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Open Systems

A “small” (or confined) system S interacts with an environment R.

S R

Goal: understand the asymptotic (t → +∞) behaviour of the system S
(asymptotic state, thermodynamical properties).
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Open Systems

A “small” (or confined) system S interacts with an environment R.

S R

Goal: understand the asymptotic (t → +∞) behaviour of the system S
(asymptotic state, thermodynamical properties).

2 approaches: Hamiltonian / Markovian

Hamiltonian: full description, spectral analysis, scattering theory.
Restrictions: perturbative results, S finite dimensional.

Markovian: effective description of S, obtained by weak-coupling
type limits or if S undergoes stochastic forces (Langevin equation).
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Repeated Interaction Quantum Systems (RIQS)
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Repeated Interaction Quantum Systems (RIQS)

E1 E2 E3 E4

S

V1

0 ≤ t < τ
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Repeated Interaction Quantum Systems (RIQS)

E1 E2 E3 E4

S
τ ≤ t < 2τ

V2
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Repeated Interaction Quantum Systems (RIQS)

E1 E2 E3 E4

S
2τ ≤ t < 3τ

V3
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Repeated Interaction Quantum Systems (RIQS)

A “small” system S:

Quantum system governed by some hamiltonian HS acting on HS .
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Repeated Interaction Quantum Systems (RIQS)

A “small” system S:

Quantum system governed by some hamiltonian HS acting on HS .

A chain C of quantum sub-systems Ek ≡ E (k = 1, 2, . . .):

C = E + E + · · ·
Each Ek is governed by some hamiltonian HE,k = HE acting on HE .
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Repeated Interaction Quantum Systems (RIQS)

A “small” system S:

Quantum system governed by some hamiltonian HS acting on HS .

A chain C of quantum sub-systems Ek ≡ E (k = 1, 2, . . .):

C = E + E + · · ·
Each Ek is governed by some hamiltonian HE,k = HE acting on HE .

Interactions:

Interaction operators Vk ≡ V acting on HS ⊗HE .

An interaction time τ > 0.
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Repeated Interaction Quantum Systems (RIQS)

A “small” system S:

Quantum system governed by some hamiltonian HS acting on HS .

A chain C of quantum sub-systems Ek ≡ E (k = 1, 2, . . .):

C = E + E + · · ·
Each Ek is governed by some hamiltonian HE,k = HE acting on HE .

Interactions:

Interaction operators Vk ≡ V acting on HS ⊗HE .

An interaction time τ > 0.

For t ∈ [(n − 1)τ, nτ [:

S interacts with En,

Ek evolves freely for k 6= n,

i.e. the full system is governed by

H̃n = HS + HE,n + Vn +
∑

k 6=n

HE,k = Hn +
∑

k 6=n

HE,k .
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Some motivations

1 Physics: “One-atom masers” (Walther et al ’85, Haroche et al ’92)

E1 E2

E4 · · ·
S

E3

S= one mode of the electromagnetic field in a cavity.

Ek= k-th atom interacting with the field.

C: beam of atoms sent into the cavity.
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Some motivations

1 Physics: “One-atom masers” (Walther et al ’85, Haroche et al ’92)

E1 E2

E4 · · ·
S

E3

S= one mode of the electromagnetic field in a cavity.

Ek= k-th atom interacting with the field.

C: beam of atoms sent into the cavity.

2 Mathematics: Because of their particular structure (they are both
Hamiltonian and Markovian), develop our understanding of open
quantum systems, e.g. small system of infinite dimension, large
coupling constant.
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Mathematical model of the one-atom maser

1 The field in the cavity: (an harmonic oscillator)
HS = Γs(C), HS = ωa∗a = ωN.

Denote by |n〉 the eigenstates of HS : HS |n〉 = nω|n〉.
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Mathematical model of the one-atom maser

1 The field in the cavity: (an harmonic oscillator)
HS = Γs(C), HS = ωa∗a = ωN.

Denote by |n〉 the eigenstates of HS : HS |n〉 = nω|n〉.
2 The atoms: 2-level atoms.

HE = C
2, HE =

(
0 0
0 ω0

)
.

