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Open Systems

Open system = a “small” system S interacting with an environment R.
Goal: understand the asymptotic (t → +∞) behaviour of the system S
(asymptotic state, thermodynamical properties).
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Open Systems

Open system = a “small” system S interacting with an environment R.
Goal: understand the asymptotic (t → +∞) behaviour of the system S
(asymptotic state, thermodynamical properties).

2 approaches: Hamiltonian / Markovian

Hamiltonian: full description, spectral analysis, scattering theory.

Markovian: effective description of S, obtained by weak-coupling
type limits or if S undergoes stochastic forces (Langevin equation).
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Open Systems

Open system = a “small” system S interacting with an environment R.
Goal: understand the asymptotic (t → +∞) behaviour of the system S
(asymptotic state, thermodynamical properties).

2 approaches: Hamiltonian / Markovian

Hamiltonian: full description, spectral analysis, scattering theory.

Markovian: effective description of S, obtained by weak-coupling
type limits or if S undergoes stochastic forces (Langevin equation).

Both at the same time : Repeated Interaction Systems (start with work
of Attal-Pautrat)
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Repeated Interaction Systems (RIS)

E1 E2 E3 E4

S

v1

t = s

0 ≤ s < τ1
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Repeated Interaction Systems (RIS)
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Repeated Interaction Systems (RIS)

E1 E2 E3 E4

S t = τ1 + τ2 + s

0 ≤ s < τ3
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A concrete example

Physics: One-atom maser (Walther et al ’85, Haroche et al ’92)

atom 1 atom 2 atom 4 · · ·

EM field

atom 3

S= one mode of the electromagnetic field in a cavity.

Ek= k-th atom interacting with the field.

C: beam of atoms sent into the cavity.
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Hamiltonian description

A “small” system S:
Quantum system governed by some hamiltonian hS acting on hS .

A chain C of quantum sub-systems Ek (k = 1, 2, . . .):

C = E1 + E2 + · · ·
Each Ek is governed by some hamiltonian hEk

acting on hEk
.
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Hamiltonian description

A “small” system S:
Quantum system governed by some hamiltonian hS acting on hS .

A chain C of quantum sub-systems Ek (k = 1, 2, . . .):

C = E1 + E2 + · · ·
Each Ek is governed by some hamiltonian hEk

acting on hEk
.

Interactions:

Interaction operators vk acting on hS ⊗ hEk
.

A sequence of interaction times τk > 0.
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Hamiltonian description

A “small” system S:
Quantum system governed by some hamiltonian hS acting on hS .

A chain C of quantum sub-systems Ek (k = 1, 2, . . .):

C = E1 + E2 + · · ·
Each Ek is governed by some hamiltonian hEk

acting on hEk
.

Interactions:

Interaction operators vk acting on hS ⊗ hEk
.

A sequence of interaction times τk > 0.

For t ∈ [tn−1, tn[, tn = τ1 + · · ·+ τn :

S interacts with En,
Ek evolves freely for k 6= n,

i.e. the full system is governed by

h̃n = hS + hEn
+ vn +

∑

k 6=n

hEk
= hn +

∑

k 6=n

hEk
.
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The repeated interaction dynamics

Data:

1 Full Hamiltonian: hn = hS ⊗ 1lEn
+ 1lS ⊗ hEn

+ vn.

2 Initial state of S: density matrix ρ ∈ J1(hS).

3 Initial state of En: ρEn
(invariant state for the free dynamics of En,

e.g. Gibbs state at some inverse temperature βn).
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The repeated interaction dynamics

Data:

1 Full Hamiltonian: hn = hS ⊗ 1lEn
+ 1lS ⊗ hEn

+ vn.

2 Initial state of S: density matrix ρ ∈ J1(hS).

3 Initial state of En: ρEn
(invariant state for the free dynamics of En,

e.g. Gibbs state at some inverse temperature βn).

After 0 interaction, the state of the total system is

ρtot(0) := ρ⊗
⊗

k≥1

ρEk
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The repeated interaction dynamics

Data:

1 Full Hamiltonian: hn = hS ⊗ 1lEn
+ 1lS ⊗ hEn

+ vn.

2 Initial state of S: density matrix ρ ∈ J1(hS).

3 Initial state of En: ρEn
(invariant state for the free dynamics of En,

e.g. Gibbs state at some inverse temperature βn).

