$ .
- Initial state of S: density matrix  $\rho \in \mathcal{J}_1(\mathfrak{h}_S)$ .
- Initial state of *E<sub>n</sub>*: *ρ<sub>E<sub>n</sub>* (invariant state for the free dynamics of *E<sub>n</sub>*, e.g. Gibbs state at some inverse temperature *β<sub>n</sub>*).
  </sub>

After 0 interaction, the state of the total system is

$$\rho$$
 :=  $\rho$ 

$$\rho\otimes \bigotimes_{k\geq 1} 
ho_{\mathcal{E}_k}$$

Thermodynamics of RI systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ◇ ◇ ◇

## The repeated interaction dynamics

Data:

- Full Hamiltonian:  $h_n = h_S \otimes \mathbb{1}_{\mathcal{E}_n} + \mathbb{1}_S \otimes h_{\mathcal{E}_n} + v_n$ .
- Initial state of S: density matrix  $\rho \in \mathcal{J}_1(\mathfrak{h}_S)$ .
- Initial state of *E<sub>n</sub>*: *ρ<sub>E<sub>n</sub>* (invariant state for the free dynamics of *E<sub>n</sub>*, e.g. Gibbs state at some inverse temperature *β<sub>n</sub>*).
  </sub>

After 1 interaction, the state of the total system is

$$ho^{ ext{tot}}(1) := ext{e}^{-i au_1 ilde{h}_1} \left(
ho\otimes \bigotimes_{k\geq 1} 
ho_{\mathcal{E}_k}
ight) ext{e}^{i au_1 ilde{h}_1}$$

Thermodynamics of RI systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

## The repeated interaction dynamics

Data:

- Full Hamiltonian:  $h_n = h_S \otimes \mathbb{1}_{\mathcal{E}_n} + \mathbb{1}_S \otimes h_{\mathcal{E}_n} + v_n$ .
- Initial state of S: density matrix  $\rho \in \mathcal{J}_1(\mathfrak{h}_S)$ .
- Initial state of *E<sub>n</sub>*: *ρ<sub>E<sub>n</sub>* (invariant state for the free dynamics of *E<sub>n</sub>*, e.g. Gibbs state at some inverse temperature *β<sub>n</sub>*).
  </sub>

After 2 interactions, the state of the total system is

$$ho^{ ext{tot}}(2) := ext{e}^{-i au_2 ilde{h}_2} ext{e}^{-i au_1 ilde{h}_1} \left(
ho\otimes \bigotimes_{k\geq 1} 
ho_{\mathcal{E}_k}
ight) ext{e}^{i au_1 ilde{h}_1} ext{e}^{i au_2 ilde{h}_2}$$

Thermodynamics of RI systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

## The repeated interaction dynamics

Data:

- Full Hamiltonian:  $h_n = h_S \otimes \mathbb{1}_{\mathcal{E}_n} + \mathbb{1}_S \otimes h_{\mathcal{E}_n} + v_n$ .
- Initial state of S: density matrix  $\rho \in \mathcal{J}_1(\mathfrak{h}_S)$ .
- Initial state of *E<sub>n</sub>*: *ρ<sub>E<sub>n</sub>* (invariant state for the free dynamics of *E<sub>n</sub>*, e.g. Gibbs state at some inverse temperature *β<sub>n</sub>*).
  </sub>

After n interactions, the state of the total system is

$$\rho^{\mathrm{tot}}(\mathbf{n}) := \mathrm{e}^{-i\tau_n \tilde{h}_n} \cdots \mathrm{e}^{-i\tau_2 \tilde{h}_2} \mathrm{e}^{-i\tau_1 \tilde{h}_1} \left( \rho \otimes \bigotimes_{k \ge 1} \rho_{\mathcal{E}_k} \right) \, \mathrm{e}^{i\tau_1 \tilde{h}_1} \mathrm{e}^{i\tau_2 \tilde{h}_2} \cdots \mathrm{e}^{i\tau_n \tilde{h}_n}.$$

Thermodynamics of RI systems

▲ロト ▲帰 ト ▲ヨト ▲ヨト ニヨー のくぐ

## The reduced dynamics map

We are interested in the system  $\mathcal{S},$  i.e. (mainly) expactation values of observables of the form  $\mathcal{A}_{\mathcal{S}}\otimes 1\!\!1.$ 

## The reduced dynamics map

We are interested in the system S, i.e. (mainly) expactation values of observables of the form  $A_S \otimes \mathbb{1}$ . At "time" *n* the state of S is given by

$$\rho(n) = \operatorname{Tr}_{\mathcal{C}}(\rho^{\operatorname{tot}}(n)).$$

It is the unique state of  ${\mathcal S}$  such that

$$\forall A \in \mathcal{B}(\mathfrak{h}_{\mathcal{S}}), \quad \mathrm{Tr}\left(\rho^{\mathrm{tot}}(n) \; A \otimes \mathbb{1}_{\mathcal{C}}\right) = \mathrm{Tr}_{\mathcal{S}}\left(\rho(n)A\right).$$

