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Abstract: We Introchice and study sigorously a Hamiltonlan model ol a classical
particle moving through a homoegeneons disdpative medium at sero temperatiurs
in such & way that 11 experlences an efective linear Bietlon foree proportional
to its veloe ity [at sneall speeds). The medhim conskis at each polnt in space of
a vibration feld modelling an obstacle with which the particle exclanges enengy
amd momentum in such & way that total epergy and monsnium are oonserved.
We show that in the presence of a constant [not too large ) external force, the
particle maches an asymptotlc velocity proportional to this foree. In a potential
well, on the otler hamd, the particle conss expomentially st 1o rest n tle
hottom of 1he well, The exponential rate 15 in both cases an expliclt hmetion of
the moedel parameters and independent of the potential.

1. Introduoct lon

Many simple microscople or macrospople systems obey [al zerg temperaiure] an
alfective equation of motion of the type

milt) +gle) =-VV¥igle)), =0 (L.1]

Examples include the motion of elaetrons 1o a mwtal, o of a sueall particle in
a viseois mediim, but the coordinate ¢ neads not always be of geometrical
mature. The epergy loss due to the Inear Fetion foree —g [eoourring at a rate
—=f”) implied by this equation leads toseveral well-known phenomena. First, for
confining potentials V', the particle will come 1o a stop exponentially st [with
rate 3 If 7 is small enough) at one of the critical points of the potential Note in
particular that the decay rate 37 does not depend on the potential V. IT, on the

other hamd, '.-"[':q] = —F. g, for some F £ B, the particle will reach a limiting
spead ©[ F) = £ which is proportional to the applied Reld, This, In particoular, is
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at the originol Ohm's law. Again, the approach is exponential, it this time with
rate . In particular, IfF = 0, the panticle comes exponentially Fast toa full stop.
The phenonsnological Fiction force summarices the reaction of the emdronneent
af the particle to is pasage amd the enermgy lost by the particle & tramsberrad
1o the medium surroumding the particle by varlows processes [such as inelastic
collblons, for ewmmple]. 4 more Nmdamental, microscople, treatment of 1lese
plenoneena regures therafore comsidering the combined system comsisting of 1he
particle amd the medime. This combined system should allow lor a Hamdltoodan
treatment in which the total epergy 15 conserved.

Char goal in this paper 15 to present and stixdy a Hamiltondan medel of 8 systen
composad of a particle and a honeogeneons medhm, We show flgorosly that tle
particle has the behaviomr described abowe and amalyse the physical mechankms
atl the origin of the observed phenomena, We stay within the comtext of classical
meclanies and at zero temperature, hoplog o come back to other polnts in the
b —T plane at a later date. In particular, al positive temperatiore, a Ducteating
foree term s o be added 1o (1.1), transforming the aguation to the Langevin
aequation Such a term is Indeed produced by our meodel, but Is mach harder 1o
anmalyse at positive temperatures

The mesdel we comslder conskis of one classical particle that ls oo the one
hand, coupled to “obstacles” representsd by scalar vibration felds amd on tle
other subjected 1o a tlme-Independen external foree F'= -V, We are mostly
Interested in the more difficult case where F is constant (s0 V' = —F - g], bt we
will ako deal with confining potenials.

More preckely, the aquations of maotion for the coupled system are:

Holz wt) — Az ut) = —miz — glt)oaln) (1.2]
glt) = -V (gle)) _J(rﬂfn- digpn (2 — (L) oa )V )ie, v 1) [1.3)

Here ¢ & the vibration feld and g £ BY the podtion of the particle. The “form
factor” oy 2oy (i) determiness the coupling of the particle to the vibration Beld
ir. We shall assume:

(H1) gy [2)eorglp) € Cge(BE™), pyery # 0 where oy, oy = 0 are madial fune-
tons with py(x) = 01 |2| = By > 0 and aq(y) =0 ¥ |¢| = By =0
T obtain our main resiults (Sections 4 and 5], we will meed 1o take 1he propa-
gation speed ¢ lasge enoiagh, for reasons that will be explained then Tnthe Brst

part of the paper, on the other hand, It 18 comvenient to alsorh ¢ through the
sealing

$lewt) =eTP(z en ) and paly) = e oalew), (1.4)
s tlat [1.2)-(1.3) Is tramsformed Into
Hpiz w 1) — Aydle,m 1) = —palz — git))paly) (1.5)

glt) =-VVigle)) —Ldrfn_ di polx — glt))pa(u) (V@02 0,8 (L6

Mote that the held &z 1) = @2 ) plays the role of a potential for the
particle. Indeed, the second term in [16) s Fy (g01])) where

Falg) = - fr d fn_ dy gl — g)paly) (V) (2.8) (L.7)
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5 the foree exerted on the particle by the emdronment when the latter is in the
state &; 1his becomes Falg) = —Veélg, 0] I we conslder a polnt Interactlon so
that galx)eely) = )8y, To mdestand the model Intuitively 1he follvwing
observations are belphal. Fimst of all, the particle meoes o s-space [oF, neoee
precisely, in the y = 0 subspace of B, In fact, one can think of &=, -] as
represeniing, for each fxed value of 2 In the configuration space of the paricle,
an Yphatacle”, which has a large number of degrees of Feedom, and 1s therefore
msleled for slmplicity by a vibheation Reld &2, - ). The vadables i shoild o other
vtk nol be lmerpreted geometrically and are In particular not spatial variablaes
for the particle. To understamd this, it & helpful to Fourler tramsborm [ 1.5)-[ 1.6)
inthe  varlable 1o obtain

Wbz k1) + RFS(2 k1) = —pylz — glt)) bl k) (1.8)
i) = —VVigit)) + f dk Fy (g(1), k), (1.9)
i)
wlera
Fala k)= - f depn (2 — g)fa(K) V(2 k). (1.10)
ji=s

Clearly, $(x, & {) &, for each valie of ¢ and k, the amplitude of a driven oscil-
lator of fequency w(k) = |k|. All of these gscillators are decoupled and each of
them contributes separately a force — (2 —q[:]]ﬁ:[k]‘i’,&{:,k,l] acting on tle
particle.

Ce way b0 get an intultive understanding of why this model should exhibit
dissipative behaviour & to lmagine for 8 moment the particle B consirained to
move In one dimenslon (¢ € B), and that y € B*, so that one can pleture
Sz i) as describing the vibmtlons of an elastlye membrase podtiooed at e,
perpendicular to the axds on which the particle moves. As the particle hits tle
suceessive nembranes, i creates a wake, maich like a boat ploughing the surface
aof a lake [Figure 1). Taking for the moneent Vig) = 0in (L&) (0 that there 15
m external Reld: F =) ome can lmagine hunching the particle with an indtial
spead te, with all membranes indtially at rest. Inthat case the Inbmtion predicts
tlat the paricle should lose all s Hnetle energy Into the membranes and ¢ones
to & full stop. We shall prove that ths ntuition 1s correct amd that the particle
stops exponentially Fast for arbiteary walues of 4, bt with 1 = 3 [Theorem 3)
amd [or ¢ large enough. The physical odgin of these restrictions 1o the case whera
noeguals 3 amd ¢ kB large 1s explained In Sectlon 2 and at the end of Section 4.

Angther situation of interest 15 the case where Vs confining. Then technkgues
gimilar to the ones wsed in [KKS1) allow to show the particle comes to rest at
one of the equilibrium positions of the potemial V. We hothermoee show this
approach B exponential with the scpected rate [Theorem 4] provided the particle
oS 1o pest on a non-degenermtse minimim of the potential,

Char meain interest s In the case where Vig) = —F - . In that case, we show
that for a sultable class of Inltlal comnditions (and [or ¢ large enough) the particle
approaches asymplotically a constant speed w[F) [Theorem 2) which is linear
in F lor small F|oas 1o an olomde moeed .