We denote by |−〉, |+〉 the eigenstates of E .
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Mathematical model of the one-atom maser

1 The field in the cavity: (an harmonic oscillator)
HS = Γs(C), HS = ωa∗a = ωN.

Denote by |n〉 the eigenstates of HS : HS |n〉 = nω|n〉.
2 The atoms: 2-level atoms.

HE = C
2, HE =

(
0 0
0 ω0

)
.

We denote by |−〉, |+〉 the eigenstates of E .

If b =

(
0 1
0 0

)
is the annihilation operator on C

2 (b|+〉 = |−〉
and b|−〉 = 0), we have HE = ω0b

∗b.
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Mathematical model of the one-atom maser

1 The field in the cavity: (an harmonic oscillator)
HS = Γs(C), HS = ωa∗a = ωN.

Denote by |n〉 the eigenstates of HS : HS |n〉 = nω|n〉.
2 The atoms: 2-level atoms.

HE = C
2, HE =

(
0 0
0 ω0

)
.

We denote by |−〉, |+〉 the eigenstates of E .

If b =

(
0 1
0 0

)
is the annihilation operator on C

2 (b|+〉 = |−〉
and b|−〉 = 0), we have HE = ω0b

∗b.

3 The interaction: exchange process, i.e. V = λ
2 (a ⊗ b∗ + a∗ ⊗ b).
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Mathematical model of the one-atom maser

1 The field in the cavity: (an harmonic oscillator)
HS = Γs(C), HS = ωa∗a = ωN.

Denote by |n〉 the eigenstates of HS : HS |n〉 = nω|n〉.
2 The atoms: 2-level atoms.

HE = C
2, HE =

(
0 0
0 ω0

)
.

We denote by |−〉, |+〉 the eigenstates of E .

If b =

(
0 1
0 0

)
is the annihilation operator on C

2 (b|+〉 = |−〉
and b|−〉 = 0), we have HE = ω0b

∗b.

3 The interaction: exchange process, i.e. V = λ
2 (a ⊗ b∗ + a∗ ⊗ b).

This is the Jaynes-Cummings hamiltonian (dipole interaction in the
rotating-wave approximation).
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The repeated interaction dynamics.

1 Full Hamiltonian: H = HS ⊗ 1lE + 1lS ⊗ HE + V .
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The repeated interaction dynamics.

1 Full Hamiltonian: H = HS ⊗ 1lE + 1lS ⊗ HE + V .

2 Initial state of S: density matrix ρ ∈ J1(HS).
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The repeated interaction dynamics.

1 Full Hamiltonian: H = HS ⊗ 1lE + 1lS ⊗ HE + V .

2 Initial state of S: density matrix ρ ∈ J1(HS).

3 Initial state of E : ρβ =equilibrium state at temperature β−1, i.e.

ρβ = e
−βHE

Tr(e−βHE )
.
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The repeated interaction dynamics.

1 Full Hamiltonian: H = HS ⊗ 1lE + 1lS ⊗ HE + V .

2 Initial state of S: density matrix ρ ∈ J1(HS).

3 Initial state of E : ρβ =equilibrium state at temperature β−1, i.e.

ρβ = e
−βHE

Tr(e−βHE )
.

After 0 interaction, the state of the total system is

ρtot

0 := ρ ⊗
⊗

k≥1

ρβ

L. Bruneau Thermal relaxation in a quantum cavity



The repeated interaction dynamics.

1 Full Hamiltonian: H = HS ⊗ 1lE + 1lS ⊗ HE + V .

2 Initial state of S: density matrix ρ ∈ J1(HS).

3 Initial state of E : ρβ =equilibrium state at temperature β−1, i.e.

ρβ = e
−βHE

Tr(e−βHE )
.

After 1 interaction, the state of the total system is

ρtot

1 := e
−iτH1

(
ρ ⊗

⊗

k≥1

ρβ

)
e
iτH1
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The repeated interaction dynamics.