## The reduced dynamics map

We are interested in the system S, i.e. (mainly) expactation values of observables of the form  $A_S \otimes \mathbb{1}$ . At "time" *n* the state of S is given by

$$\rho(n) = \operatorname{Tr}_{\mathcal{C}}(\rho^{\operatorname{tot}}(n)).$$

It is the unique state of  ${\mathcal S}$  such that

$$\forall A \in \mathcal{B}(\mathfrak{h}_{\mathcal{S}}), \quad \mathrm{Tr}\left(\rho^{\mathrm{tot}}(n) \; A \otimes \mathbb{1}_{\mathcal{C}}\right) = \mathrm{Tr}_{\mathcal{S}}\left(\rho(n)A\right).$$

If  ${\mathcal S}$  is in the state  $\rho$  before the  $\mathit{n}\text{-th}$  interaction, after it it is in the state

$$\mathcal{L}_n(\rho) := \operatorname{Tr}_{\mathcal{E}_n} \left( \mathrm{e}^{-i\tau_n h_n} \rho \otimes \rho_{\mathcal{E}_n} \, \mathrm{e}^{i\tau_n h_n} \right).$$

## The reduced dynamics map

We are interested in the system S, i.e. (mainly) expactation values of observables of the form  $A_S \otimes \mathbb{1}$ . At "time" *n* the state of S is given by

$$\rho(\boldsymbol{n}) = \operatorname{Tr}_{\mathcal{C}}(\rho^{\operatorname{tot}}(\boldsymbol{n})).$$

It is the unique state of  ${\mathcal S}$  such that

$$\forall A \in \mathcal{B}(\mathfrak{h}_{\mathcal{S}}), \quad \mathrm{Tr}\left(\rho^{\mathrm{tot}}(n) \; A \otimes \mathbb{1}_{\mathcal{C}}\right) = \mathrm{Tr}_{\mathcal{S}}\left(\rho(n)A\right).$$

If  ${\mathcal S}$  is in the state  $\rho$  before the  $\mathit{n}\text{-th}$  interaction, after it it is in the state

$$\mathcal{L}_n(\rho) := \operatorname{Tr}_{\mathcal{E}_n} \left( \mathrm{e}^{-i\tau_n h_n} \rho \otimes \rho_{\mathcal{E}_n} \, \mathrm{e}^{i\tau_n h_n} \right).$$

The "repeated interaction" structure induces a markovian behaviour:

$$\forall n, \quad \rho(n) = \mathcal{L}_n(\rho(n-1)).$$

## The reduced dynamics map

We are interested in the system S, i.e. (mainly) expactation values of observables of the form  $A_S \otimes \mathbb{1}$ . At "time" *n* the state of S is given by

$$\rho(n) = \operatorname{Tr}_{\mathcal{C}}(\rho^{\operatorname{tot}}(n)).$$

It is the unique state of  ${\mathcal S}$  such that

$$\forall A \in \mathcal{B}(\mathfrak{h}_{\mathcal{S}}), \quad \mathrm{Tr}\left(\rho^{\mathrm{tot}}(n) \; A \otimes \mathbb{1}_{\mathcal{C}}\right) = \mathrm{Tr}_{\mathcal{S}}\left(\rho(n)A\right).$$

If  ${\mathcal S}$  is in the state  $\rho$  before the  $\mathit{n}\text{-th}$  interaction, after it it is in the state

$$\mathcal{L}_n(\rho) := \operatorname{Tr}_{\mathcal{E}_n} \left( \mathrm{e}^{-i\tau_n h_n} \rho \otimes \rho_{\mathcal{E}_n} \, \mathrm{e}^{i\tau_n h_n} \right).$$

The "repeated interaction" structure induces a markovian behaviour:

$$\forall n, \quad \rho(n) = \mathcal{L}_n(\rho(n-1)).$$

 $\implies$  One has to understand  $\mathcal{L}_n \circ \cdots \circ \mathcal{L}_1$  as  $n \to \infty$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Thermodynamics of RI systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

## Some questions about RIS

#### Large time behaviour:

- Existence of the limit  $\lim_{n \to +\infty} \rho(n) = \rho_+$ ?
- Several situations : ideal (identical interactions, equilibrium), random (non-equilibrium).

#### Thermodynamical properties:

- Energy variation (external work, power delivered to the system)?
- In the non equilibrium case : fluxes?
- Entropy production?

## Some questions about RIS

#### Large time behaviour:

- Existence of the limit  $\lim_{n \to +\infty} \rho(n) = \rho_+$ ?
- Several situations : ideal (identical interactions, equilibrium), random (non-equilibrium).

#### Thermodynamical properties:

- Energy variation (external work, power delivered to the system)?
- In the non equilibrium case : fluxes?
- Entropy production?