Yarlows Hamiltonlan modelk for disipation In general and for lnear Fletion
in particular have previously been proposed n the physics lterature, mosily
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Flg: 1. Waves created by the passage of the particle through the s nocessive membranes.

with the purpose of deriving the classical or gquantum Langevin equation [see
|CEFM)| and |FLO| for lurther mlerences). As in the model we propose here (see
[1.8)-11.9)], they all imeolve the coupling of a particle to a Bmdly of Independent
oacillators representing the degress of freadom of the envirommeent. O model has
the paricular feature of deseriblng & homogeneoms (e translationally lvariant )
meecdium o which the particlke Is coupled In a trmnslatlonally ivarlant manmer
[ee [3.30). The coupling 15 therefore non-linear in the particle position [no dipole
apprm imation ), whilk it & linear in the Reld varlables. It & 1he only Hamiltoodan
melel we are aware of that describes llnear Fletion at low speads In the presence
of each of the three most commonly stidied potendials: V=L,V = —F - g and
V oconfining,

In muewe realistic models, one ought to couple the oacillators at differemt points
in gpace. This is easlly done n tle conteset of our model by clanging the po-
temtial energy of the feld imto

f dz dy (G|V. wiz,w)f + SV, wiz,u)f).

It turns o, bowever, tlat In that case the foece exerted by the medium on a
particle moving at constant speed v vanishes ldentically for all |w| < 5. Insuch
mexdels, the Fiction feoe 1s therelomr proportional to higher derlvatives of . In
particular, this Is the case wlen ¢ = &5 = o3, 45 In the model for radlation damp-
ing studied in [KKS1)|KKS2||KS|. This leads to some very diferent behaviour.
For example, in that case, there exist for all |v| < ¢ constant speed solutions
for the particle in absenes of an ectersal potential V. Ina confindng potential,
the particle still converges exponenially st tooa minimom of the potential, bt
this 1ime the exponential rate doss also depend on tle slape of the potential.
The rest of the paper s organized as follows. In Section 2 we study In detall
the Fiction foece exerted by the medhum on the particle. This allows us to disoass
in spme detall the intuition belind the model. The rather routine bt essential
question of existence and unlgqueness of the sohitios of [L5)-[1.6) 15 settlad
in Section 3. In Sectlon 4 we study the long time asymploties of the particle
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hehaviour for the case when Vgl = —F - g, whereas Sectlon § B devoted o tle
confined case,

2. The friction foree

Crucial for understanding the model and for the prood of our results B a detailed
study of the reaction foree of the medium defined in [1.7). Imagine we apply a
constant extemal fooce F o the particle. We then ook for solutios of the
equations of motion [15)-] L6) where the partiele executes a imiform rectilinear
meion g(f] = g + o amd the Reld s comeoving, le: do (x4, 8 = &z — (g0 +
wi ], ). Imserting this ansatz into (18], one easlly finds the solition:

&,(z,k) = —f_mdam[: +wm[k1%|$|‘—’. (2.1)
1]

This 1 the so- called retarded solution, describing the waves created in the “meem-
hrames™ by the passage of the particle. Mote that 11 las zero Indtial conditions at
= —a0 in the sense that, for all (2,5) € B there exkts T [depending only
on ) & that &, (2,49, 8 = 0 ke all £ <T [Figure 1). It Is aasy tosee ths B tle
unlgue comaving solution. This wave ¢, o, £) nduces a force on the particle
that & easlly computed Fom (2.1) and [1.7) using a change of varlables n tle
integration [ — &4+ vi+ gg):

Fyalgo+ot) = —defn_ dy pol — (o + 00 )oaly) (Voo ) (2, 18

_fn-l.d'tfn_ Ell'ir"jl;_mﬁ"—“1;r-l"'l[-f].l’-'l[.t + 14

L En( k&)
=[x (k)| T

s flw), (2.2

which k clearly Independent of g and £. As a vesult, & (2,4, 0) and g2 = o0 + g
will satisly the coupled system [1.5)-[16]) with -V = F provided v satkles tle
equation flw) = —F. In conchision, a comoving solution to (15)-[ L&) at veloeity
w exists provided the equation f(w) = —F has at least one solution. We will see
helow that foe Fsulficlemly small two such solitions exitl, one at “low” and one
al “ldgh™ welociy, Our main msult will say that, given *any” sulficlently small
indtial condition and any not too lage foree F, the particle trajectory asymp-
totically comverges to the corresponding comstant velocity trajectory [Theorem
2.

It is important for the prood of o resulis to imderstand the hehaviour of the
fmetion flw) rather well, a task we now tirn to. Remark 1hat [ s a lunetional
af gy and pg. Imthk and the following section the latter are kept lxed, 5o we do
mt explicitly indleate this depemdence. In Sections 4 and 5, we will relntroduce
¢ explicitly wia [1.4) keeplng o and g Bxed: [ will then be a himetion of « and
&
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It is clear that [ e O=[{B? ). Furtlermors, it s emy 1o see that
Jlw) = —fr[}wllﬁ. Filwl) =0, (2.3)

g0 that the reaction foree of the medium on the particle 15 directed opposite 1o
the partkle velocity as expected for a Fletion force, To prove this, frst mote that
the rotational lnvafance of gy Implies that

YReOd), R[fiv)= f(Rv).
Now, I # = |v|er, one finds, after a few changes of variables (A = |v|s and

>

hel
r === [ ae [ ak [T a9 atainta + ra :|ﬁ=[|w|i=1|*""‘;[£||’i“.

The rotational nvariance of o now implies that fijele) = 0 for § = 2, ., d,
g0 that fw) has the direction of 25 and 50 in the general case (v 3£ 0] one has

I el o
Fiw) = ~£llol

We nead 1o gudy the asymptotie belaviour of f(v) a8 |v| gos to 0 and as fo]
o 1oy o, For that purpose, we wrile (see [(22]]

fiw) = fl_ dk fiv.k),

with [after some manipulations)

Flw k) =—Fi#l, |k|1ﬁ (2.4)
1 E .
Il ) = Wlh[klf’h[ml (2.5)
h = ak ar & A T80
() j; fn‘ T (2.6)
—r f dinl (1] I, (2.7)
-t

where f§y 18 the Fourler transform of g5, Here [[w, k) 15 the force produced Ty
the “oecillators™ &z, k) of Fequency w = IB-? |. Tt follows immediately from the
above that fr(|v|) = 0 and that, given # € B there exists a constant Cy > 0 so
1hat

1 [
| Fe, R EE‘W (Mj .

In other words, for fxed & f(v, k) vanishes 1o all orders in o] a8 © — 0. So, as
w# —+ (i, the foree on the particle due to one of the cscllators of Fequency w (k) =
|E| present at x, decreases faster than any power of |v| for small v (i.e. when
| << || ). Roughly speaking, the coupling of the particle tosuchan oscillator
is extremely weak when |v| s much smaller than |k|Ay. This corresponds 1o a



A Hamihonien model for lnear friction in & homogenaous medinm )

wiell-known plece of physieal lmtuition: I the particle has speed w, It Inleracts
during a time of order %'II' with amy given oscillator. For the energy tramsber
hetwesn the particle and the oecillator 1o bhe eficlent, this Interaction times has
1o he comparable tothe perlod of 1he oscillator as an expliclt computation easily
confirms. Indeed, the total energy tramber AE (Fom { = — tof= 4] toa
deiven osclator of Fequency w

B+ wPult) =al1)

15 easily compued 1o be AE = -.-rHr[u]F'. Applying this to (L&) with gi) = v,
one finds AE = ]5-[5-|,=r~2[11:]f*|;-:-.[|11:|f|w|,:1|]|2 which vankhes agaln to all orders In
|| a8 |w] —+ 0

In particular, it & ¢lear from ths olseration that, when coupling the particle
to & fmily of escillators, all of the same lxed Feguency (45 in a pinball machine
where each clreular obstacle would he moamted on a spring], no olmie belaviour
can be expected sinee the Metlon foree 15 not linear in « at small « In that case,
As the particls slows down, it couples less and less elfectively o such oselllators,
leading to a Fiction force vanishing to all orders in [v]. To remedy thi eflect, one
has tocouple the particle 1o a Eodly of sufllclently many oscillators of arbitrarily
lomwe- frexaenicy. As the particle slows down, It will then tramsfer energy to those
oacillators with which it Is In resonance. In the moxdel abowe, the mmber of low-
frequency oacillators pressmt at the point 2 depends on the dimension o of 1he i
varlables through the volume element di: = |k[—"d|k|df2. Because of the FEctor
|B[m=T, the higher the dinension f, the fewer such oscillators are present. This
reflects Heell immediately in the low © hebadour of the foree o)

Feifel = le—* JL LBl |w|) |* (£ ) (2.8)

— o (O) f hig)de
H=
-I-f![l'r.'l“'_i].