1 Full Hamiltonian: H = HS ⊗ 1lE + 1lS ⊗ HE + V .

2 Initial state of S: density matrix ρ ∈ J1(HS).

3 Initial state of E : ρβ =equilibrium state at temperature β−1, i.e.

ρβ = e
−βHE

Tr(e−βHE )
.

After 2 interactions, the state of the total system is

ρtot

2 := e
−iτH2e

−iτH1

(
ρ ⊗

⊗

k≥1

ρβ

)
e
iτH1e

iτH2
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The repeated interaction dynamics.

1 Full Hamiltonian: H = HS ⊗ 1lE + 1lS ⊗ HE + V .

2 Initial state of S: density matrix ρ ∈ J1(HS).

3 Initial state of E : ρβ =equilibrium state at temperature β−1, i.e.

ρβ = e
−βHE

Tr(e−βHE )
.

After n interactions, the state of the total system is

ρtot

n := e
−iτHn · · · e−iτH2e

−iτH1

(
ρ ⊗

⊗

k≥1

ρβ

)
e
iτH1e

iτH2 · · · eiτHn .
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The repeated interaction dynamics.

1 Full Hamiltonian: H = HS ⊗ 1lE + 1lS ⊗ HE + V .

2 Initial state of S: density matrix ρ ∈ J1(HS).

3 Initial state of E : ρβ =equilibrium state at temperature β−1, i.e.

ρβ = e
−βHE

Tr(e−βHE )
.

After n interactions, the state of the total system is

ρtot

n := e
−iτHn · · · e−iτH2e

−iτH1

(
ρ ⊗

⊗

k≥1

ρβ

)
e
iτH1e

iτH2 · · · eiτHn .

The state of the cavity is thus ρn = TrC(ρtot

n ), i.e. satisfies

∀A ∈ B(HS), Tr
(
ρtot

n A ⊗ 1lC

)
= TrHS

(ρnA) .
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The repeated interaction dynamics.

1 Full Hamiltonian: H = HS ⊗ 1lE + 1lS ⊗ HE + V .

2 Initial state of S: density matrix ρ ∈ J1(HS).

3 Initial state of E : ρβ =equilibrium state at temperature β−1, i.e.

ρβ = e
−βHE

Tr(e−βHE )
.

After n interactions, the state of the total system is

ρtot

n := e
−iτHn · · · e−iτH2e

−iτH1

(
ρ ⊗

⊗

k≥1

ρβ

)
e
iτH1e

iτH2 · · · eiτHn .

The state of the cavity is thus ρn = TrC(ρtot

n ), i.e. satisfies

∀A ∈ B(HS), Tr
(
ρtot

n A ⊗ 1lC

)
= TrHS

(ρnA) .

Question: Do we have return to equilibrium in the cavity?

lim
n→∞

ρn =
e−β∗HS

Tr(e−β∗HS )
?
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The repeated interaction dynamics.

1 Full Hamiltonian: H = HS ⊗ 1lE + 1lS ⊗ HE + V .

2 Initial state of S: density matrix ρ ∈ J1(HS).

3 Initial state of E : ρβ =equilibrium state at temperature β−1, i.e.

ρβ = e
−βHE

Tr(e−βHE )
.

After n interactions, the state of the total system is

ρtot

n := e
−iτHn · · · e−iτH2e

−iτH1

(
ρ ⊗

⊗

k≥1

ρβ

)
e
iτH1e

iτH2 · · · eiτHn .

The state of the cavity is thus ρn = TrC(ρtot

n ), i.e. satisfies

∀A ∈ B(HS), Tr
(
ρtot

n A ⊗ 1lC

)
= TrHS

(ρnA) .

Question: Do we have return to equilibrium in the cavity? At which
temperature?

lim
n→∞

ρn =
e−β∗HS

Tr(e−β∗HS )
? β∗ = ?
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The reduced dynamics map

If S is in the state ρ before some interaction, right after it it is in the
state

Lβ(ρ) := TrE

(
e
−iτHρ ⊗ ρβ e

iτH
)
,

where TrE denotes the partial trace over E .
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The reduced dynamics map

If S is in the state ρ before some interaction, right after it it is in the
state

Lβ(ρ) := TrE

(
e
−iτHρ ⊗ ρβ e

iτH
)
,

where TrE denotes the partial trace over E .
The “repeated interaction” structure induces a markovian behaviour:

∀n, ρn = Lβ(ρn−1).