After 1 interaction, the state of the total system is

ρtot(1) := e−iτ1h̃1
(

ρ⊗
⊗

k≥1

ρEk

)

eiτ1h̃1
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The repeated interaction dynamics

Data:

1 Full Hamiltonian: hn = hS ⊗ 1lEn
+ 1lS ⊗ hEn

+ vn.

2 Initial state of S: density matrix ρ ∈ J1(hS).

3 Initial state of En: ρEn
(invariant state for the free dynamics of En,

e.g. Gibbs state at some inverse temperature βn).

After 2 interactions, the state of the total system is

ρtot(2) := e−iτ2h̃2e−iτ1h̃1
(

ρ⊗
⊗

k≥1

ρEk

)

eiτ1h̃1eiτ2h̃2
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The repeated interaction dynamics

Data:

1 Full Hamiltonian: hn = hS ⊗ 1lEn
+ 1lS ⊗ hEn

+ vn.

2 Initial state of S: density matrix ρ ∈ J1(hS).

3 Initial state of En: ρEn
(invariant state for the free dynamics of En,

e.g. Gibbs state at some inverse temperature βn).

After n interactions, the state of the total system is

ρtot(n) := e−iτn h̃n · · · e−iτ2h̃2e−iτ1h̃1
(

ρ⊗
⊗

k≥1

ρEk

)

eiτ1h̃1eiτ2h̃2 · · · eiτn h̃n .
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The reduced dynamics map

We are interested in the system S, i.e. (mainly) expactation values of
observables of the form AS ⊗ 1l.
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The reduced dynamics map

We are interested in the system S, i.e. (mainly) expactation values of
observables of the form AS ⊗ 1l. At “time” n the state of S is given by

ρ(n) = TrC(ρ
tot(n)).

It is the unique state of S such that

∀A ∈ B(hS), Tr
(

ρtot(n) A⊗ 1lC
)

= TrS (ρ(n)A) .
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The reduced dynamics map

We are interested in the system S, i.e. (mainly) expactation values of
observables of the form AS ⊗ 1l. At “time” n the state of S is given by

ρ(n) = TrC(ρ
tot(n)).

It is the unique state of S such that

∀A ∈ B(hS), Tr
(

ρtot(n) A⊗ 1lC
)

= TrS (ρ(n)A) .

If S is in the state ρ before the n-th interaction, after it it is in the state

Ln(ρ) := TrEn

(

e−iτnhnρ⊗ ρEn
eiτnhn

)

.
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The reduced dynamics map

We are interested in the system S, i.e. (mainly) expactation values of
observables of the form AS ⊗ 1l. At “time” n the state of S is given by

ρ(n) = TrC(ρ
tot(n)).

It is the unique state of S such that

∀A ∈ B(hS), Tr
(

ρtot(n) A⊗ 1lC
)

= TrS (ρ(n)A) .

If S is in the state ρ before the n-th interaction, after it it is in the state

Ln(ρ) := TrEn

(

e−iτnhnρ⊗ ρEn
eiτnhn

)

.

The “repeated interaction” structure induces a markovian behaviour:

∀n, ρ(n) = Ln(ρ(n − 1)).
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The reduced dynamics map

We are interested in the system S, i.e. (mainly) expactation values of
observables of the form AS ⊗ 1l. At “time” n the state of S is given by

ρ(n) = TrC(ρ
tot(n)).

It is the unique state of S such that

∀A ∈ B(hS), Tr
(

ρtot(n) A⊗ 1lC
)

= TrS (ρ(n)A) .

If S is in the state ρ before the n-th interaction, after it it is in the state

Ln(ρ) := TrEn

(

e−iτnhnρ⊗ ρEn
eiτnhn

)

.

The “repeated interaction” structure induces a markovian behaviour:

∀n, ρ(n) = Ln(ρ(n − 1)).

=⇒ One has to understand Ln ◦ · · · ◦ L1 as n → ∞.
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Some questions about RIS

Large time behaviour:

Existence of the limit lim
n→+∞

ρ(n) = ρ+?

Several situations : ideal (identical interactions, equilibrium),
random (non-equilibrium).

Thermodynamical properties:

Energy variation (external work, power delivered to the system)?

In the non equilibrium case : fluxes?

Entropy production?
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Some questions about RIS

Large time behaviour:

Existence of the limit lim
n→+∞

ρ(n) = ρ+?

Several situations : ideal (identical interactions, equilibrium),
random (non-equilibrium).

Thermodynamical properties:

Energy variation (external work, power delivered to the system)?

In the non equilibrium case : fluxes?