Omne notiees Indeed that for small |v|, f, is smaller if 1 is higher. So, only when
=3 a Fction force proportional to the velecity (and ence ohmic belsaviour)
is obtalmed! More preckely, e 1 =3,

fiv)=— [Iﬁz[ml’ f h[&]d&] v+ olt) = —yv+ olt)
e
where we defined
v = |pal0)? j;_ hiE)dE. (2.9)

This slewvws o motion thmagh the mediom modeled here produces a Fletion
term of 1he type occuring n (1.1) provided 1 = 3. Note that the Fetlon cosal-
felent 5 B glven explicitly In term of o and pg and s diferent oo 0 under
hypothesls (H1). Sinee, in this paper, we are imemsted In studylng linear Flction
at low w, will restict ourselves o 0 = 3 in the main theorems [Sections 4 and
5.
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We now tum to the behaviour of f(|v|) for large values of fiv|. It s easy to
gee from [28) that Bmyyseo G(|o)] = 0. In other words, at high speeds as
well, the Fletion free exerted by the medhim on the particle s small. As oo
can see In egquations (1.8) and [2.8), thk & mwstly due 1o 1he fact that for high
w(k) = |k|, the oscllators are only very weakly coupled to the particle due to
the presence of the smooth lom Betor fy. In partioular, in the pressnce of an
extermal drving foree F, the mode]l can therefore only be expected to diplay
dissipative behaviour when ¢ B not too large. The profile for f(|v|) whenp b a
Gamslan B given In Figure 2.

fllvl}

U
Flg. 2. Profileof f{jv])

3. Existence of solutions

The assumptions on the potential are

M2 Ve CYR ) and ¥V & Lipschitz. Moreover, one of the two following

asumptions bolds: elther ¥V B boumded [such as when Vig) = —F - g)

or ¥ is houmded om below.
We are now ready to lntroduce the phase space £ of the model. Let || - || denote
the usnal norm en L2 (R4 dedy). On CF (B x B, (|8 = ||V, 8|2 defines a
norm. Let E be the completion of CFF (B x B™) with ths norm. Actually, a5 &

consequence of the Soboley imbedding theorems [|B], Clapter 8), E 15 the space
L3R, D, dr) where
D ={ e L% (B, dy) |Vys € LYR", dy) }.

We 1hen deline
E=ExR*x [}R*) x R*

with the norm:
¥l = (|l + laf* + =l3+ [pf5) ¥ for ¥ = (&, g, 7 0).
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With this norm, £ s a Hilbert space.
We now write the problem [1.5)-( 1.6) in a more comvendent way, 5o as 1o prove
the exktence and miqueness of a solution:

¥t = QY
{r[n] =Y, £ £ |3.1)

wherne
G idamp) = (mp Ayd— priz— alealy),
Vgl + f drdyVou(x — glealy }é[r.ﬂ:]- (3.2)
=

By solution, we mean that:

Y = Yo+ f (¥ (s))ds
1]

inthe semme of the distribinions

Theorem 1 Let n = 3. Under the assumptions (HI) and (H2), we have:

1. For ench Y, in £, the differentiol equalion [3.1) has o wndgue solution ¥[1)
in CO(R, £).

2, For everg § € B, the map W' ¥ — V1) i3 continuons on £

3. Foreveryl e B, H(Y(1)) = H(Yy) where

pi

1
BY)=5 v+ [ dsdy(9,60m 00 + Inlzn))

+ it de dy pi (2 — glpa(p)dlz, v)  (3.3)
is a condinuous funclion on £.

Hemark 1 Using the firsd part of the theorem and [1.6), one sees thal g(f) €
CHR, RY).

For later reference, we define
) =2 4 L. dzay (¥ plen) + stz ). (3.9
Mote 1lat the demsely delined billmear antl-symmetric form
WV ) =ais —puant [ drdy (grma—mida)

meakes £ a symplectic vector space. The aquations of motlon [1.5)-[146) are of
course the Hamilonian equations for the Hamiltoodan B o (3.3), which 15 1l
total energy of the system. Note that 1he latter s not houmded Fom below when
Vs not, such as when V' = —F - g. Ths makes for a slight complication in 1l
existence proof, which is otherwise standard and largely follows |KES1).
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Prooft We stant by showing there s a local solution. Then we will use conser-
vatlon of energy 1o show 1he solution s global.
We first look at the problem

Y = Ga( ¥t .
{ Yio) 1’1'; (3.5
with
GoY = [m i A, 0). (3.6

This problem is just the free wave equation In B™ with a parameter € R,
It admits a unigue solution: £ € B — Y1) € £ Moreover, let W} : ¥, = Y1)
denote the corresponding continous group; then WY turns out to be a linear
isometry with the norm | |g. It is also contimous on B = £ (|[LM], Chapter 3).

Now define Z(t) = W, Y(t) o Y(8) = WEEZ(1). In particular, Z(0) =Y(0) =
Y. We have ¥(f) = Go ¥ [t) + W2Z(1). Y(f) 5 a solution of the problem (3.1) if
amd only 1T Z(1) satlshes

{z[:] =W G (WEE(H)

2(0) — Y (3.7

where

G (Egmple £ — [ﬂ;:a; =z — gl (u) —-VVig)

[ aa Vol - omsien) €2 (38)
Rebt=

Introducing B
G: LI eERxE WG (WE) £

it Is clear that (7 Is contimsous on B x £ and Lipechitz oo £ because W3 & an
Isometry and Gy B Lipechite. This problem satkfes all the conditions of the
Canchy-Lipschitz theorem ([H|, Theorem 3.1), 80 1t has a inique solition which
Is defined on an open interal. More preckely, there exkis an open Interval J
sl that 0 € J amd there exbis a unlgue hmetlon £ : § € J =+ Z[f) € £
gatklving (3.7). Moreover, W : Zg — Z(1) Is continsous on £ for every £ € J
amd 50 we have the same resulls for

W' el =Y =WWYsek.

In order Lo prove global existence, we Dow prove conservallon of energy. We
first prove the result for smooth initial data (ie do,mo £ C=[BE*H™)). Let
Yo = (do, g0, %o, po) with o, m € CF(RY™). Then Wike & smoath (|CH],
Clhapier 6] amd by the Integral representation:

Yif) = Wive+ f dsWE— G (¥ (s)),
(1]

itis clear that $(L), v () are stuooth as well [In & and ). Note that $(z, y, 1) and
w(®, o, ) are also smooth in ¢ (JLM], Chapter 3). For such initial data a simple
compitation then ylelds:

d
FEY ) =0,
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s that, for smasoth nitial data, H(Y (1)) & a comstant for all § in J. We now
prove that H s contionms on £, The contimity of W* on £ and the fact that
smaoth indtial data are dense In £ will then imply the resuli foe all ndtlal data.
Sinee ¥V B continuous, 1t only remains to show 1he nteraction term in B s
comtimumes. Iis continulty In ¢ 1s Ilmmediate om the pllewing computatioom

| Baew d dy iz — g)palp )i, v) — frare de dy pr(z — g)pa(y oz, u) |
| Feere i BT S (e k) — ||ob (e, ) |

£ [|ede=mamtt g || klid — ) s
< ||ede=mlealkl | x |16 —

Becaise p has compact support amd n = 3 the st Betor of the fight-hamd side
is findte and so A is contimpns [the comtinuity in (g, ¢) follows similarly).