L. Bruneau Thermal relaxation in a quantum cavity



The reduced dynamics map

If S is in the state ρ before some interaction, right after it it is in the
state

Lβ(ρ) := TrE

(
e
−iτHρ ⊗ ρβ e

iτH
)
,

where TrE denotes the partial trace over E .
The “repeated interaction” structure induces a markovian behaviour:

∀n, ρn = Lβ(ρn−1).

Conclusion: we have to study lim
n→∞

Ln
β(ρ), and hence understand the

spectrum of Lβ .
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The reduced dynamics map

If S is in the state ρ before some interaction, right after it it is in the
state

Lβ(ρ) := TrE

(
e
−iτHρ ⊗ ρβ e

iτH
)
,

where TrE denotes the partial trace over E .
The “repeated interaction” structure induces a markovian behaviour:

∀n, ρn = Lβ(ρn−1).

Conclusion: we have to study lim
n→∞

Ln
β(ρ), and hence understand the

spectrum of Lβ .

Remark: Lβ is trace preserving and completely positive.

L. Bruneau Thermal relaxation in a quantum cavity



The reduced dynamics map

If S is in the state ρ before some interaction, right after it it is in the
state

Lβ(ρ) := TrE

(
e
−iτHρ ⊗ ρβ e

iτH
)
,

where TrE denotes the partial trace over E .
The “repeated interaction” structure induces a markovian behaviour:

∀n, ρn = Lβ(ρn−1).

Conclusion: we have to study lim
n→∞

Ln
β(ρ), and hence understand the

spectrum of Lβ .

Remark: Lβ is trace preserving and completely positive.

Main difficulty: Perturbation theory doesn’t work.
When λ = 0, Lβ(ρ) = e−iτHSρ eiτHS . Hence
sp(Lβ) = {eiωτ(n−m), n,m ∈ Z}: pure point spectrum, but all the
eigenvalues, and in particular 1, are infinitely degenerate!
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Jaynes-Cummings Hamiltonian and Rabi oscillations

If there are n photons in the cavity, the probability for the atom to make
a transition |−〉 → |+〉 is a periodic function of time

P(t) =
∣∣〈n − 1,+| e−itH |n,−〉

∣∣ =

(
1 − ∆2

ν2
n

)
sin2

(νnt

2

)
,

with frequency

νn :=
√

λ2n + (ω − ω0)2 =
√

λ2n + ∆2.

(λ = 1-photon Rabi frequency in a cavity where ∆ = 0).
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Jaynes-Cummings Hamiltonian and Rabi oscillations

If there are n photons in the cavity, the probability for the atom to make
a transition |−〉 → |+〉 is a periodic function of time

P(t) =
∣∣〈n − 1,+| e−itH |n,−〉

∣∣ =

(
1 − ∆2

ν2
n

)
sin2

(νnt

2

)
,

with frequency

νn :=
√

λ2n + (ω − ω0)2 =
√

λ2n + ∆2.

(λ = 1-photon Rabi frequency in a cavity where ∆ = 0).

Conclusion: If the field is in state |n〉 before an interaction and τ is a

multiple of the Rabi period Tn :=
2π

νn

, after this interaction it can not be

in state |n − 1〉: there is a decoupling between the “energy levels” n − 1
and n.
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Rabi resonances

n > 0 is called a Rabi resonance if τ is a multiple of the period of an
n-photon Rabi oscillation, i.e.

∃k ∈ N, τ = k
2π

νn
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Rabi resonances

n > 0 is called a Rabi resonance if τ is a multiple of the period of an
n-photon Rabi oscillation, i.e.

∃k ∈ N, τ = k
2π

νn

⇐⇒ ∃k ∈ N, ξn + η = k2.

where ξ =
(

λτ
2π

)2
, η =

(
∆τ
2π

)2
with ∆ = ω − ω0.
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Rabi resonances

n > 0 is called a Rabi resonance if τ is a multiple of the period of an
n-photon Rabi oscillation, i.e.