Entropy production?

Concrete examples?
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Spectrum of a RDM

A key ingredient will be the spectral analysis of the RDM : existence of
invariant state, spectral gap,... For example, in the ideal case
ρ(n) = Ln ◦ · · · ◦ L1(ρ) = Ln(ρ).
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Spectrum of a RDM

A key ingredient will be the spectral analysis of the RDM : existence of
invariant state, spectral gap,... For example, in the ideal case
ρ(n) = Ln ◦ · · · ◦ L1(ρ) = Ln(ρ).

The Ln are completely positive and trace preserving maps on J1(hS).

Consequence:
Spec(Ln) ⊂ {z ∈ C | |z | ≤ 1},
1 is in the spectrum.

1
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Ideal interactions

Take all the interactions identical, i.e. hEk
≡ hE , hEk

≡ hE , τk ≡ τ ,
vk ≡ v , ρEk

≡ ρE . Hence Lk ≡ L.

Ergodic assumption (E):

Spec(L) ∩ S1 = {1},
1 is a simple eigenvalue.

1
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Ideal interactions

Take all the interactions identical, i.e. hEk
≡ hE , hEk

≡ hE , τk ≡ τ ,
vk ≡ v , ρEk

≡ ρE . Hence Lk ≡ L.

Ergodic assumption (E):

Spec(L) ∩ S1 = {1},
1 is a simple eigenvalue.

1

Theorem (B.-Joye-Merkli ’06)

Let dim hS < ∞. If (E) is satisfied, there exist C , α > 0 s.t. for any
initial state ρ

‖ρ(n)− ρ+‖1 ≤ Ce−αn, ∀n ∈ N,

where ρ+ is the (unique) invariant state of L.
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Random interactions

We allow some fluctuations w.r.t. ideal situation (interaction time,
temperature): L = L(ω0) random variable with values in RDM (CP,
trace preserving maps on hS) over a probability space (Ω0,F , p).
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Random interactions

We allow some fluctuations w.r.t. ideal situation (interaction time,
temperature): L = L(ω0) random variable with values in RDM (CP,
trace preserving maps on hS) over a probability space (Ω0,F , p).
Product of i.i.d. RDMs: Ω = ΩN

∗

0 , dP =
∏

n≥1 dp and ω = (ωn)n≥1.
⇒ Understand ρ(n, ω) = (L(ωn) ◦ · · · ◦ L(ω1)) (ρ).
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Random interactions

We allow some fluctuations w.r.t. ideal situation (interaction time,
temperature): L = L(ω0) random variable with values in RDM (CP,
trace preserving maps on hS) over a probability space (Ω0,F , p).
Product of i.i.d. RDMs: Ω = ΩN

∗

0 , dP =
∏

n≥1 dp and ω = (ωn)n≥1.
⇒ Understand ρ(n, ω) = (L(ωn) ◦ · · · ◦ L(ω1)) (ρ).

Theorem (B.-Joye-Merkli ’08)

Let dim hS < ∞. If p(L(ω0) satisfies (E)) > 0, then

1 E(L) satisfies (E).

2 For any ρ ∈ J1(HS), lim
N→∞

1

N

N
∑

n=1

ρ(n, ω) = ρ+, a.e. ω ∈ Ω, where

ρ+ is the unique invariant state of E(L).
If moreover there exists ρ+ s.t. L(ω0)(ρ+) = ρ+ for a.e. ω0, i.e. there is
a deterministic invariant state, then there exists α > 0 s.t. for any
ρ ∈ J1(HS) and for a.e. ω ∈ Ω, there exists C (ω) > 0

‖ρ(n, ω)− ρ+‖1 ≤ C (ω)e−αn, ∀n ∈ N.
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The one-atom maser

The one-aom maser

Physics: One-atom maser (Walther et al ’85, Haroche et al ’92)

atom 1 atom 2 atom 4 · · ·

EM field

atom 3

S= one mode of the electromagnetic field in a cavity.

Ek= k-th atom interacting with the field.

C: beam of atoms sent into the cavity.



RIS : from Hamilton to Markov Asymptotic state of RI systems Two concrete models Thermodynamics of RI systems

The one-atom maser

Mathematical model of the one-atom maser

1 The field in the cavity: (a harmonic oscillator)
hS = Γs(C), hS = ωa∗a = ωN.

Denote by |n〉 the eigenstates of hS : hS |n〉 = nω|n〉.
2 The atoms: 2-level atoms.

hE = C
2, hE =

(

0 0
0 ω0

)

.