We will furthermome need the following obvios inequality (based on | ab |<
gt + £

| &I
4

Ifw_ dedy g [z — glpz(w)dlz, v) |< — {papaim A" pa). (3.9)

Hence:
HY (1)) 2 200 + Vig) + 318007 + 3 I=(0)E + (oipas pudy ). (3.10)

We are now ready to pmove that J = B We koow that J can be written
Jag B with —ae < @ < Oand 0 < b < 4o We will show by contradiction that
=40 [the same can be done for a = —ao). Th < 400, we know by the theory
of diferential equations (|H|, Theorem 2.1) that

Hm | Z(f)]e = +oo
b=t
and the same holds for [¥F(1) | becanse

[¥it)|e = |WAZit)|e = | Z(t)e-

We conskler first the (harder) case where V¥V B boumded (bt V' is not nec-
essarily hounded below ). Bor £ = (5, we can wiite ¢ as:

g= g4 g° (3.11)

where &7 15 the soluthon of the wave eqguation with initial data equal to () and
&% 1z the solntion of the homogeneoss wave aguation with Indtlal data ¢ and
|CH] |J]. Consequently

plt) = -VViglt)) +fw_ dedy¥V o2 — glf))pa (w)$ (2,1, 1)

+ f drdy ¥ n(z — g(6)on (9)6% (2, 3, 1).
l‘-’l"-
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The frst terma —VV(g(t]) B boundaed by bypothesis, The secomd one B easily
homded using the Cauchy-Sclwars Insquality and the exact form of &7 given in
(JCH|, p.682). Using (3.9) with Vo instead of g, we have

| [, o dy Vo la— alt)patn)é*lznt) | < § | Vy'(0) 2

+ || ¥ e (1) Vo (2 — g(2)) ||3 -

Bt 4” is a solution of the free wave equation with initial conditions g and m,
s, by enengy conservallon

o
19, 8%(8) 13+ 1| 6% () 13=1l Vo 15 + |l ma |3 (3.12)

and 50 || W™ (1) |3 & bounded too.
Filmally, #(£] s boumded on J: there exisis O = () such that

Wee Jt=0 |l € (3.13)

We have supposed b 1o be Anlte, so pll) and (1) are also bounded foe f > 0, L€
g

By energy conservation and (3100 | ||¢)|] and |x(2]]|z ae boundaed. There
fore |¥(1)|g 15 bounded as well which & a contradiction with the fact that b is
Fmite.

We Amally deal with the seeond [easier) EH.E.F} where V' k& bounded Fom bealow.
There exists Vo £ B such that for every g € B®, ¥V(q) = Vo

(%3] implies
1 1 1
H(Y5) 2 2plt) + Vo + i) [P+ 5 w0 + (opaim 47" o). (3.04)

Sooplf), ||l@i]| and ||w(1)]|y are boumded on J and becamse b B supposad 1o be
nite, g(f] 1s ako bounded which & again a contradiction. O

4. Behaviour of the solutions: constant foree

Fromy mow oo, we take 1 = 3. To prowve our results we shall need 1o assume that
the propagation speed ¢ [see [1.2)] 15 large. We will comment on this condition
al the end of thk section. We therefore relniroduce ¢ expliclily as o (1.4}

pa () = eda (ew). (4.1)

I the llewing, oy and &g are fed and satisly (H1); ¢ 1s teated as a paramster,
The [ree exerted by the mediim on a particle moving at velocity » 15 definad
in [2.2). One has

o leewy 1 fle|Yy oW
finy=5F(2) =—5k (?) o (4.2)

where, for all w £ B®,

Fro = [ ae [ ar [ asw g ()P l)
Fiaw) L J;_ J:; palx) gl + ) |8y (K] |
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Remark that f and f_ do not depend on e, The Fiction coefelent 4 defined in
(28] then heoomes

_ _lrm=1X
T=L0=SL0)= 50
where 5 does not depend on o

5= [lh[“lli fl_ h(E)de| > 0. (4.3)

We can define wyy 1o be the sneallest mmnl'f;'_ and Fyy = F [t ). For all
< tay, fr 15 mereadng, so for all F € B2, |F| < %l, there exdsts a unigue
w[F) € B, |w[F)| < wype = wyy [pee Figure 2) such that

flw(F))= —F. (4.4)

This delfines v F).
T obtain our esults, we fally peed some hypothesis oo the nitial condl-
thons. For that purpose, we define the [ollowing set:

Definlthon 1 Let T b the set of all states Yo = ($o, g0, 7o, 00 ) in £ such that
[ (e, )|+ o 0y b (o, )|+ |, )] = el (1 )™ (4.5)
Jor gome v = 2 and k € L™ LE
We are now ready 1o state our main resulis.

Theorem 2 Let m and oo satisfy (HI) and consider (1.5) — (16) with Vig) =
—F.gq, FeR®

(i) For all Fy, K, R, 2, 1) = 0 there exista oglpy, og, &, 4, Fy, K, B) > 0 such that
Jor anye = &, for all |F| < Fee—2—* and for all Yy, € £ such that §g (2, <), ma(2,-)
have compact support in Br. © R*, satisfying Ho(¥o) < K&, there eriat
O [ F, ¥6) £ B and K' = 0 such that for all £ =0

kit) — gu — 6(F)| < Ke~ a0, (4.6)

{ii) For all Fy, K, &, =0 there exiats op(py, og, 2,1, F, K = 0 such that for
any £ > e, for all |F| < Foe " and for all Yo € D with |g|x < Ke and
Ha(Ya) < Ke*=, there exigt g F, ¥o) € BR? and K > 0 such that for all £ =0

lgit) — g — w[F)| < K|~

Mote that, since 1 can be taken arbitrarily small, the exponential decay rate
in (4.6) is essentially given by the fiction coefficlent 4 = &% and, in addition
1lsat

v[F) = % + 0" (4.7

uniformly for |F| < Fpe~®*. This shows that the solutlons g(t) of (16) do
indesd lave the sanee asympiotic behaviour as thaee of (1.1), a5 annmmesd in
the Introdinetion. The restriction on the energy o (¥ ) of the initial conditions
in the hypothesk is related to the et that fle) — 0 as v — oo Indeed, 1t
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Is imtuitively clear that, if at some time £, |¢(f)] Is too large, then the reaction
foree of 1he medium will be oo small o ommiter the deiving force F oand the
particle will accelerate. This argument [ils when F = (b In that case, one can
indesd omit 1he hypothess on the initial emergy By (Vo) provided one lmposas
an additional hypothesk on oy :

W ol k) # 0 for all k € B2,
This ¥ields:

Theorem 3 Let py, oy satisfy (HI) and 1ot oy satisfy (W), We consider [1.5) —
[16) withV =i,

i) For all ) = 0 there evists eglpy, o0, 1) > 0 such that for any ¢ > o and
Jor all Yy € £ auch that golzx,-), malx, ) have compact support in the v direction
Jor each x, there exist g (¥e) € B? and K = 0 such that for all £ = 0

lalt) — g | < K'e~ S50

(i) For allp = 0 there exista oy, o5, 1) = 0 such that for any e > ¢ and
Jor all ¥y € D, there eviat g (Yy) € B¥ and K'Y = 0 such that Jor all i =10

|g(f) — gae| < K |1*.

The prood of Theorerm 3, which uses technkgues of 1hes section and the folkw-
ing one, s given at the end of Saction 5

We now prove Theorem 2. We Introduce some notation which will Fegquently
appear. We denote by D o] the diferential of the hinetlon flv). One can see
tlat in any orthonomual basis (e, ..., e,) where & = I_:I wi lufve
A _L[Iﬂl])

L I

Dfiv) = diag (—fi[lﬂll. -

for w2 3= 0 amd
We deline for w & B

. (1) = max (fi[lwl]. M) . % () —min (fi[lwl]. M) . (48

] ]

In wiew of the definition of war and (4.2), it is clear that 1_?': (1) amd Fo(wt) are
stretly positive provided |iw| < wyy and that |[Df(e)|| = L& (). Clearly,

E‘né' () = lim Fufw) = 5. (4.9

where 5 1z defined In [4.3). For dmplicity, we will write Dfz, 5 and §; for
Df(u(F)), % (") and 4,05,

Since we expect to prove JlE — #(F), It & comwvenlent 1o Introduce h(f) =
gt — wl FIL For the prool of Theorem 2, we need the follow ing lenmea,
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Lemuma 1 Under the hypothesis of Theorem 20i) (reap. Theorem 205)), there
epial e =0 and 7 = 0 such that

H |
sup it < e

Jor all ¢ = oo and for all initial conditions as in Theorem 2(i) {resp. Theorem
2(ii)).

The prood of Lemmea 1 will be glven helow.

Proof of Theorem 2t Dudng the prool, many estimates will be done In terms
af ¢, 80 one shall remember that ps depends on ¢ va [(4.1). On the other hamd,
the diferent constants will cnly depend on gy, &2, 1), &, Fo, K, R, but not on e, F,
or on theinitial conditions, We frst Bx ¢ large enough so that Fpe—3* = Fye®,
which lmples that [ F) 15 well defined [see [44]), and we comslder [1.5]— [1.6)
for some F £ B |F| < Foe™®* and ¥ € £.

T Frst part of the prool condsts of a rather stralght forwand bt somewhat
lengthy computation leading Meom [1.5)-( 1.6) 1o an efactive iIntegro-dilferential
equation e k(L) = ¢(f) — « [(F)f obtained 1o [4.20].