∃k ∈ N, τ = k
2π

νn

⇐⇒ ∃k ∈ N, ξn + η = k2.

where ξ =
(

λτ
2π

)2
, η =

(
∆τ
2π

)2
with ∆ = ω − ω0.

R(ξ, η) = set of Rabi resonances. The cavity splits into independant
“sectors” each time there is a resonance.
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Rabi resonances

n > 0 is called a Rabi resonance if τ is a multiple of the period of an
n-photon Rabi oscillation, i.e.

∃k ∈ N, τ = k
2π

νn

⇐⇒ ∃k ∈ N, ξn + η = k2.

where ξ =
(

λτ
2π

)2
, η =

(
∆τ
2π

)2
with ∆ = ω − ω0.

R(ξ, η) = set of Rabi resonances. The cavity splits into independant
“sectors” each time there is a resonance.

3 possible situations (depending on the arithmetic properties of ξ and η):
R(ξ, η) is empty, a singlet or infinite.

Generically: R(ξ, η) is empty = no resonance. We now restrict (for the
talk) to this non-resonant situation.
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Ergodicity and mixing (I)

The support s(ρ) of a state is the orthogonal projection on the closure of
Ran(ρ).
We write µ ≪ ρ when s(µ) ≤ s(ρ) (equivalent of µ absolutely continuous
w.r.t. ρ for classical dynamical systems).
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Ergodicity and mixing (I)

The support s(ρ) of a state is the orthogonal projection on the closure of
Ran(ρ).
We write µ ≪ ρ when s(µ) ≤ s(ρ) (equivalent of µ absolutely continuous
w.r.t. ρ for classical dynamical systems).

Definition

A state ρ is called

1 ergodic if for any µ ≪ ρ w − lim
N→∞

1

N

N∑

n=1

Ln
β(µ) = ρ,
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Ergodicity and mixing (I)

The support s(ρ) of a state is the orthogonal projection on the closure of
Ran(ρ).
We write µ ≪ ρ when s(µ) ≤ s(ρ) (equivalent of µ absolutely continuous
w.r.t. ρ for classical dynamical systems).

Definition

A state ρ is called

1 ergodic if for any µ ≪ ρ w − lim
N→∞

1

N

N∑

n=1

Ln
β(µ) = ρ,

2 mixing if for any µ ≪ ρ w − lim
n→∞

Ln
β(µ) = ρ.
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Ergodicity and mixing (I)

The support s(ρ) of a state is the orthogonal projection on the closure of
Ran(ρ).
We write µ ≪ ρ when s(µ) ≤ s(ρ) (equivalent of µ absolutely continuous
w.r.t. ρ for classical dynamical systems).

Definition

A state ρ is called

1 ergodic if for any µ ≪ ρ w − lim
N→∞

1

N

N∑

n=1

Ln
β(µ) = ρ,

2 mixing if for any µ ≪ ρ w − lim
n→∞

Ln
β(µ) = ρ.

3 exponentially mixing if there exists α > 0 s.t. for any µ ≪ ρ, and
any A ∈ B(H)

|Ln
β(µ)(A) − ρ(A)| ≤ CA,µe

−αn, ∀n ∈ N.
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Ergodicity and mixing (I)

The support s(ρ) of a state is the orthogonal projection on the closure of
Ran(ρ).
We write µ ≪ ρ when s(µ) ≤ s(ρ) (equivalent of µ absolutely continuous
w.r.t. ρ for classical dynamical systems).

Definition

A state ρ is called

1 ergodic if for any µ ≪ ρ w − lim
N→∞

1

N

N∑

n=1

Ln
β(µ) = ρ,

2 mixing if for any µ ≪ ρ w − lim
n→∞

Ln
β(µ) = ρ.

3 exponentially mixing if there exists α > 0 s.t. for any µ ≪ ρ, and
any A ∈ B(H)

|Ln
β(µ)(A) − ρ(A)| ≤ CA,µe

−αn, ∀n ∈ N.