We denote by |−〉, |+〉 the eigenstates of E .
If b =

(

0 1
0 0

)

is the annihilation operator on C
2 (b|+〉 = |−〉

and b|−〉 = 0), we have hE = ω0b
∗b.

3 The interaction: dipole interaction in the rotating-wave
approximation, i.e. v = λ

2 (a ⊗ b∗ + a∗ ⊗ b).

This is the Jaynes-Cummings hamiltonian.
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The one-atom maser

The repeated interaction dynamics.

1 Full Hamiltonian: h = hS ⊗ 1lE + 1lS ⊗ hE + v .

2 Initial state of S: density matrix ρ ∈ J1(hS).

3 Initial state of E : ρβ = equilibrium state at temperature β−1, i.e.

ρβ = e
−βhE

Tr(e−βhE )
.
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The one-atom maser

The repeated interaction dynamics.

1 Full Hamiltonian: h = hS ⊗ 1lE + 1lS ⊗ hE + v .

2 Initial state of S: density matrix ρ ∈ J1(hS).

3 Initial state of E : ρβ = equilibrium state at temperature β−1, i.e.

ρβ = e
−βhE

Tr(e−βhE )
.

We are at equilibrium : ρ(n) = Ln(ρ).

Conclusion: we have to understand the spectrum of L.
Main difficulty: Perturbation theory doesn’t work.

When λ = 0, L(ρ) = e−iτhSρ eiτhS . Hence
sp(L) = {eiωτ(n−m), n,m ∈ N}: pure point spectrum (possibly dense in
S1), but all the eigenvalues, and in particular 1, are infinitely degenerate!
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The one-atom maser

Jaynes-Cummings Hamiltonian and Rabi oscillations

If there are n photons in the cavity, the probability for the atom to make
a transition |−〉 → |+〉 is a periodic function of time

P(t) =
∣

∣〈n − 1,+| e−ith |n,−〉
∣

∣

2
=

(

1− ∆2

ν2
n

)

sin2
(νnt

2

)

,

with frequency

νn :=
√

λ2n + (ω − ω0)2 =
√

λ2n +∆2.

(λ = 1-photon Rabi frequency in a cavity where ∆ = 0).
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The one-atom maser

Jaynes-Cummings Hamiltonian and Rabi oscillations

If there are n photons in the cavity, the probability for the atom to make
a transition |−〉 → |+〉 is a periodic function of time

P(t) =
∣

∣〈n − 1,+| e−ith |n,−〉
∣

∣

2
=

(

1− ∆2

ν2
n

)

sin2
(νnt

2

)

,

with frequency

νn :=
√

λ2n + (ω − ω0)2 =
√

λ2n +∆2.

(λ = 1-photon Rabi frequency in a cavity where ∆ = 0).

Conclusion: If the field is in state |n〉 before an interaction and τ is a

multiple of the Rabi period Tn :=
2π

νn
, after this interaction it can not be

in state |n − 1〉: there is a decoupling between the n − 1 and n photon
states.
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The one-atom maser

Ergodicity

n > 0 is called a Rabi resonance if ∃k ∈ N, τ = kTn.

R = set of Rabi resonances. The cavity splits into independant “sectors”
each time there is a resonance.
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The one-atom maser

Ergodicity

n > 0 is called a Rabi resonance if ∃k ∈ N, τ = kTn.

R = set of Rabi resonances. The cavity splits into independant “sectors”
each time there is a resonance.

Proposition (B.-Pillet ’09)

If R = ∅, 1 is the only eigenvalue of L on S1 and it is simple. The
invariant state is ρS,β∗ , the Gibbs state of S at inverse temp. β∗ = ω0

ω β.

Theorem (B.-Pillet ’09)

If R = ∅, ρS,β∗ is ergodic, i.e. any initial state converges (weakly and in
ergodic mean) to ρS,β∗ .
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The one-atom maser

Ergodicity

n > 0 is called a Rabi resonance if ∃k ∈ N, τ = kTn.

R = set of Rabi resonances. The cavity splits into independant “sectors”
each time there is a resonance.

Proposition (B.-Pillet ’09)

If R = ∅, 1 is the only eigenvalue of L on S1 and it is simple. The
invariant state is ρS,β∗ , the Gibbs state of S at inverse temp. β∗ = ω0

ω β.

Theorem (B.-Pillet ’09)

If R = ∅, ρS,β∗ is ergodic, i.e. any initial state converges (weakly and in
ergodic mean) to ρS,β∗ .