#### Concrete examples?

| Asymptotic state of RI systems | Two concrete models | Thermodynamics of RI systems |
|--------------------------------|---------------------|------------------------------|
|                                |                     |                              |

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

## Plan



#### 2 Asymptotic state of RI systems

#### Two concrete models

- The one-atom maser
- Diffusion in a tight binding band



|               | Asymptotic state of RI systems | Two concrete models | Thermodynamics of RI systems |
|---------------|--------------------------------|---------------------|------------------------------|
| Spectrum of a | RDM                            |                     |                              |

A key ingredient will be the spectral analysis of the RDM : existence of invariant state, spectral gap,... For example, in the ideal case  $\rho(n) = \mathcal{L}_n \circ \cdots \circ \mathcal{L}_1(\rho) = \mathcal{L}^n(\rho)$ .

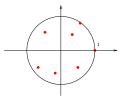
◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ◆ ○ ◆ ○

## Spectrum of a RDM

A key ingredient will be the spectral analysis of the RDM : existence of invariant state, spectral gap,... For example, in the ideal case  $\rho(n) = \mathcal{L}_n \circ \cdots \circ \mathcal{L}_1(\rho) = \mathcal{L}^n(\rho)$ .

The  $\mathcal{L}_n$  are completely positive and trace preserving maps on  $\mathcal{J}_1(\mathfrak{h}_S)$ .

Consequence: Spec $(\mathcal{L}_n) \subset \{z \in \mathbb{C} \mid |z| \le 1\},\ 1 \text{ is in the spectrum.}$ 



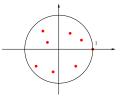
◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

| Asymptotic state of RI systems | Two concrete models | Thermodynamics of RI systems |
|--------------------------------|---------------------|------------------------------|
|                                |                     |                              |

## Ideal interactions

Take all the interactions identical, i.e.  $\mathfrak{h}_{\mathcal{E}_k} \equiv \mathfrak{h}_{\mathcal{E}}$ ,  $h_{\mathcal{E}_k} \equiv h_{\mathcal{E}}$ ,  $\tau_k \equiv \tau$ ,  $v_k \equiv v$ ,  $\rho_{\mathcal{E}_k} \equiv \rho_{\mathcal{E}}$ . Hence  $\mathcal{L}_k \equiv \mathcal{L}$ .

Ergodic assumption (E): Spec( $\mathcal{L}$ )  $\cap S^1 = \{1\}$ , 1 is a simple eigenvalue.



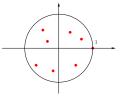
▲ロト ▲帰 ト ▲ヨト ▲ヨト ニヨー のくぐ

| Asymptotic state of RI systems | Two concrete models | Thermodynamics of RI systems |
|--------------------------------|---------------------|------------------------------|
|                                |                     |                              |

## Ideal interactions

Take all the interactions identical, i.e.  $\mathfrak{h}_{\mathcal{E}_k} \equiv \mathfrak{h}_{\mathcal{E}}$ ,  $h_{\mathcal{E}_k} \equiv h_{\mathcal{E}}$ ,  $\tau_k \equiv \tau$ ,  $v_k \equiv v$ ,  $\rho_{\mathcal{E}_k} \equiv \rho_{\mathcal{E}}$ . Hence  $\mathcal{L}_k \equiv \mathcal{L}$ .

Ergodic assumption (E): Spec( $\mathcal{L}$ )  $\cap S^1 = \{1\}$ , 1 is a simple eigenvalue.



◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

#### Theorem (B.-Joye-Merkli '06)

Let dim  $\mathfrak{h}_{S} < \infty$ . If (E) is satisfied, there exist  $C, \alpha > 0$  s.t. for any initial state  $\rho$ 

$$\|\rho(\mathbf{n}) - \rho_+\|_1 \leq C \mathrm{e}^{-\alpha \mathbf{n}}, \qquad \forall \mathbf{n} \in \mathbb{N},$$

where  $\rho_+$  is the (unique) invariant state of  $\mathcal{L}$ .

|  |  | to Markov |
|--|--|-----------|
|--|--|-----------|

Asymptotic state of RI systems

Two concrete models

Thermodynamics of RI systems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

## Random interactions

We allow some fluctuations w.r.t. ideal situation (interaction time, temperature):  $\mathcal{L} = \mathcal{L}(\omega_0)$  random variable with values in RDM (CP, trace preserving maps on  $\mathfrak{h}_S$ ) over a probability space ( $\Omega_0, \mathcal{F}, p$ ).

## Random interactions

We allow some fluctuations w.r.t. ideal situation (interaction time, temperature):  $\mathcal{L} = \mathcal{L}(\omega_0)$  random variable with values in RDM (CP, trace preserving maps on  $\mathfrak{h}_S$ ) over a probability space  $(\Omega_0, \mathcal{F}, \mathbf{p})$ . Product of i.i.d. RDMs:  $\Omega = \Omega_0^{\mathbb{N}^*}$ ,  $d\mathbb{P} = \prod_{n\geq 1} d\mathbf{p}$  and  $\omega = (\omega_n)_{n\geq 1}$ .  $\Rightarrow$  Understand  $\rho(n, \omega) = (\mathcal{L}(\omega_n) \circ \cdots \circ \mathcal{L}(\omega_1))(\rho)$ .