To understand the ergodic properties of Lβ , the main issue is to
understand its peripheral spectrum, i.e. sp(Lβ) ∩ S1.
In particular, the invariant states are the possible ergodic states.
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Spectral analysis of Lβ

1 Use gauge symmetry: [H, a∗a + b∗b] = [HE , ρβ ] = 0

⇒ Lβ(e−iθa∗aX e
iθa∗a) = e

−iθa∗aLβ(X )eiθa∗a.
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Spectral analysis of Lβ

1 Use gauge symmetry: [H, a∗a + b∗b] = [HE , ρβ ] = 0

⇒ Lβ(e−iθa∗aX e
iθa∗a) = e

−iθa∗aLβ(X )eiθa∗a.

Corollary: the subspaces Ek = {ρ =
∑

n

pn|n + k〉〈n|} of J1 are

globally invariant.
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Spectral analysis of Lβ

1 Use gauge symmetry: [H, a∗a + b∗b] = [HE , ρβ ] = 0

⇒ Lβ(e−iθa∗aX e
iθa∗a) = e

−iθa∗aLβ(X )eiθa∗a.

Corollary: the subspaces Ek = {ρ =
∑

n

pn|n + k〉〈n|} of J1 are

globally invariant.
2 Action of Lβ on diagonal states, i.e. on E0
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Spectral analysis of Lβ

1 Use gauge symmetry: [H, a∗a + b∗b] = [HE , ρβ ] = 0

⇒ Lβ(e−iθa∗aX e
iθa∗a) = e

−iθa∗aLβ(X )eiθa∗a.

Corollary: the subspaces Ek = {ρ =
∑

n

pn|n + k〉〈n|} of J1 are

globally invariant.
2 Action of Lβ on diagonal states, i.e. on E0: with

(∇ρ)n := ρn − ρn−1, (∇∗ρ)n = ρn − ρn+1 and

D(N) =
1

1 + e−βω0
sin2(π

√
ξN + η)

ξN

ξN + η
, one has

Lβ = 1l −∇∗D(N)e−βω0N∇e
βω0N .
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Spectral analysis of Lβ

1 Use gauge symmetry: [H, a∗a + b∗b] = [HE , ρβ ] = 0

⇒ Lβ(e−iθa∗aX e
iθa∗a) = e

−iθa∗aLβ(X )eiθa∗a.

Corollary: the subspaces Ek = {ρ =
∑

n

pn|n + k〉〈n|} of J1 are

globally invariant.
2 Action of Lβ on diagonal states, i.e. on E0: with

(∇ρ)n := ρn − ρn−1, (∇∗ρ)n = ρn − ρn+1 and

D(N) =
1

1 + e−βω0
sin2(π

√
ξN + η)

ξN

ξN + η
, one has

Lβ = 1l −∇∗D(N)e−βω0N∇e
βω0N .

⇒ ρ is invariant iff ρ = Ce−βω0N = Ce−β∗HS where β∗ =
ω0

ω
β.
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Spectral analysis of Lβ

1 Use gauge symmetry: [H, a∗a + b∗b] = [HE , ρβ ] = 0

⇒ Lβ(e−iθa∗aX e
iθa∗a) = e

−iθa∗aLβ(X )eiθa∗a.

Corollary: the subspaces Ek = {ρ =
∑

n

pn|n + k〉〈n|} of J1 are

globally invariant.
2 Action of Lβ on diagonal states, i.e. on E0: with

(∇ρ)n := ρn − ρn−1, (∇∗ρ)n = ρn − ρn+1 and

D(N) =
1

1 + e−βω0
sin2(π

√
ξN + η)

ξN

ξN + η
, one has

Lβ = 1l −∇∗D(N)e−βω0N∇e
βω0N .

⇒ ρ is invariant iff ρ = Ce−βω0N = Ce−β∗HS where β∗ =
ω0

ω
β.