Solving (1.5) vields, according to [(3.11],

Sl g t) = ¢ (2, 1 t) + $°(2,9,0)
where in the Fdimemsional case we deal with here:

1
weo=—g [ Pl ey 0

Plewt= 5 [ ool ) to Vyulra) timolzollde  (411)
T Jaw)

and 8§, (y) s the sphere of radius ! centered at y (|J], Chapter 3). Inserting this
in (1G] leads to the falowing imegro-diferemial equation foe gt ):

1 paly—2lpale)
i=r-3[f )I’ﬂﬂmrds ot - alt - D)
AVpnix — qlt)) + Aoft)  (4.12)

Wl
1
Aylf) = Y ffﬂ'.fdﬁ j;‘hl: dﬂ"l-!ﬁ,:.[.f, & +a-‘i’¥¢,:.[_1:, &)

+ima (2, o) loa(y) Vo (2 — qit])). [4.13)

Simee n= 3, it & not diffieult 1o see that fle), defined n [2.2), can be ewritten
as follows:

Fiw) = —— J{JJ d_tdy.-i B |]ﬂi[r]ﬂ| ER A TIE

(4.14)
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Usimg this expression to replace F in [(4.12) by —fw(F)) we fnd

iit) = —fffdxdpds“[" 0al) oy o (F))2]) Vi )

=3 .ﬂ‘““”“”mr 220, gt — )Ttz - ate)

+Aaft).

T allesdate the notation, we shall oo wow wile © = [ F). We now divide the
first Integral In two paris:

fn-td_tj; drl‘; = fnadi j;ﬁrir |..-|5'_.|.d£ +J;‘.-irj;& i |,|:31d£'

We denote by F(1) the second one of these two terms, Le

. 1 .
=L/ hm‘&d"ﬂwﬁ' (a4 ol Vaulz)  (415)

Now, remark that for || = 28 as(y)pa(y — 2) =0 because

My

v =2l = |l = vl = 2= — |ul

and py(g) =0 for y| > 5. So fit) vankhes if ¢ > 252, Finally, let

Ait) = Aait) + Fie). (4.16)
This leads tox
: paly — flm[rl
itn) = ffj;lud:dwz [~ on (2 =t = 121
Vol — alt) + [: - wlzn Vpla) + A0, (m)
Inserting

gt — =) = gl1) —): lo1as

i [4.17) and wsing tanslation lwvarance, we And:

i) = Lf Hﬂd_t.-i ydy PR~ 2P lfl

— (_1:+£ H:j‘[ﬂ]d.ﬂ)]ﬁ'ﬁ.[r]+.ﬂ1|[t]. [4.18)

=) palin) [m (z+v]2[)
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We are now ready 1o ntroduce k(1) = glf)] —vf, In terms of which [4.18) becomes
hit) = ff drdyds Pzl — 2)palu) [m (z + vl2])
=]k | |

. (:+u|z|+f ia[n]da)]w.[:nﬂ.[:].
i—s|
We can write
a (r-I-T.'I.E'l +f .iii[.ﬂ]d.ﬂ) —m (2 +v|2])
iz
=f his)- Vo [z +v|2])ds
iz
1 5 . 3 .
+ 5| Hesson (£, 1)) fal#)ds; ha)ds
3 (e (e J{—Irl J{— el )

for some %, ;) bebnging to the segment [z + v|2|;x + wfz| + _,I:_ I .iii[.ﬂ]d.ﬂ]. In
addition, an ntegration by paris ylelds:

f hig)ds = |2|h(f) + f (£ — |2| — s)hia)da
b—s| i—s|
A5 a result

h(t) = —iﬂjl', _ drdyds pay— 2)oalu) b0 - Vol + vls))] V()

ff}‘;,md:drdfﬁ[r l:fllm[rl

® “J‘: (e — |2 - ﬂ]ﬁ[ﬂ]d.ﬂj Tl + t.'|z|]]?ﬂ|[.1:]

f f f;.pu ey ds Pl l:fllm[rl

E{Hﬁﬁﬁl[n H]fl Ih[n]ﬂ!ﬁ‘.‘[ I Iﬁ[ﬂ]-‘iﬂ}vﬂl[r]
A1)

Omce again we rewrite the first integral [ ., = Jpo — [z - It 15 easily seen

From (4.14) that the Arst term then equals D fi - B(t) whereas the second one s
once again vanishing for ¢ > 282, We define

1
Aty =i+ - [f [ e vty = 21ty

” [ﬁ[:] Ty 2+ 'h'l.!'l]]vﬁl. (2] [4.19)
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amd we fmally obtaln tle bllowng comrenlent form of the Integro-dilferential
equation e k(L) = g(f) — v

Pyl — 2] pali)
||

. : 1
hie) = Dfe - hit) — E,U Hﬂd_t dy dx

® [[}: (e— |2 - .E].i'li[.ﬂ}ﬂ!.ﬂjl gl + f.l|£|]]vﬁ|[.1:]

fffl‘rlﬂﬂdrﬂm[r l:fllm[rl

E{Hmﬁ.m ) f his)ds; -
+Aa (1), (4.20

where Aa(1) s defined via [4.13)-[4.15)-[4.16)-(4.19). One recognizes here, n 1le
first 1w terms, the eguation (1.1) with ¥V = —F - ¢.

We can now show R — 0 and contel the rate of convergence. We first
define glf) = e = h{f). We have

h{s)ds) V()

hit) = e Fgn), H[n——”—‘“e-f*g[me f*ﬂr:———htme Fog,

s that [4.3)) heconws

8
alt) = |—’m + D ] - glt)

Ml — 2l paly)
+‘1“"‘-'1' ff =] <t a lfl

. [[j:lrl[t — | —HJE:EH_IEB[EHHII Wz + f.'|£|]]vﬁ.[_f]

1 Pally — 2)mali)
1 ff H?d_t dy iz ] Voulx)

1 N L [y
HE{HWI[-‘E"IIIJJ{_F|E:EI' 'g[_ﬂ]dj;

‘ﬁ” H?ﬁﬂﬂmh — )paly)

|l

) }'i[n]d.u}

i—|=|

* [[J{ikl[t — |l —ﬂlﬂgl‘_':ﬁ'[ﬂldﬂj Wz + T.'|2‘|]]‘G’l|-:||[_1-_-]

Fe AL, (4.21]
Mote that in the third term of the right-hand side we only replaced one fctor
hla) by e":E‘ glal. We will use Lemma 1 10 control the other one. We delines

Mit) = sup |g(s)| and N(f)= sup |g(a)].
Brst pest
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Writing F(f) For the right-hand side of (4.21) and using Lemma 1 1o control its
third termy, we easily ind (remembering (4.1)) there exist constants Dy, Dy, D =
{ depencding on o5, o2 60 that

ZHP
IH[:JH[—-E—JM[:H ﬂ-e”"g“mmﬂ”’ M(D)

I
¥ Eﬂ. iﬂa—EN[I] +Ef1|-lq-j[l:||
Here, Ay is the radius of the support of oy [(see (H1)). Taking ¢ large enough

[depending on [y, D, 8] we obtaln for all 5 = ()

s Dt
ool < (5 - 5+ 5 ) Mis) +H[n]—e’“*4 + e % |Aafs]].
(4.22)

Taking the supremum over all & € [0, f], first in the right-hand side and then in
the lefi-hand slde of this Ineguality, we obiain

Eﬁ.
Dsants| ¢ (Fz 3z , Due™ #)

N[t — =

Mif+ sup [IE *| Az is]])-
Dt

We denole by ko the lnverse of the Retor of N, Remark that ke ~ 1+ f.‘..
Hence

E.
N[:J-::L[—’ —;'—:+D*“E—I]Mm+k sup (el

ol

Remark that, in view of [47), uniformly for all F € B sothat 0 < |F| <

'Flelﬂ_i_-| Hn]:—l-—:ﬂ- % = “ Hﬁﬁ!ﬂl ['H'lﬂ] [‘19]
e = i dr =7, -

Uslmg this, it b wow easy tosee that forall = 0, thereexdsts ool pr, o, K, Fo, g 1)
s tlat, for all ¢ = ¢ one has

E - 1
0 < k. [;-F+—e”’ ) < e —Fi1 -
We obtain them:
1 .. K
NS (8 —FiL— )M+ sup (5 als)]). (424)
st

T eomiral the st term in ths ineqguality, we now nead 1o use the hypotbesss on
the initial comnditions Yo € £. We teat Theorem 2 [11) Arst. Recall that Az — Ao ls
a hmetlon of compact support, vanlshing for i = ii:ﬁ- Hence, there exBis B (1)
60 that, for all £ = (k

k. sup IE:{;‘[JI:[H] — Agls))| = B.(¥y) < 4+ (4.25)
Oagi
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On the other hand, since for |y = '—:i, Py (i) =0 [eee [4.17], we have

Aol = ooz [ e fI{&“ [ dolbuleo) 4o Fysule.o)
Howalx, o) paly IV iz — gl1)).

