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Open Systems

Open system = a “small” system S interacting with an environment R.
Goal: understand the asymptotic (t — +00) behaviour of the system S
(asymptotic state, thermodynamical properties).

2 approaches: Hamiltonian / Markovian

@ Hamiltonian: full description, spectral analysis, scattering theory.

@ Markovian: effective description of S, obtained by weak-coupling
type limits or if S undergoes stochastic forces (Langevin equation).

Both at the same time : Repeated Interaction Systems (start with work
of Attal-Pautrat)
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A concrete example

Physics: One-atom maser (Walther et al '85, Haroche et al '92)
EM field
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atom 3

@ S= one mode of the electromagnetic field in a cavity.

(6]

@ &= k-th atom interacting with the field.

@ C: beam of atoms sent into the cavity.
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© Two concrete models
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A chain C of quantum sub-systems & (k =1,2,...):

e C=&+E+--

o Each & is governed by some hamiltonian hg, acting on byg,.
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RIS : from Hamilton to Markov

Hamiltonian description

A “small" system S:

@ Quantum system governed by some hamiltonian hg acting on bs.
A chain C of quantum sub-systems & (k =1,2,...):

e C=&+E+--

o Each & is governed by some hamiltonian hg, acting on byg,.
Interactions:

@ Interaction operators v, acting on hs ® bg,.

@ A sequence of interaction times 7, > 0.
Fort € [tp—1,tal, th=T1+ -+ 7n :

@ S interacts with &,

o & evolves freely for k # n,

i.e. the full system is governed by

ho=hs+he, +va+ > he, =ha+ > he,.
k#n k#n
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The repeated interaction dynamics

Data:
@ Full Hamiltonian: h, = hs ® 1g, + 1s ® he, + Vv,.
Q Initial state of S: density matrix p € J1(hs).

Q Initial state of £,: pg, (invariant state for the free dynamics of &,,
e.g. Gibbs state at some inverse temperature (3,).
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RIS : from Hamilton to Markov

The repeated interaction dynamics

Data:
@ Full Hamiltonian: h, = hs ® 1g, + 1s ® he, + Vv,.
Q Initial state of S: density matrix p € J1(hs).

Q Initial state of £,: pg, (invariant state for the free dynamics of &,,
e.g. Gibbs state at some inverse temperature (3,).

After n interactions, the state of the total system is

tot o —iThhy L —itohy —iTihy ‘ i hy iTohy L iTnhn
p(n):=e e e PR pe, ) € Me e,
k>1
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RIS : from Hamilton to Markov

The reduced dynamics map

We are interested in the system &, i.e. (mainly) expactation values of
observables of the form As ® 1. At “time” n the state of S is given by

p(n) = Tr(p"!(n).
It is the unique state of S such that
VA € B(hs), Tr (ptOt(n) AR® ]lc) = Trs (p(n)A).
If S is in the state p before the n-th interaction, after it it is in the state
Ln(p) = Tre, (e*"T”h"/) ® pe, e"T”h") .
The “repeated interaction” structure induces a markovian behaviour:
vn,  p(n) = La(p(n - 1)).

= One has to understand £, 0---0 L; as n — oco.



RIS : from Hamilton to Markov

Some questions about RIS

Large time behaviour:

o Existence of the limit lim p(n) = p.?
n—-+o00

@ Several situations : ideal (identical interactions, equilibrium),
random (non-equilibrium).

Thermodynamical properties:
o Energy variation (external work, power delivered to the system)?
@ In the non equilibrium case : fluxes?

@ Entropy production?



RIS : from Hamilton to Markov

Some questions about RIS

Large time behaviour:
o Existence of the limit lim p(n) = p.?
n—-+o00
@ Several situations : ideal (identical interactions, equilibrium),
random (non-equilibrium).
Thermodynamical properties:
o Energy variation (external work, power delivered to the system)?
@ In the non equilibrium case : fluxes?

@ Entropy production?

Concrete examples?
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Asymptotic state of Rl systems

Spectrum of a RDM

A key ingredient will be the spectral analysis of the RDM : existence of
invariant state, spectral gap,... For example, in the ideal case
p(n) = Lyo---0Li(p) =L"(p).

The L, are completely positive and trace preserving maps on J1(hs).

Consequence: . .
Spec(L,) C {ze€ C||z| <1}, .

1 is in the spectrum.