3 A Perron-Frobenius type lemma (Shrader ’2000) for completely
positive maps on trace ideals Jp:

Lβ(X ) = e
iθX ⇒ Lβ(|X |) = |X | where |X | =

√
X ∗X .
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Ergodicity and mixing (II)

Proposition

If R(ξ, η) = ∅, 1 is the only eigenvalue of Lβ on S1 and it is simple. The
unique invariant state is

ρ
β∗

S =
e−β∗HS

Tr(e−β∗HS )
.
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Ergodicity and mixing (II)

Proposition

If R(ξ, η) = ∅, 1 is the only eigenvalue of Lβ on S1 and it is simple. The
unique invariant state is

ρ
β∗

S =
e−β∗HS

Tr(e−β∗HS )
.

Theorem

If R(ξ, η) = ∅, ρ
β∗

S is ergodic, i.e. any initial state converges (weakly and

in ergodic mean) to ρ
β∗

S .
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Ergodicity and mixing (II)

Proposition

If R(ξ, η) = ∅, 1 is the only eigenvalue of Lβ on S1 and it is simple. The
unique invariant state is

ρ
β∗

S =
e−β∗HS

Tr(e−β∗HS )
.

Theorem

If R(ξ, η) = ∅, ρ
β∗

S is ergodic, i.e. any initial state converges (weakly and

in ergodic mean) to ρ
β∗

S .

Remarks:
1) There is a weak form of decoherence.

2) Numerically it seems that ρ
β∗

S is not only ergodic but also mixing.
3) If R(ξ, η) 6= ∅ the multiplicity of 1 increases (one invariant state per

“sector”).
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Quasi-resonances

Recall: for diagonal states

Lβ = 1l −∇∗D(N)e−βω0N∇e
βω0N

where D(n) = 1
1+e−βω0

sin2(π
√

ξn + η) ξn

ξn+η
.
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Quasi-resonances

Recall: for diagonal states

Lβ = 1l −∇∗D(N)e−βω0N∇e
βω0N

where D(n) = 1
1+e−βω0

sin2(π
√

ξn + η) ξn

ξn+η
.

We call m ∈ N
∗ a quasi-resonance if D(m) < D(m ± 1).

sin(π
√

ξ(m + 1) + η)

sin(π
√

ξm + η)

sin(π
√

ξ(m − 1) + η)
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Quasi-resonances

Recall: for diagonal states

Lβ = 1l −∇∗D(N)e−βω0N∇e
βω0N

where D(n) = 1
1+e−βω0

sin2(π
√

ξn + η) ξn

ξn+η
.

We call m ∈ N
∗ a quasi-resonance if D(m) < D(m ± 1).

sin(π
√

ξ(m + 1) + η)

sin(π
√

ξm + η)

sin(π
√

ξ(m − 1) + η)

If (mk)k denotes the sequence of quasi-resonances, we have
D(mk) = O(k−2).
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Metastable sates

Let L0
β = 1l −∇∗D0(N)e−βω0N∇eβω0N where

D0(n) =

{
0 if n ∈ {m1, . . .},
D(n) otherwise.
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Metastable sates

Let L0
β = 1l −∇∗D0(N)e−βω0N∇eβω0N where

D0(n) =

{
0 if n ∈ {m1, . . .},
D(n) otherwise.

Then Lβ = L0
β + T where T is of trace class and 1 is an infinitely

degenerate eigenvalue of L0
β .

⇒ 1 always belongs to the essential spectrum of Lβ .
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Metastable sates

Let L0
β = 1l −∇∗D0(N)e−βω0N∇eβω0N where

D0(n) =

{
0 if n ∈ {m1, . . .},
D(n) otherwise.

Then Lβ = L0
β + T where T is of trace class and 1 is an infinitely

degenerate eigenvalue of L0
β .

⇒ 1 always belongs to the essential spectrum of Lβ .

The eigenstates of L0
β are metastable states.

⇒ There are infinitely many metastable states with arbitrarily large
lifetimes. Hence we can not expect exponential mixing.
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Figure: Cooling the cavity: 5000 interactions.
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Figure: Cooling the cavity: 50000 interactions.
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Some questions

1 Prove mixing.

2 Estimate on the mixing rate?

3 Random interaction time ⇒ convergence is better?

4 Non-equilibrium situation?

L. Bruneau Thermal relaxation in a quantum cavity