I |y < 82, then |« = |t — 82| According to (4.5), and the hypothesis on dg, 7

(ol )| < Kelt = T2+, o Uyl 0)] < Kelt — 2|,

| tralz, o) | < Ket | £ — ? |—=1,

imifprmly in the # varlable. So we have, for some comstant A,

A
Aglt) | ———. 4.3
|4elt) < (4.26)
A dmple computation then shows there exdsts I.[%-'E] = (s that
E'“pl:l-f_ri.l.lu_,l-] |_|_.|_l- o :—}I'[:!}]' [4.27)
=1 W= (28 ).

We shall write L. =I.[§E].Hm we have, for all (b <8 <0,

lals)| < |a(0)] + f i) < |g(0)] + f N{u)du < |g(0)] + f N{u)d,
(1] (1] (1]
50 that, using (4.24), (4.25) and [4.27), we find
M[x::ilM[me N ()
(1]
1 - i
< |§[“]|+§[ﬁ'r—‘i[1—ﬂ]]f Ml
L

thoAe—d —fru +hkAc ¥ 4 Bl

o [1+u)”
We can use the Gronwall lemma [[H|, Lemma 6.2) to obtain
loie)] < Mit) < (|o(0)] + kede™ 32 + ..L]Elh‘—’.‘ll—ullj;
- fr —F(1—1)

el f 1 ﬁ—;r”jfla"ﬂ"“”i (4.28)
[n]
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We define ho = |g(0)] + k-Ae~30. + Remembering that k(1) =

Y
&p— 31 —m}
e Ftgif), this ylelds

|B8)]| < hoe™ S0 g g Uﬁ E:J%ll—_wdj:]e'ﬂ'l"““

o [L+a)"
< hemF-ni g g get Uj ﬁ;;?dj:]g‘%ll—uh
+hu-i[£lﬂ_;:dﬂje—ﬁu-uu
-=_:h,g':'H'-"“+LE—#;—'__::;|E;‘5LI-u:g 1]
thode ;ﬁ
Shae U e st U -ﬁﬁfi]*-"

Conseoqueant ly
hit) = 0(t' ),
g0 that we can conclide that there edsts g (Y5, K, F,2) € B¥ with the property
1lsat
4it) = g + v[F) + O(12~),
which proves 1he second part of the theorem,

In part (1] of the theorem, ¢y amd mo are compactly supported. Henee Ay s
compactly supported as well. In that case (4.24) beoomes

Nif) = %[ér — AL = )M () + N

where NV 1z a constant which depends on everything except t, ylelding Instead
of [4.28]
lo(t)] < |g(0yfe!Fe —FI— S 4 felfr—Fli-nit %
amd henee
[h(g)] < (Jhio)]+ e S0

Fromy ths, the annmmesd beluoe donr of g(f) folows agaln. O
Proof of Lemma 1: First note that in the case comslderad here (V= —F - g
the Hamiltonlan 1s not honmaded bealow (unless F = 0], 50 that there b mo a prior

reason why b should be bounded. Westart by eontroling & (f). Using (4.1), (4.12)
and () = §(1] we have:

B(O] < |FI+ 5 + |aft)]
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B

(8 = [ [ dx dy o) Von(z — )%z, .0
< [V ()] ¢ [[V5" paly) U (z — ale)) s

and 1sing [3.12) together with the hypotheds Ho(¥) < K¢ * and the form
ol o we lsve

|4g(8)] < A, (4.28)
Then remember that |F| < Fee 2% < F(e) = 2, so Anally:
()| < Koe ™. (4.30)

We now turn to the bound on b(f) which is obtained in [4.35). To alleviate the
notation, we shall write Iy for D . Multiplying (4.20] by ¢~ 7F* and integrating
hetwesn (f amd T, we obtaln after some rewrlting:

h(T) —e"r'-"ﬁ[n]__f d;}[}[}{rlﬂﬂdﬂﬂm[r =) pa i)

||

® [ £ — |2 — a)hia)ds | - Vonjz +wle) | e~ T T 2)
i—|=|

__jr f‘u'lluﬂdrﬂm[r l:fllm[rl

E{Hmﬂ.[rl,.nf hi)s; [

T
+f dee=TPI=Thaq01).
o

his)ds TP U-TI g, (2)

i—|=|

Delining B = supge, < |.i'li[.ﬂ]| and using (4.1) and [(4.30), we And lor all § =0
and for some Ky, Ky = Tk

£ ' —Mp|a—i} ﬂ ' —Mp {x—i}
)] < hio)+ 2 [l an s 22 [ et B as

i
+f ||~ TP et Aq (2)| s
[0}

Then, with the notations Introduced after Theorem 3 (see [4.8)(48))
|hie)] < (o) + _f e et gq 4 B*mf JE i
et ds.
* ): ¢ |4 (]|

amd ¢onseguently

.H- K * .
= RURY R PO

|hie)| < |R(0)] +
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We mow comtroel 1he last term of this neguality. Under the hypotlesis of part
(1) of Theoren 2, Aa(s) s compact support. One should in addition remembear
that Az differs Fom Ag by terms which hawve compact 5.1:|]IJ]:|m1 in the ball al
radive 28, Moreover one of these terms & bounded by & and the other by

B Therefore, using (4.29), the last integral ean be bounded as follows:

4 ™ @ 1
fe?ﬂ"”lﬂa[ullda::f ﬁl“"lrh:[s!liﬂ’f}r eF 1|t (5) — Ao(s)lds
(s o ¥

. aky
_:_:AE—I EEI'._"IJ_E +k[B[I]£—I+£—1]J[ E%E'.l—lldj
o 5]

< Ao +Ee? + ¥ B(Dae™ (4.31)

where o 15 such that A;(8) = 0 for & > o [mote that o < 51:]:{%1, '—:ﬂ + Re})
and provided ¢ B large enough, Amd a0 we lave for all § 2 0

Bit)] = [R(0)| + Kac' + %B’[I] + KB, (4.32)
e

I we are now mder the hypothesis of part [11), we 1me [4.26) lo controel
I e 14 4y 5] |ds. We obtain then

t i |x—i}
et A e F
fn & |- Aol #)|ds < " fn T +3]*‘dﬂ

S B |
= - das A”e
‘j.; ex (L+a* —

hecanse 1+ = 2. Floally we have onece again [4.32) ke all £ = 0.
We can now conclude as follews. Sinee B(f) B ncreasing, we have, [or all
0=<t<T,

1 1 .H-
|hit)] < |R(0)| + Kse'—* + _i—;B’[T] + BT
S0, taking the supremmms over {, we have the ollowing neguality for all T = (k
. K
B(T) - ¥'B(Te™ < [R(0)| + Kae' ™ + __r—t.B*[T]. (4.33)
F

Using the hypotheds on F and Hy(Yy), one has |.iii[ﬂ]| < Ke'*, so, for ¢ large
engnagh:

BT) < 2(K + Ka)e'~ + %B‘*{TJ. (4.34)

An easy computation and the comtimiity of B(L] tell s 1lat:

Bit)<B. W=0 or Bit)>=B. W=D
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with

3 Fpe®

_ e _ LGRZ (R + Ks)
B.= X (1:I:J1 —)

We will mow take « large enough so that there exdsts two constants 7 and 7 such
1hat:
B <f8, B, >fe> K.

Mote now that
B0 =|hi0) |= K = B,

and &0 we have Anally the following bound for &1
|.iii[I]| < B(f) < B_ < g’ Ye =0 [4.35)

O

The comdition e large” 15 certalnly sssential in our prookE Whether 1he resulls
can ako be obtalned without this condition Is not clear. On an intuitive level,
the condition can be mdersiood as follows Remark that the model contains
three lntrimsle tiae seales that ave Nmetlons of o, oy and o

(1] The relaxation fdme r =4~ = 5" defined In (4.3),

(A1) The time 5= %‘- 1he particle needs 1o cross s ow o diameeter when moving
al spead ey,

(01) The tinee ra = 3‘?‘ the signals in the membranss nead 1o cross the paricls.

e las therefore two dimensionlss parametars:

o4l Tt
k! s m 25

Taking « large Is therefore eguivalent to rp 3 m, which expmsses the ldea
that the membranes evacuate the energy deposited by the particle “gulckly™.
Alternatively, ¢ large 1s equivalent to varl = 2Fy, which & saying that the
distance travelled by a particle moving at the characteristic speed vy during a
time 1y B mch larger than the particle diameter.