## Random interactions

We allow some fluctuations w.r.t. ideal situation (interaction time, temperature):  $\mathcal{L} = \mathcal{L}(\omega_0)$  random variable with values in RDM (CP, trace preserving maps on  $\mathfrak{h}_S$ ) over a probability space  $(\Omega_0, \mathcal{F}, \mathbf{p})$ . Product of i.i.d. RDMs:  $\Omega = \Omega_0^{\mathbb{N}^*}$ ,  $d\mathbb{P} = \prod_{n\geq 1} d\mathbf{p}$  and  $\omega = (\omega_n)_{n\geq 1}$ .  $\Rightarrow$  Understand  $\rho(n, \omega) = (\mathcal{L}(\omega_n) \circ \cdots \circ \mathcal{L}(\omega_1))(\rho)$ .

#### Theorem (B.-Joye-Merkli '08)

Let dim  $\mathfrak{h}_{\mathcal{S}} < \infty$ . If  $p(\mathcal{L}(\omega_0) \text{ satisfies (E)}) > 0$ , then

•  $\mathbb{E}(\mathcal{L})$  satisfies (E).

• For any 
$$\rho \in \mathcal{J}_1(\mathcal{H}_S)$$
,  $\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^N \rho(n, \omega) = \rho_+$ , a.e.  $\omega \in \Omega$ , where  $\rho_+$  is the unique invariant state of  $\mathbb{E}(\mathcal{L})$ .

If moreover there exists  $\rho_+$  s.t.  $\mathcal{L}(\omega_0)(\rho_+) = \rho_+$  for a.e.  $\omega_0$ , i.e. there is a deterministic invariant state, then there exists  $\alpha > 0$  s.t. for any  $\rho \in \mathcal{J}_1(\mathcal{H}_S)$  and for a.e.  $\omega \in \Omega$ , there exists  $C(\omega) > 0$ 

$$\|\rho(n,\omega)-\rho_+\|_1\leq C(\omega)\mathrm{e}^{-\alpha n},\quad \forall n\in\mathbb{N}.$$

| Asymptotic state of RI systems | Two concrete models | Thermodynamics of RI systems |
|--------------------------------|---------------------|------------------------------|
|                                |                     |                              |
|                                |                     |                              |
|                                |                     |                              |

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

## Plan

1 RIS : from Hamilton to Markov

2 Asymptotic state of RI systems

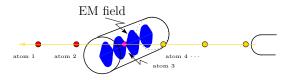
#### Two concrete models

- The one-atom maser
- Diffusion in a tight binding band





Physics: One-atom maser (Walther et al '85, Haroche et al '92)



◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

- S= one mode of the electromagnetic field in a cavity.
- $\mathcal{E}_k = k$ -th atom interacting with the field.
- $\mathcal{C}$ : beam of atoms sent into the cavity.

#### The one-atom maser

## Mathematical model of the one-atom maser

The field in the cavity: (a harmonic oscillator) h<sub>S</sub> = Γ<sub>s</sub>(ℂ), h<sub>S</sub> = ωa\*a = ωN. Denote by |n⟩ the eigenstates of h<sub>S</sub>: h<sub>S</sub>|n⟩ = nω|n⟩.
The atoms: 2-level atoms. h<sub>ε</sub> = ℂ<sup>2</sup>, h<sub>ε</sub> = (0 0 0 ω<sub>0</sub>). We denote by |-⟩, |+⟩ the eigenstates of ε. If b = (0 1 0 0) is the annihilation operator on ℂ<sup>2</sup> (b|+⟩ = |-⟩ and b|-⟩ = 0), we have h<sub>ε</sub> = ω<sub>0</sub>b\*b.

• The interaction: dipole interaction in the rotating-wave approximation, i.e.  $v = \frac{\lambda}{2}(a \otimes b^* + a^* \otimes b)$ .

This is the Jaynes-Cummings hamiltonian.

Two concrete models

#### The one-atom maser

## The repeated interaction dynamics.

- Full Hamiltonian:  $h = h_S \otimes \mathbb{1}_{\mathcal{E}} + \mathbb{1}_S \otimes h_{\mathcal{E}} + v$ .
- Initial state of S: density matrix  $\rho \in \mathcal{J}_1(\mathfrak{h}_S)$ .
- Initial state of  $\mathcal{E}$ :  $\rho_{\beta} = \text{equilibrium state at temperature } \beta^{-1}$ , i.e.  $\rho_{\beta} = \frac{e^{-\beta h_{\mathcal{E}}}}{\text{Tr}(e^{-\beta h_{\mathcal{E}}})}$ .

Two concrete models

#### The one-atom maser

## The repeated interaction dynamics.

- Full Hamiltonian:  $h = h_S \otimes \mathbb{1}_{\mathcal{E}} + \mathbb{1}_S \otimes h_{\mathcal{E}} + v$ .
- Initial state of S: density matrix  $\rho \in \mathcal{J}_1(\mathfrak{h}_S)$ .
- Initial state of  $\mathcal{E}$ :  $\rho_{\beta} = \text{equilibrium state at temperature } \beta^{-1}$ , i.e.  $\rho_{\beta} = \frac{e^{-\beta h_{\mathcal{E}}}}{\text{Tr}(e^{-\beta h_{\mathcal{E}}})}$ .