Asymptotic state of Rl systems

Ideal interactions

Take all the interactions identical, i.e. hg, =bg, hg, = he, Tk =7,
Vk =V, pg, = pe. Hence Ly = L.

Ergodic assumption (E):
Spec(£) N St = {1},

1 is a simple eigenvalue. W




Asymptotic state of Rl systems

Ideal interactions

Take all the interactions identical, i.e. hg, =bg, hg, = he, Tk =7,
Vk =V, pg, = pe. Hence Ly = L.

Ergodic assumption (E):
Spec(£) N St = {1},

1 is a simple eigenvalue. W

Theorem (B.-Joye-Merkli '06)

Let dim hs < oco. If (E) is satisfied, there exist C,a > 0 s.t. for any
initial state p

lo(n) = pil < Ce=*",  VneN,

where p. is the (unique) invariant state of L.
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Random interactions

We allow some fluctuations w.r.t. ideal situation (interaction time,
temperature): £ = L(wp) random variable with values in RDM (CP,
trace preserving maps on bhs) over a probability space (9, F,p).
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Asymptotic state of Rl systems

Random interactions

We allow some fluctuations w.r.t. ideal situation (interaction time,
temperature): £ = L(wp) random variable with values in RDM (CP,
trace preserving maps on bhs) over a probability space (9, F,p).
Product of i.i.d. RDMs: Q = QY, dP = [[,~, dp and w = (wp)n>1.
= Understand p(n,w) = (L(w,) oo L(w1)) (p).

Theorem (B.-Joye-Merkli '08)

Let dim hs < co. If p(L(wo) satisfies (E)) > 0, then
Q E(L) satisfies (E).

Q Forany p e Ji(Hs), ||m — Zp n,w) +, a.e.w € Q, where

p+ is the unique invariant state ofIE(,C)

If moreover there exists p; s.t. L(wo)(ps) = p+ for a.e. wo, i.e. there is
a deterministic invariant state, then there exists « > 0 s.t. for any
p € J1(Hs) and for a.e. w € Q, there exists C(w) > 0

llo(n,w) — pill1 £ C(w)e™ ", VneN.
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The one-aom maser

Physics: One-atom maser (Walther et al '85, Haroche et al '92)
EM field

e e - o o
O

L L - (9]
atom 1 atom 2 atom 4 - - -
atom 3

@ S= one mode of the electromagnetic field in a cavity.
@ &= k-th atom interacting with the field.

@ C: beam of atoms sent into the cavity.



Two concrete models
O®000
The one-atom maser

Mathematical model of the one-atom maser

Q@ The field in the cavity: (a harmonic oscillator)
hs =Ts(C), hs =wa*a=wh.
Denote by |n) the eigenstates of hs: hs|n) = nw|n).
Q The atoms: 2-level atoms.

he = C2, hg—(o 0 )

o 0 wWo
We denote by |—), |+) the eigenstates of £.
If b= 8 (1) > is the annihilation operator on C? (b|+) = |—)

and b|—) = 0), we have he = wob*b.

© The interaction: dipole interaction in the rotating-wave
approximation, i.e. v = 3(a® b* + a* @ b).

This is the Jaynes-Cummings hamiltonian.



Two concrete models
[ele] lele]
The one-atom maser

The repeated interaction dynamics.

@ Full Hamiltonian: h=hs @ g + s ® hg + v.
Q Initial state of S: density matrix p € J1(hs).
Q Initial state of £: pg = equilibrium state at temperature 371, i.e.

e Phe

Ps = Tr(e_ﬂhs)'



Two concrete models
[ele] lele]
The one-atom maser

The repeated interaction dynamics.

@ Full Hamiltonian: h=hs @ g + s ® hg + v.

Q Initial state of S: density matrix p € J1(hs).

Q Initial state of £: pg = equilibrium state at temperature 371, i.e.
We are at equilibrium : p(n) = L"(p).
Conclusion: we have to understand the spectrum of L.

Main difficulty: Perturbation theory doesn’t work.

When \ = 0, L(p) = e~"""s pei™hs  Hence

sp(£) = {e“7(»=m) " n m € N}: pure point spectrum (possibly dense in
S1), but all the eigenvalues, and in particular 1, are infinitely degenerate!