5. The confined case

We turn to the case of a confining potentlal We meake the following assumplions
om 1V oamd gl

IC) B Vig) = +eci

(W &alk) # 0 for all k € B2,

Then g Is defined as In (4.1). Let § = {4 € B|VV(q") = 0} be the set of
critical points of V. We suppose that § & dkcrete. For all ¢ € B9, we denote
by gy the mumigue solition of —Aydle, v) = —pi (2 — g)paly) decaying at nfimity.
Therefore, {4y, q, 0 0)|g € §} 15 the set of equilibrium points for the dynamics.
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Theorem 4 Suppose that (Hy), (Hz), () and (W) are satigfied and n = 3.
Denote by Y1 = (S0, glt), =), p(2)] the solwlion of [1L.5) — [L6). For ail
Yo € T, ther exigla §° € 5 such that:

Jdm glt)=¢" and  lm g(t) =0. (5.1)

If moreover, ¢° 4 o non-degenemate mindmam for V', then for all § = 0 there
eptala o og = 0 such that for any ¢ > g and for all ¢y and 7y with compac
support, we have for all £ > 0

lalf) —g"| < Ke A, (5.2)
A similar resuld holds for g2,

One could also, as in |[KKS1), study the convergence of $(1) 10 g, bt we
shall mot do this here, Mote that the st part of the theorem doss not requine ¢
to be large. In fact, using the linearization method of [KKS1|, one could prove
the comvergence B exponential for all ¢ as well, In this way, we do not, however,
obtain a very expliclt expression for the exponential rate of decay. Our neethod
here shows it to be equal 1o g, confirming the solutions in ths model behave
very msch 1ike those of the phenomenologieal equation [1.1).

Prooft In order 1o prove [5.1), Le the convergence of g(f) and §(£), we Gllow
the method of [KKS1). The exponential rate (5.2) will then be obtained by the
sanee technlogues as in the case Vigl = —F - .

Tslmg the comservation of emergy amd the hypothesk on V, one concludes
immediately tlat g(f), §ii) amd 1) are bounded. Let By © B2 he the all of
radis [ cemerad at (L We deline:

1
Bal =T e viatn+ 5 [ dx [ au(19,000 5,08 + lst.u 0P

+ f dedy g (2 —g(2))palwld(z, o, £). (5.3)

Jelta
We take H = '—:ﬂ Uslng [3.11), we can write & as & + & and in a similar way,
® = a7+ 7 where o" (2,5, 4) = & (x,3,1) and 7°(z,v,1) = #°(x, ,1). Using
this decomposition and the regularity of ¢y and 7y, we see tlml $lx, i, ) and

wlx i £) are diferentiable. Let us write aly] = T:-I amnd let der be the surface
area element of 48 5. Then diferentiating (53), we have

d d 1 .
a Bl = (w5 [ [ aullVste il + e n0f)
- f dr [ doty) n(y) - V8,0 Or(z,9,0)
isd a8g

- de f dr(y) n(y) - (V6 (2,3, O (2, 3, 6) + V, 8 (2, 1,1)
SBg

wr e )+ Vol (2 o )0 (2,0, 0) + V2,0, 00 (2 0, 0)).
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We hound the thres last terms by the Young Inequality, and we then integrate
inf. Henge, for all T = '—:“-,

Ex(T+ R) - En(R+ =)
T+R
- L—% ‘ J‘;'ﬂ fasf"m (nlw) - V48 (v )" (2,0, 0)
1
+ Ty 017 + I G )+ 20936 @0, OF + %20, 0)).

We know that Eg(R+ &) < H(YV(R+ &) = H(%), and the hypothesk on
the potential and [3.14) tell us thad:

1
Eg(t) = H{Yt)) — E[IIT[IJIIE + [l ]*)
> —H(Yy )+ 2V + 2ipps pp A )

where V5 15 the Infimnim of V. S0 we have
Rz
Er(T+ R)— Exg(R+ T] o H

where O B a constant notl depending on 7, T. Hence,

—fT_R at [z [ dotu) (nty) Wy (a1 0 (o )+ 19,6+ )
ﬂ;_?. - ¥ i & i i ¥

T+RK
<C +2f L fﬁd: );h de () (| Ty 3 O + (23, O (5.4)

We [t peed to bound the right-hand side. This follews Fom Lemmen 3.3 of
|[KKS1] and the Fact that & € L* [recall that & 15 defined in Definition 1):

fT_Rfﬂf firf der () (| Wy [z, O + |7 (=, 0, 8)[) < T
B B OEg Y o - a

imifprmly in foand T
Theem, wsiomg [4.10], we lave

1
S =g [ eyl

I ly| = R, because pa(z) =0 for |¢| = %2 we have for ¢ > R4 B

1
Flrt) =1 fhli%& a2 gy (o —alt — Iy — =)
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Corsequently, still for |y| = Rand ¢ > R+ &

M) @

Cen)=Fend=-g [ s = =)
(5.5)
and
. palz) 4
V) = o e (2 - = b)) i)
1 Palz)
= |.r|=;E_id£|I|' Fﬂ 1x =gl =y — 2| niy - 2)
1 plz)
i fem iy oot el =l =)

®nly — ) —nly)).
The last two Integrals are boumded by KR~ because § 1s bounded. Henge
Vo (20, 1) = —x7(2,3, nly) + Oy =)

Since we know that g(f) 1s beunded by some constant Gy, for |2| > Gy +8y = A,
we have & (2 ) =77 (2 1, 0) =L S0 (5.4) becomes

T+
f dt f dx f dely) [« [z, 0 < K+ TOR™)  (58)
ke =Gt + R FEg

amd using ooee agaln [5.5) we ave

f:_ @, fmda[rﬂ fa £ —aft — |y~ =le))|
< K+ TOR™).
But |y — 2|~ Rand t+ R — |y— 2| =t +nlw) -2+ O(R"), s0
f;ﬂfg dr - d:r[r]”; [ﬂ|m‘" [r glt+niy)-z+O(R" ]J:]|
4 & R Ry
< K+TOR™).

After the change of varlable i = R, we now take the limit B — 4o and so

f;d:j; "j'tj; d"’”; dfﬁi[f]%m[r—q[l+a-z]]j]li-;_:ﬂ'_
- R, | Ry

This bounds holds for all T amd so
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j;_mm[j;ﬁl d_tfqadu-| . dxpa[£)¥ [:_q[;ﬂ..ﬂ]) (57)

it +:r-£']|:] < 4.
We deline the hmetion

2
Ijz, &,1) =| . as;;l[:]w.[: —glt+ e ..s_r]]:] 4t +:r..a‘]|

which ls differemiable n # & and miformly Lipschite in § beeass § and § are
boumded. As a resilt

— | 4
Jim I(z 0, 1) =0 (5.8)

unifprmaly in € By and & € BT We fix o and 2. We take a hask of B? such
that & = oy, and we deline

pala)= [dndspian,a,z)
and g = ¢ - 2. Then we have
1z,0,6) =| [ dspas) oz~ ate+ ) - de +)|

=| [ aspute - 99z~ o)) gt
= | # (Vpulz —q)- DIOF.
Then (58) kad to
iy (Vg (2 — g) - (1) = 0.
Hence (W) and Fitt's extersion to Wiener's Tauberdan theorem |R] implies
Jlim Vpy(x — gft))-4(8) = 0
imiformly in 2. So we e

0= lm sup Veylz—qglt))-4(t)
m:l’:ﬂkl

= lim sup Vi (x —g(t)) - ¢(£)
l.—l-—-:n-zER.L
becanse Vo (x — g()) = 01f [#] > ;. Hence
lim V(z)-di =0 vre R

which proves that §(f) tends to sero (O can take £ = #& where © 15 such
that pfire;) # 0 and [(£1,...,24) 15 any orthonormal basis). It remains to show
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that g(f) comverges to some g* which satisfies V(g ) = 0. Remember that &,
Is the stationary solution of [1.5) corresponding to g(f) = ¢. Let A = {¥; =
[eﬁq,qhﬂ,ﬂ] g B |g = €a}. A is compact in £, Finally, we denote by ||.||=
the L norm restricted to the ball of radius R and Y7 5 = ||V, 8% + la|* +
[l ][5 + |p|®. We first prove

Jnd Y0 - Yz (5.9)

= [p(t)* + [|= ()] 5 + Inf ([[Vy (i) - )| + |ale) — 4] —Himsso 0.