We are at equilibrium :  $\rho(n) = \mathcal{L}^n(\rho)$ .

Conclusion: we have to understand the spectrum of  $\mathcal{L}$ .

Main difficulty: Perturbation theory doesn't work.

When  $\lambda = 0$ ,  $\mathcal{L}(\rho) = e^{-i\tau h_S} \rho e^{i\tau h_S}$ . Hence  $sp(\mathcal{L}) = \{e^{i\omega\tau(n-m)}, n, m \in \mathbb{N}\}$ : pure point spectrum (possibly dense in  $S^1$ ), but all the eigenvalues, and in particular 1, are infinitely degenerate!

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

#### The one-atom maser

## Jaynes-Cummings Hamiltonian and Rabi oscillations

If there are n photons in the cavity, the probability for the atom to make a transition  $|-\rangle \to |+\rangle$  is a periodic function of time

$$P(t) = \left| \langle n-1, + | e^{-ith} | n, - \rangle \right|^2 = \left( 1 - \frac{\Delta^2}{\nu_n^2} \right) \sin^2 \left( \frac{\nu_n t}{2} \right),$$

with frequency

$$u_n := \sqrt{\lambda^2 n + (\omega - \omega_0)^2} = \sqrt{\lambda^2 n + \Delta^2}.$$

 $(\lambda = 1$ -photon Rabi frequency in a cavity where  $\Delta = 0)$ .

#### The one-atom maser

## Jaynes-Cummings Hamiltonian and Rabi oscillations

If there are *n* photons in the cavity, the probability for the atom to make a transition  $|-\rangle \rightarrow |+\rangle$  is a periodic function of time

$$P(t) = \left| \langle n-1, + | e^{-ith} | n, - \rangle \right|^2 = \left( 1 - \frac{\Delta^2}{\nu_n^2} \right) \sin^2 \left( \frac{\nu_n t}{2} \right),$$

with frequency

$$u_n := \sqrt{\lambda^2 n + (\omega - \omega_0)^2} = \sqrt{\lambda^2 n + \Delta^2}.$$

( $\lambda = 1$ -photon Rabi frequency in a cavity where  $\Delta = 0$ ). Conclusion: If the field is in state  $|n\rangle$  before an interaction and  $\tau$  is a

multiple of the Rabi period  $T_n := \frac{2\pi}{\nu_n}$ , after this interaction it can not be in state  $|n-1\rangle$ : there is a decoupling between the n-1 and n photon states.

| RIS : from Hamilton to Markov | Asymptotic state of RI systems | Two concrete models | Thermodynamics of RI systems |
|-------------------------------|--------------------------------|---------------------|------------------------------|
|                               |                                | 00000000            |                              |
| The one-atom maser            |                                |                     |                              |
| Ergodicity                    |                                |                     |                              |

n > 0 is called a Rabi resonance if  $\exists k \in \mathbb{N}, \ \tau = kT_n$ .

R = set of Rabi resonances. The cavity splits into independant "sectors" each time there is a resonance.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

| RIS : from Hamilton to Markov | Asymptotic state of RI systems | Two concrete models | Thermodynamics of RI systems |
|-------------------------------|--------------------------------|---------------------|------------------------------|
|                               |                                | 00000000            |                              |
| The one-atom maser            |                                |                     |                              |
| Ergodicity                    |                                |                     |                              |

n > 0 is called a Rabi resonance if  $\exists k \in \mathbb{N}, \ \tau = kT_n$ .

R = set of Rabi resonances. The cavity splits into independant "sectors" each time there is a resonance.

#### Proposition (B.-Pillet '09)

If  $R = \emptyset$ , 1 is the only eigenvalue of  $\mathcal{L}$  on  $S^1$  and it is simple. The invariant state is  $\rho_{S,\beta^*}$ , the Gibbs state of S at inverse temp.  $\beta^* = \frac{\omega_0}{\omega}\beta$ .

### Theorem (B.-Pillet '09)

If  $R = \emptyset$ ,  $\rho_{S,\beta^*}$  is ergodic, i.e. any initial state converges (weakly and in ergodic mean) to  $\rho_{S,\beta^*}$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

| RIS : from Hamilton to Markov | Asymptotic state of RI systems | Two concrete models | Thermodynamics of RI systems |
|-------------------------------|--------------------------------|---------------------|------------------------------|
|                               |                                | 00000000            |                              |
| The one-atom maser            |                                |                     |                              |
| Ergodicity                    |                                |                     |                              |

n > 0 is called a Rabi resonance if  $\exists k \in \mathbb{N}, \ \tau = kT_n$ .

R = set of Rabi resonances. The cavity splits into independant "sectors" each time there is a resonance.

#### Proposition (B.-Pillet '09)

If  $R = \emptyset$ , 1 is the only eigenvalue of  $\mathcal{L}$  on  $S^1$  and it is simple. The invariant state is  $\rho_{S,\beta^*}$ , the Gibbs state of S at inverse temp.  $\beta^* = \frac{\omega_0}{\omega}\beta$ .