Remarks:
1) Numerically it seems that ρS,β∗ is not only ergodic but also mixing.
2) 3 possible situations R is empty, a singlet or infinite. Generically: R is
empty = no resonance. If R 6= ∅ the multiplicity of 1 increases (one
invariant state per sector).
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Diffusion in a tight binding band

The tight binding model

S = one electron in the tight binding approximation + constant
electric field, i.e.

hS = ℓ2(Z) and hS = −∆− FX .
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Diffusion in a tight binding band

The tight binding model

S = one electron in the tight binding approximation + constant
electric field, i.e.

hS = ℓ2(Z) and hS = −∆− FX .

Bloch oscillations prevent a current from being set up.

Idea: contact with a thermal environment will lead to a steady
current (via scattering mechanisms).
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Diffusion in a tight binding band

The tight binding model

S = one electron in the tight binding approximation + constant
electric field, i.e.

hS = ℓ2(Z) and hS = −∆− FX .

Bloch oscillations prevent a current from being set up.

Idea: contact with a thermal environment will lead to a steady
current (via scattering mechanisms).

E = 2-level systems (E = Bohr frequency).
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Diffusion in a tight binding band

The tight binding model

S = one electron in the tight binding approximation + constant
electric field, i.e.

hS = ℓ2(Z) and hS = −∆− FX .

Bloch oscillations prevent a current from being set up.

Idea: contact with a thermal environment will lead to a steady
current (via scattering mechanisms).

E = 2-level systems (E = Bohr frequency).

Let T =
∑

k∈Z

|k + 1〉〈k | = e−iP .

v = λ(T ⊗ b∗ + T ∗ ⊗ b). (If F > 0, T acts as an annihilation
operator.)



RIS : from Hamilton to Markov Asymptotic state of RI systems Two concrete models Thermodynamics of RI systems

Diffusion in a tight binding band

RI dynamics of the tight binding model

Questions: transport properties of the electron, e.g.

Tr(Xρ(n))

nτ

?→ v , Tr((X − vnτ)2ρ(n)) ∼ ?
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Diffusion in a tight binding band

RI dynamics of the tight binding model

Questions: transport properties of the electron, e.g.

Tr(Xρ(n))

nτ

?→ v , Tr((X − vnτ)2ρ(n)) ∼ ?

Fact: The dynamics induced by the RDM L corresponds to

Free dynamics of S + random walk

More precisely eiτhSL(ρ)e−iτhS = p−T
−1ρT + p0 ρ+ p+TρT−1, where

p− + p0 + p+ = 1 are explicit.
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Diffusion in a tight binding band

RI dynamics of the tight binding model

Questions: transport properties of the electron, e.g.

Tr(Xρ(n))

nτ

?→ v , Tr((X − vnτ)2ρ(n)) ∼ ?

Fact: The dynamics induced by the RDM L corresponds to

Free dynamics of S + random walk

More precisely eiτhSL(ρ)e−iτhS = p−T
−1ρT + p0 ρ+ p+TρT−1, where

p− + p0 + p+ = 1 are explicit.

Assumptions: F > 0, λ 6= 0 and ωτ /∈ 2πZ (so that p0 6= 1).
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Diffusion in a tight binding band

Drift and diffusion

Theorem (B.-De Bièvre-Pillet ’11)

If Tr
(

X 2ρ
)

< +∞, then

lim
n→∞

Tr(Xρ(n))

nτ
= v , lim

n→∞

Tr((X − vnτ)2ρ(n))

nτ
= 2D,

where v and D are explicit.
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Diffusion in a tight binding band

Drift and diffusion

Theorem (B.-De Bièvre-Pillet ’11)

If Tr
(

X 2ρ
)

< +∞, then

lim
n→∞

Tr(Xρ(n))

nτ
= v , lim

n→∞

Tr((X − vnτ)2ρ(n))

nτ
= 2D,

where v and D are explicit.

Remark: One actually proves the following CLT : for any f ∈ Cb(R),

lim
n→∞

Tr

(

f

(

X − vnτ√
2Dnτ

)

ρ(n)

)

=

∫

f (x) e−x
2/2 dx√

2π
,

as well as a Large Deviation Principle.
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Energy variation

The total Hamiltonian is time-dependent ⇒ the total energy is usually
not conserved.
During the n-th interaction the energy is constant, formally given by

Tr
(

ρtot(n − 1)hn
)

= Tr
(

ρtot(n)hn
)

.
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Energy variation

The total Hamiltonian is time-dependent ⇒ the total energy is usually
not conserved.
During the n-th interaction the energy is constant, formally given by

Tr
(

ρtot(n − 1)hn
)

= Tr
(

ρtot(n)hn
)

.