Two concrete models
[elele] o]
The one-atom maser

Jaynes-Cummings Hamiltonian and Rabi oscillations

If there are n photons in the cavity, the probability for the atom to make
a transition |—) — |4) is a periodic function of time

_ _ith 2 o A2 .2 Vnht
P(t)—|<n—1,+\e t |n,—>| —(1—V2> sin (7>,
with frequency

Up A2n+ (w—wp)? = VA2n+ A2

(A = 1-photon Rabi frequency in a cavity where A = 0).



Two concrete models
[elele] o]
The one-atom maser

Jaynes-Cummings Hamiltonian and Rabi oscillations

If there are n photons in the cavity, the probability for the atom to make
a transition |—) — |4) is a periodic function of time

o _ith 2 o A2 .2 l/nt
P(t)—|<n—1,+\e t |n,—>| —(1—V2> sin (7>,
with frequency

Up A2n+ (w—wp)? = VA2n+ A2

(A = 1-photon Rabi frequency in a cavity where A = 0).
Conclusion: If the field is in state |n) before an interaction and 7 is a
2
multiple of the Rabi period T, := —W, after this interaction it can not be

Vn
in state |[n — 1): there is a decoupling between the n — 1 and n photon
states.
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Ergodicity

n > 0 is called a Rabi resonance if 3k € N, 7 = kT,.

R = set of Rabi resonances. The cavity splits into independant “sectors”
each time there is a resonance.
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O000e

The one-atom maser

Ergodicity

n > 0 is called a Rabi resonance if 3k € N, 7 = kT,.

1

R = set of Rabi resonances. The cavity splits into independant “sectors’
each time there is a resonance.

Proposition (B.-Pillet '09)

If R =), 1 is the only eigenvalue of L on S and it is simple. The
invariant state is ps g+, the Gibbs state of S at inverse temp. * = 22 3.

Theorem (B.-Pillet '09)

If R =10, ps - is ergodic, i.e. any initial state converges (weakly and in
ergodic mean) to ps g« .




Two concrete models
O000e

The one-atom maser

Ergodicity

n > 0 is called a Rabi resonance if 3k € N, 7 = kT,.

R = set of Rabi resonances. The cavity splits into independant “sectors”
each time there is a resonance.

Proposition (B.-Pillet '09)

If R =), 1 is the only eigenvalue of L on S and it is simple. The
invariant state is ps g~, the Gibbs state of S at inverse temp. 3* = “2f3.

Theorem (B.-Pillet '09)

If R =10, ps - is ergodic, i.e. any initial state converges (weakly and in
ergodic mean) to ps g« .

Remarks:

1) Numerically it seems that ps g+ is not only ergodic but also mixing.
2) 3 possible situations R is empty, a singlet or infinite. Generically: R is
empty = no resonance. If R # ) the multiplicity of 1 increases (one
invariant state per sector).
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Two concrete models
000
Diffusion in a tight binding band

The tight binding model

@ S = one electron in the tight binding approximation + constant
electric field, i.e.

hs =*(Z) and hs=—A— FX.

Bloch oscillations prevent a current from being set up.
Idea: contact with a thermal environment will lead to a steady
current (via scattering mechanisms).

o & = 2-level systems (E = Bohr frequency).
o Let T=> [k+1)(k|=e".
kez

v=XANT®b*+ T*®b). (If F>0, T acts as an annihilation
operator.)
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RI dynamics of the tight binding model

Questions: transport properties of the electron, e.g.

%i(n)) v, Te((X = vnr)2p(n)) ~ 7

Fact: The dynamics induced by the RDM L corresponds to
Free dynamics of S 4+ random walk

More precisely e'™"s L(p)e™"™"s = p T=1pT + pop+ py TpT 1, where
p— + po + p+ = 1 are explicit.



Two concrete models
oceo
Diffusion in a tight binding band

RI dynamics of the tight binding model

Questions: transport properties of the electron, e.g.

%i(n)) v, Te((X = vnr)2p(n)) ~ 7

Fact: The dynamics induced by the RDM L corresponds to
Free dynamics of S 4+ random walk

More precisely e'™"s L(p)e™"™"s = p T=1pT + pop+ py TpT 1, where
p— + po + p+ = 1 are explicit.

Assumptions: F >0, A # 0 and wr ¢ 27Z (so that py # 1).



Two concrete models
ooe

Diffusion in a tight binding band

Drift and diffusion

Theorem (B.-De Bievre-Pillet '11)
If Tr (sz) < 400, then

i D) L T(X — vm)2p(n)

n—00 nT n— oo nTt

— 2D,

where v and D are explicit.