### Theorem (B.-Pillet '09)

If  $R = \emptyset$ ,  $\rho_{S,\beta^*}$  is ergodic, i.e. any initial state converges (weakly and in ergodic mean) to  $\rho_{S,\beta^*}$ .

#### Remarks:

1) Numerically it seems that  $\rho_{S,\beta^*}$  is not only ergodic but also mixing. 2) 3 possible situations R is empty, a singlet or infinite. Generically: R is empty = no resonance. If  $R \neq \emptyset$  the multiplicity of 1 increases (one invariant state per sector).



$$\mathfrak{h}_{\mathcal{S}} = \ell^2(\mathbb{Z})$$
 and  $h_{\mathcal{S}} = -\Delta - FX$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ



$$\mathfrak{h}_{\mathcal{S}} = \ell^2(\mathbb{Z})$$
 and  $h_{\mathcal{S}} = -\Delta - FX$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Bloch oscillations prevent a current from being set up. Idea: contact with a thermal environment will lead to a steady current (via scattering mechanisms).



$$\mathfrak{h}_{\mathcal{S}} = \ell^2(\mathbb{Z})$$
 and  $h_{\mathcal{S}} = -\Delta - FX$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Bloch oscillations prevent a current from being set up. Idea: contact with a thermal environment will lead to a steady current (via scattering mechanisms).

• 
$$\mathcal{E} = 2$$
-level systems ( $E = Bohr$  frequency).



$$\mathfrak{h}_{\mathcal{S}} = \ell^2(\mathbb{Z})$$
 and  $h_{\mathcal{S}} = -\Delta - FX$ .

Bloch oscillations prevent a current from being set up. Idea: contact with a thermal environment will lead to a steady current (via scattering mechanisms).

•  $\mathcal{E} = 2$ -level systems (E = Bohr frequency).

• Let 
$$T = \sum_{k \in \mathbb{Z}} |k+1\rangle \langle k| = e^{-iP}$$
.  
 $v = \lambda(T \otimes b^* + T^* \otimes b)$ . (If  $F > 0$ ,  $T$  acts as an annihilation operator.)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Two concrete models

Thermodynamics of RI systems

Diffusion in a tight binding band

## RI dynamics of the tight binding model

Questions: transport properties of the electron, e.g.

$$\frac{\operatorname{Tr}(X\rho(n))}{n\tau} \stackrel{?}{\to} v, \quad \operatorname{Tr}((X - vn\tau)^2\rho(n)) \sim ?$$

(日)

Diffusion in a tight binding band

## RI dynamics of the tight binding model

Questions: transport properties of the electron, e.g.

$$\frac{\operatorname{Tr}(X\rho(n))}{n\tau} \xrightarrow{?} v, \quad \operatorname{Tr}((X - vn\tau)^2\rho(n)) \sim ?$$

Fact: The dynamics induced by the RDM  ${\mathcal L}$  corresponds to

Free dynamics of  $\mathcal{S}$  + random walk

More precisely  $e^{i\tau h_S} \mathcal{L}(\rho) e^{-i\tau h_S} = p_- T^{-1} \rho T + p_0 \rho + p_+ T \rho T^{-1}$ , where  $p_- + p_0 + p_+ = 1$  are explicit.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Diffusion in a tight binding band

## RI dynamics of the tight binding model

Questions: transport properties of the electron, e.g.

$$\frac{\operatorname{Tr}(X\rho(n))}{n\tau} \xrightarrow{?} v, \quad \operatorname{Tr}((X - vn\tau)^2\rho(n)) \sim ?$$

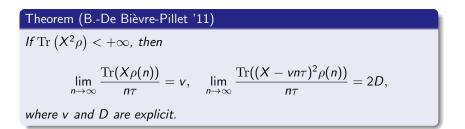
Fact: The dynamics induced by the RDM  ${\mathcal L}$  corresponds to

Free dynamics of  $\mathcal{S}$  + random walk

More precisely  $e^{i\tau h_S} \mathcal{L}(\rho) e^{-i\tau h_S} = p_- T^{-1} \rho T + p_0 \rho + p_+ T \rho T^{-1}$ , where  $p_- + p_0 + p_+ = 1$  are explicit.

Assumptions: F > 0,  $\lambda \neq 0$  and  $\omega \tau \notin 2\pi \mathbb{Z}$  (so that  $p_0 \neq 1$ ).

|                                   | Asymptotic state of RI systems | Two concrete models | Thermodynamics of RI systems |
|-----------------------------------|--------------------------------|---------------------|------------------------------|
|                                   |                                | 0000000             |                              |
| Diffusion in a tight binding band |                                |                     |                              |
| Drift and diffus                  | vion                           |                     |                              |



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

|                                   | Asymptotic state of RI systems | Two concrete models | Thermodynamics of RI systems |
|-----------------------------------|--------------------------------|---------------------|------------------------------|
|                                   |                                | 0000000             |                              |
| Diffusion in a tight binding band |                                |                     |                              |
| Drift and diffus                  | ion                            |                     |                              |

# Theorem (B.-De Bièvre-Pillet '11)

If  $\mathrm{Tr}\left(X^{2}
ho
ight)<+\infty$ , then

$$\lim_{n\to\infty}\frac{\operatorname{Tr}(X\rho(n))}{n\tau}=v,\quad \lim_{n\to\infty}\frac{\operatorname{Tr}((X-vn\tau)^2\rho(n))}{n\tau}=2D,$$

where v and D are explicit.