When one switches from interaction n to interaction n + 1, there is an
energy jump (external work):

δW (n) := Tr
(

ρtot(n)× (hn+1 − hn)
)

= Tr
(

ρtot(n)× (vn+1 − vn)
)

= TrS,En+1
[ρ(n)⊗ ρEn+1

vn+1]

−TrS,En

[

ρ(n − 1)⊗ ρEn
eiτnhnvne

−iτnhn
]

.
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Energy variation

In the ideal case, one easily gets

Proposition (B.-Joye-Merkli ’06)

If Assumption (E) is satisfied,

∆W := lim
N→∞

1

Nτ

N
∑

n=1

δW (n) =
1

τ
TrS,E

(

ρ+ ⊗ ρE (v − eiτhve−iτh)
)

.
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Energy variation

In the ideal case, one easily gets

Proposition (B.-Joye-Merkli ’06)

If Assumption (E) is satisfied,

∆W := lim
N→∞

1

Nτ

N
∑

n=1

δW (n) =
1

τ
TrS,E

(

ρ+ ⊗ ρE (v − eiτhve−iτh)
)

.

In the random case we have,

Proposition (B.-Joye-Merkli ’08)

If p(L(ω0) satisfies (E)) > 0, then

∆W := lim
N→∞

1

tN(ω)

N
∑

n=1

δW (n) =
E
(

TrS,E

(

ρ+ ⊗ ρE (v − eiτhve−iτh)
))

E(τ)
,

where ρ+ is the unique invariant state of E(L).
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Entropy production

We assume that the ρEn
are Gibbs states at inverse temperature βn.
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Entropy production

We assume that the ρEn
are Gibbs states at inverse temperature βn.

Fix a reference state ρS for S and let ρ0 = ρS ⊗
⊗

k≥1

ρEk
.

Relative entropy: Ent(ρ|ρ0) = Tr(ρ log ρ− ρ log ρ0) ≥ 0.
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Entropy production

We assume that the ρEn
are Gibbs states at inverse temperature βn.

Fix a reference state ρS for S and let ρ0 = ρS ⊗
⊗

k≥1

ρEk
.

Relative entropy: Ent(ρ|ρ0) = Tr(ρ log ρ− ρ log ρ0) ≥ 0.

Theorem (B.-Joye-Merkli ’06 -’08)

1) Ideal case: if (E) is satisfied, then

∆S := lim
n→∞

Ent(ρtot(n)|ρ0)− Ent(ρtot(0)|ρ0)
nτ

= β∆W .
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Entropy production

We assume that the ρEn
are Gibbs states at inverse temperature βn.

Fix a reference state ρS for S and let ρ0 = ρS ⊗
⊗

k≥1

ρEk
.

Relative entropy: Ent(ρ|ρ0) = Tr(ρ log ρ− ρ log ρ0) ≥ 0.

Theorem (B.-Joye-Merkli ’06 -’08)

1) Ideal case: if (E) is satisfied, then

∆S := lim
n→∞

Ent(ρtot(n)|ρ0)− Ent(ρtot(0)|ρ0)
nτ

= β∆W .

2) Random case: if p(L(ω0) satisfies (E)) > 0, then

∆S := lim
n→∞

Ent(ρtot(n, ω)|ρ0)− Ent(ρtot(0, ω)|ρ0)
tn(ω)

=
E
(

β TrS,E

(

ρ+ ⊗ ρE (v − eiτhve−iτh)
))

E(τ)
.

In particular, if β is not random we still have ∆S = β∆W.
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Some remarks and perspectives

RIS have also been studied in various limiting regimes: weak
coupling, continuous interactions,... (Attal-Pautrat, Attal-Joye,
Pellegrini).

We can also add an extra reservoir : leaky RIS (B.-Joye-Merkli ’10).

Linear response theory and fluctuation symmetries in RIS

Study the correlations in the chain after the interaction

One-atom maser + losses (important to allow initially excited 2-level
atoms)

In the one-atom maser, the relaxation is slow (not exponential) due
to metastable states with arbitrarily long lifetime. What about
random interaction times? Does it enhance the relaxation speed?

Tight-binding model with scattering in momentum.
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