We know that [p(f)] — 0 a8 £ — 400, Then [5.5) implies that ||#7(£)]|s —+ 0 as
f —+ +ac. The bound on ||«°(1)||z (see Lemma 3.3 of [KKS1|) then shows that
the same result holds for |[#(f)] . To estimate the nfimim over g In (58] we
take g(t] for . Then the last term vanlsles amd we have to control

-1 -
Tl 47,0, ) = Sgq (50)) = ¥y [ - ﬁ% (2 — gt = |2]))

~pufz— qit)))]

for |y| < R, the term with ‘E’l,eﬁ':' being controlled using once again Lemma 3.3
of |[KKS1]. The difference py (2 — git — |2])) — py(x — g(£)) can be written 1sing
an integral depending only on §(s) for s € [t — (R + ), 1] which tends to sero
as { goes o Infinty uniformly n (x,4) € By, All ths proves [5.9).

Givena solitlon Y1) of (3.1), we call B the set of all ¥ £ £ such that there
exigls some sequence £, — +o0o with ¥(1,) =+ ¥ in the seminorm ||z 5 For all
A The comtimity of B tells us tlat 5 s an lovarlam set. Then, [ﬁﬂi talls us
that B A 8o, for ¥ £ B there exdsts a OF curve + — §(1) € B such that
W'Y = ¥z But W'Y is a solution of (3.1) so we must have §(t) = 0, hence
Fit) =q" with VV(¢") =0 and q" € 5. Therefore ¥ = Y- and B {¥,, ¢ € 5}

We mow prove that g(f] — ¢, Suppose there eddst o, ¢ > 0 and a sequence
£y —+ e sueh tlat

BE () = ¥lem, 2 e (5.10)

But (5.9) and the compaciness of A Imply that there exdsts ¥ £ 4 and a
subsequence ! such that ¥ (! ) -+ F in the norm |.|¢ g for all B, where ¥ £ A
Then, by definition, ¥ € B. But (5.10) k then a contradiction to B C {¥, g €

5}. So

inf |git) —g| —+0
TEF

amd becase 5 15 disrrete, there exists ¢° € 5 such that gft) — g*. We lave
therefore proven [5.1)

Ty prowe [5.2], we now suppose that ¢ B a mon-degenerate mininmim for V.
Becaise of the tramlational Ivvarlanee of the Imeraction term, we can supposs
that g* =k
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Mow, the computation leading up to (4.2)) n tle particoular case o = 0, 5o
that k(i) = gi], y¥ialds:
4] = i S paly — 2)paly)
0 = -ovia) - Zatn - 5 [ | dedvas P

< ( f = lel= s)is)ds) - Vpu (2)| Vpu ()

f jf dr dyd s P2 210alw) Ml — r]ﬂz[rl
I=l=t

1 ad
# - | Hessp (£, ) il & )als; gl a)ds )Wy [x)
2{ L j:- Jel j:-lrl } '

+A400). [5.11)

Moreower, YV [g(E]) = W - glt) + #(g(2]) where W 15 the Hesslan matrbe of WV
at g = 0 and r(g) = o(|q]). Remark that A4(i) has eompact support. We now

define Q(1) = (g(f), 4(1)) € B™ and W the 24 x 2d matrix:

= o I
(% 4)

Since (& a non-degenerate minimum for ¥V, W & a diagomalizable positive defi-
nite neatrix. One should remark that W B diagomalizable as well with elgemalies

A= —{3 + e, and g0 for all £ In R, %) — ¢~ 35, We rewsite [5.11) as

QU =Wt + vit,q, Q)

where ¢ is a fimetion we will control in terms of |§(1)], |41)] and |y(t)]. Defining
X1 =e~WigHi) we have:

X(8) = e Wiy (1, x(0), W x (1) + e“:‘*j:[:]:]

|38y = —ffﬁlﬂd:@ﬂwu Ill[I—l.E’l—.E:l

se T3 = (i X (a)| + |..1'.'[a]|]d.a:] ¥ ()
LU’ dr dy dx P28 — 2)ealy) faly — =)pa() %lmwl[fmn
J= =t

B
“(

5 (t—a) *
1_H.e |X[ﬂllﬂ'ﬂ:| [‘[—Irl |Q[a]}dj:] | (]|

+eat | A[n)] + e25 | {gft))]. (5.12)

Let & > 0. Sinee rig) = of|q]), there exists § > 0 such that for all |g| <
& |rlg)| = elg| < 2|} We define § = min(d ). Momeover, we already know
that ) —+ 0, 50 there exists T such that for all = T, [Q(f)]| < 1. Using the
et that the evoliion of the soluton ¥ of (3.1) 18 glven by a contimious
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limear geoup and that Y] satkles the same conditions as ¥, we can supposs
T =1k S0 we lnve

=0 Q)| < <e and belg)] < 2|@|. [5.13)
As n Bection 4, we deline

M(f) = sup |X(s) and N{t)= sup |X(s)|.
Bt i

Remembering once mare that g depends on ¢ via [4.1) and usng (5.12] and
(5.13), we have for allh < & <1

|%(s)| = ?e*?"ﬁfuu[:] + E%e*.?u[:] + ?e*%ﬂ[:]

+ sup [zeff"|-[;l'[r]|] + sup [eif"|..|1[r]|].
Bl BT <l

Remark that £37°|Q(s)] = =% *Q(s)| = |X (5] and supge, « (€377 JA(+))) <
Ky, 80 taking the supremum over all & € [(, §] in the left hand slde, we have
L1 eKy fRy

oy +£:|M[I] + %e*.%“ﬂ[:] + K,

i < (SHw e + 5

and &
Ky 1% Ki = ™ eKa
(1= e IN( < (T IWe = + =

We call (B)~" the factor of N({). We can chose = as small as we want, so the

factor of M) can be houmded by g- Then, the same compitation as o the
last part of the prool of Theorem 2 leads 1o

e E:]M[I] + K.

Mie) < (M(0) +’f;,—'f‘]|e*'-"—’*

amdd fimally we have

g K’ 1

QUe) < (i) + 5 ) ot st
wlich s the annmiced result. O
Proof of Theorem 3: In the frst part, we will follow the prool of T heoren 4
in order 1o prove that (i) — (L The only thing we have to woery about In tle
present case 15 that, unlike in the case of Theorem 4, (1) 1s net a prior] bounded.
However, 4] 1s hoimded hecanse V¥ = (L In order 1o obtaln the exponential decay
rate, we will then make the same compitation as in the prool of Theorem 2,
epcepl tlat we will ot use Lemmea 1 bagt the Fet that we aleady koow that

Gl —

We fimst prove that glf) — (. We [llow the compiutation of the peool of
Theorem 4. Since §(f) is bounded, if £ belongs to [R+ &, R +T), if jy| = Rand

= B e lave
| |— [
H
lalt — by — =) < €T + =)
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for somee econstant O = 00 With that estimate, [(5.6) clearly beeomes

ReT N 2
derly ] |x" < K+ T"0H7).
J:*—E;“ﬂ qum_?:_nl i j;ak () | (e w tIF < K+ (R

Then, [5.7] beopmes

Jf;_mm[fmdquﬁ d:r| - dzpal )V (2 — gt -I—:r-.!']]:]

glt+ o -:]ﬂ < o

and the end of the prool ollows ldentlcally.

Now that we know that §(i) — 0, we can control |3(f) — g| In exactly the
same way as in the prool of Theorem 2, it nstead of 1sing Lemmmn 1, we rennrk
that there exists T = 0 guch that forall £ = T, |§(1)] < L Using the Fact that
the evolution of the solution Y1) of (3.1) 15 ghven by a continaoss linear goup
amd that ¥Y(T) satishes the same conditions as ¥, we can suppose T = (L So,
with the notations of Section 4 one has, nstead of [4.24),

N{1) < 03 M(0) + ke sup (67| Aa(s)]).

T end of the prood is then similar. O
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