Remark: One actually proves the following CLT : for any  $f \in C_{\rm b}(\mathbb{R})$ ,

$$\lim_{n\to\infty} \operatorname{Tr}\left(f\left(\frac{X-\nu n\tau}{\sqrt{2Dn\tau}}\right)\rho(n)\right) = \int f(x) \,\mathrm{e}^{-x^2/2} \,\frac{\mathrm{d}x}{\sqrt{2\pi}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

as well as a Large Deviation Principle.

| Asymptotic state of RI systems |         | Thermodynamics of RI systems |
|--------------------------------|---------|------------------------------|
|                                | 0000000 |                              |
|                                |         |                              |
|                                |         |                              |

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへ⊙

### Plan

1 RIS : from Hamilton to Markov

2 Asymptotic state of RI systems

#### Two concrete models

- The one-atom maser
- Diffusion in a tight binding band

### 4 Thermodynamics of RI systems



The total Hamiltonian is time-dependent  $\Rightarrow$  the total energy is usually not conserved.

During the *n*-th interaction the energy is constant, formally given by

$$\operatorname{Tr}\left(\rho^{\operatorname{tot}}(n-1)h_n\right) = \operatorname{Tr}\left(\rho^{\operatorname{tot}}(n)h_n\right).$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ● の Q ()

|                  | Asymptotic state of RI systems | Two concrete models | Thermodynamics of RI systems |
|------------------|--------------------------------|---------------------|------------------------------|
| Energy variation | ı                              |                     |                              |

The total Hamiltonian is time-dependent  $\Rightarrow$  the total energy is usually not conserved.

During the *n*-th interaction the energy is constant, formally given by

$$\operatorname{Tr}\left(\rho^{\operatorname{tot}}(n-1)h_n\right) = \operatorname{Tr}\left(\rho^{\operatorname{tot}}(n)h_n\right).$$

When one switches from interaction n to interaction n + 1, there is an energy jump (external work):

$$\begin{split} \delta \mathcal{W}(n) &:= & \operatorname{Tr}\big(\rho^{\operatorname{tot}}(n) \times (h_{n+1} - h_n)\big) = \operatorname{Tr}\big(\rho^{\operatorname{tot}}(n) \times (v_{n+1} - v_n)\big) \\ &= & \operatorname{Tr}_{\mathcal{S}, \mathcal{E}_{n+1}}\left[\rho(n) \otimes \rho_{\mathcal{E}_{n+1}} v_{n+1}\right] \\ &\quad - \operatorname{Tr}_{\mathcal{S}, \mathcal{E}_n}\left[\rho(n-1) \otimes \rho_{\mathcal{E}_n} \, \operatorname{e}^{\operatorname{i}\tau_n h_n} v_n \operatorname{e}^{-\operatorname{i}\tau_n h_n}\right]. \end{split}$$

・ロト・(型ト・(型ト・(型・)のへの)

| RIS : from Hamilton to Markov | Asymptotic state of RI systems | Two concrete models<br>00000000 | Thermodynamics of RI systems |
|-------------------------------|--------------------------------|---------------------------------|------------------------------|
| Energy variatio               | n                              |                                 |                              |

In the ideal case, one easily gets

Proposition (B.-Joye-Merkli '06)

If Assumption (E) is satisfied,

$$\Delta W := \lim_{N \to \infty} \frac{1}{N\tau} \sum_{n=1}^{N} \delta W(n) = \frac{1}{\tau} \operatorname{Tr}_{\mathcal{S},\mathcal{E}} \left( \rho_{+} \otimes \rho_{\mathcal{E}} \left( v - \mathrm{e}^{i\tau h} v \mathrm{e}^{-i\tau h} \right) \right).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

| RIS : from Hamilton to Markov | Asymptotic state of RI systems | Two concrete models | Thermodynamics of RI systems |
|-------------------------------|--------------------------------|---------------------|------------------------------|
| Energy variation              | n                              |                     |                              |

In the ideal case, one easily gets

Proposition (B.-Joye-Merkli '06)

If Assumption (E) is satisfied,

$$\Delta W := \lim_{N \to \infty} \frac{1}{N\tau} \sum_{n=1}^{N} \delta W(n) = \frac{1}{\tau} \operatorname{Tr}_{\mathcal{S},\mathcal{E}} \left( \rho_{+} \otimes \rho_{\mathcal{E}} \left( v - \mathrm{e}^{i\tau h} v \mathrm{e}^{-i\tau h} \right) \right).$$

In the random case we have,

Proposition (B.-Joye-Merkli '08)