Two concrete models
ooe

Diffusion in a tight binding band

Drift and diffusion

Theorem (B.-De Bievre-Pillet '11)
If Tr (sz) < 400, then

im XXp(m) _ o i Tr((X — vn7)?p(n))

n—00 nT n— oo nTt

— 2D,

where v and D are explicit.

Remark: One actually proves the following CLT : for any f € G,(R),

as well as a Large Deviation Principle.
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Thermodynamics of Rl systems

Energy variation

The total Hamiltonian is time-dependent = the total energy is usually
not conserved.
During the n-th interaction the energy is constant, formally given by

Tr (p**(n — 1)h,) = Tr (p**(n)hy) .



Thermodynamics of Rl systems

Energy variation

The total Hamiltonian is time-dependent = the total energy is usually
not conserved.
During the n-th interaction the energy is constant, formally given by

Tr (p**(n — 1)h,) = Tr (p**(n)hy) .

When one switches from interaction n to interaction n + 1, there is an
energy jump (external work):
Te (04 (n) % (hpst — ha)) = Te(p'}(n) x (vis1 — va))

Trs.e,. [0(n) @ pe,.y Vol
~Trse, [p(n—1) @ pe, ey eI

oW(n) =



Thermodynamics of Rl systems

Energy variation

In the ideal case, one easily gets

Proposition (B.-Joye-Merkli '06)

If Assumption (E) is satisfied,

N
1 1 : .
AW = lim —=> dW(n) = -Trse (p+ @ pe (v —eve™™).

N—oo NT
n=1




Thermodynamics of Rl systems

Energy variation

In the ideal case, one easily gets

Proposition (B.-Joye-Merkli '06)

If Assumption (E) is satisfied,

1 1 ) .
AW = |lim — Z(SW(n) = ;Trs’g (p+ ® pe (v— e’Thve_’Th)) .

In the random case we have,

Proposition (B.-Joye-Merkli '08)
If p(L(wo) satisfies (E)) > 0, then

(Trs,g (P+ ® pe (v — eiThve—iTh)))
E(T) ’

AW = ZéW(n

N—>o<> fN

where py is the unique invariant state of E(L).
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We assume that the pg, are Gibbs states at inverse temperature .
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Fix a reference state ps for S and let pp = ps ® ®pgk.

k>1
Relative entropy: Ent(p|po) = Tr(plog p — plog po) > 0.



Thermodynamics of Rl systems

Entropy production

We assume that the pg, are Gibbs states at inverse temperature .

Fix a reference state ps for S and let pp = ps ® ®pgk.
k>1
Relative entropy: Ent(p|po) = Tr(plog p — plog pg) > 0.

Theorem (B.-Joye-Merkli '06 -'08)
1) Ideal case: if (E) is satisfied, then
tot _ tot
e i R0 (n)]po) — Eni(p!(0)|po)

n— o0 nT

= BAW.




Thermodynamics of Rl systems

Entropy production

We assume that the pg, are Gibbs states at inverse temperature .

Fix a reference state ps for S and let pp = ps ® ®pgk.
k>1
Relative entropy: Ent(p|po) = Tr(plog p — plog pg) > 0.

Theorem (B.-Joye-Merkli '06 -'08)

1) Ideal case: if (E) is satisfied, then
E tot —E tot
AS = lim 2P (n)lpo) — Ent(p(0)lpo) _ ga\y.
n—o0o nT
2) Random case: if p(L(wo) satisfies (E)) > 0, then
tot _ tot
AS — (i Ent(p (n,w)|po) Ent(p (va)|p0)
n— o0 tn(w)
_ E (BTrse (pr ® pe (v —eve™ ™))
E(r) ’
In particular, if 3 is not random we still have AS = BAW.



Thermodynamics of Rl systems

Some remarks and perspectives

@ RIS have also been studied in various limiting regimes: weak
coupling, continuous interactions,... (Attal-Pautrat, Attal-Joye,
Pellegrini).

We can also add an extra reservoir : leaky RIS (B.-Joye-Merkli '10).
Linear response theory and fluctuation symmetries in RIS

Study the correlations in the chain after the interaction

e & ¢ ¢

One-atom maser + losses (important to allow initially excited 2-level
atoms)

@ In the one-atom maser, the relaxation is slow (not exponential) due
to metastable states with arbitrarily long lifetime. What about
random interaction times? Does it enhance the relaxation speed?

o Tight-binding model with scattering in momentum.
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