If  $p(\mathcal{L}(\omega_0) \text{ satisfies } (E)) > 0$ , then

$$\Delta W := \lim_{N \to \infty} \frac{1}{t_N(\omega)} \sum_{n=1}^N \delta W(n) = \frac{\mathbb{E} \left( \operatorname{Tr}_{\mathcal{S},\mathcal{E}} \left( \rho_+ \otimes \rho_{\mathcal{E}} \left( v - \mathrm{e}^{i\tau h} v \mathrm{e}^{-i\tau h} \right) \right) \right)}{\mathbb{E}(\tau)},$$

where  $\rho_+$  is the unique invariant state of  $\mathbb{E}(\mathcal{L})$ .

| Asymptotic state of RI systems | Two concrete models | Thermodynamics of RI systems |
|--------------------------------|---------------------|------------------------------|
|                                |                     |                              |

(ロ)、(型)、(E)、(E)、 E、 の(の)

## Entropy production

We assume that the  $\rho_{\mathcal{E}_n}$  are Gibbs states at inverse temperature  $\beta_n$ .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

## Entropy production

We assume that the  $\rho_{\mathcal{E}_n}$  are Gibbs states at inverse temperature  $\beta_n$ . Fix a reference state  $\rho_S$  for S and let  $\rho_0 = \rho_S \otimes \bigotimes \rho_{\mathcal{E}_k}$ .

Relative entropy:  $\operatorname{Ent}(\rho|\rho_0) = \operatorname{Tr}(\rho\log\rho - \rho\log\rho_0) \ge 0.$ 

## Entropy production

We assume that the  $\rho_{\mathcal{E}_n}$  are Gibbs states at inverse temperature  $\beta_n$ .

Fix a reference state 
$$\rho_{\mathcal{S}}$$
 for  $\mathcal{S}$  and let  $\rho_0 = \rho_{\mathcal{S}} \otimes \bigotimes_{k \ge 1} \rho_{\mathcal{E}_k}$ .  
Relative entropy:  $\operatorname{Ent}(\rho | \rho_0) = \operatorname{Tr}(\rho | \log \rho - \rho \log \rho_0) \ge 0$ .

 $-\cdots(\rho_1\rho_0)$ P 106 PU . юв*р* 

Theorem (B.-Joye-Merkli '06 - '08)

1) Ideal case: if (E) is satisfied, then

$$\Delta S := \lim_{n \to \infty} \frac{\operatorname{Ent}(\rho^{\operatorname{tot}}(n)|\rho_0) - \operatorname{Ent}(\rho^{\operatorname{tot}}(0)|\rho_0)}{n\tau} = \beta \Delta W.$$

## Entropy production

We assume that the  $\rho_{\mathcal{E}_n}$  are Gibbs states at inverse temperature  $\beta_n.$ 

Fix a reference state 
$$\rho_{\mathcal{S}}$$
 for  $\mathcal{S}$  and let  $\rho_0 = \rho_{\mathcal{S}} \otimes \bigotimes_{k \ge 1} \rho_{\mathcal{E}_k}$ .  
Relative entropy:  $\operatorname{Ent}(\rho|\rho_0) = \operatorname{Tr}(\rho \log \rho - \rho \log \rho_0) \ge 0$ .

Theorem (B.-Joye-Merkli '06 -'08)

1) Ideal case: if (E) is satisfied, then

$$\Delta S := \lim_{n \to \infty} \frac{\operatorname{Ent}(\rho^{\operatorname{tot}}(n)|\rho_0) - \operatorname{Ent}(\rho^{\operatorname{tot}}(0)|\rho_0)}{n\tau} = \beta \Delta W.$$

2) Random case: if  $p(\mathcal{L}(\omega_0) \text{ satisfies } (E)) > 0$ , then

$$\begin{split} \Delta S &:= \lim_{n \to \infty} \frac{\operatorname{Ent}(\rho^{\operatorname{tot}}(n,\omega)|\rho_0) - \operatorname{Ent}(\rho^{\operatorname{tot}}(0,\omega)|\rho_0)}{t_n(\omega)} \\ &= \frac{\mathbb{E}\left(\beta \operatorname{Tr}_{\mathcal{S},\mathcal{E}}\left(\rho_+ \otimes \rho_{\mathcal{E}}\left(\mathbf{v} - \mathrm{e}^{i\tau h} \mathrm{v} \mathrm{e}^{-i\tau h}\right)\right)\right)}{\mathbb{E}(\tau)}. \end{split}$$

In particular, if  $\beta$  is not random we still have  $\Delta S = \beta \Delta W$ .

## Some remarks and perspectives

- RIS have also been studied in various limiting regimes: weak coupling, continuous interactions,... (Attal-Pautrat, Attal-Joye, Pellegrini).
- We can also add an extra reservoir : leaky RIS (B.-Joye-Merkli '10).
- Linear response theory and fluctuation symmetries in RIS
- Study the correlations in the chain after the interaction
- One-atom maser + losses (important to allow initially excited 2-level atoms)
- In the one-atom maser, the relaxation is slow (not exponential) due to metastable states with arbitrarily long lifetime. What about random interaction times? Does it enhance the relaxation speed?
- Tight-binding model with scattering in momentum.