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We study Pauli–Fierz Hamiltonians—self-adjoint operators describing a small quantum

system interacting with a bosonic field. Using quadratic form techniques, we extend the results

of Dereziński-Gérard and Gérard about the self-adjointness, the location of the essential

spectrum and the existence of a ground state to a large class of Pauli–Fierz Hamiltonians.
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1. Introduction

Our paper is devoted to the study of spectral properties of self-adjoint operators
of the following form:

H = K⊗1+1⊗
∫

h(ξ)a∗(ξ)a(ξ)dξ+
∫

v(ξ)⊗a∗(ξ)dξ+
∫

v(ξ)∗⊗a(ξ)dξ. (1.1)

Above, K denotes a self-adjoint operator on a Hilbert space K, a∗(ξ) and a(ξ)
are creation and annihilation operators, respectively, acting on the bosonic Fock space
Ŵs(Z). H is understood as a self-adjoint operator on the tensor product K⊗ Ŵs(Z).

The one-particle space Z will be assumed to be L2(Rd)⊗C
n. h(ξ) describes the

dispersion relation of the bosons. We will always assume that h(ξ) is nonnegative.
Abusing terminology, inf h is sometimes called the mass of the bosons. We are
particularly interested in the massless case, that is inf h = 0. A typical form of h(ξ)

considered in physical applications is h(ξ) = (m2 + ξ 2)1/2, where m is a nonnegative
number that we call the mass.

R
d ∋ ξ 7→ v(ξ) is a function with values in operators on K. It is responsible for

the interaction between the small system and the bosons.
There is no universally accepted name for operators of the form (1.1). In [5,

8, 11, 12] they are called Pauli–Fierz operators or Pauli–Fierz Hamiltonians, and
we will use this name. Note, however, that sometimes the name “the Pauli–Fierz
Hamiltonian” is used to denote slightly different objects [15, 17].

Operators similar to (1.1) arise in quantum physics as simplified Hamiltonians
describing a small system described by the Hilbert space K interacting with a bosonic

[169]



170 L. BRUNEAU and J. DEREZIŃSKI

field. For instance, the dipole approximation to nonrelativistic QED is of this form.
From recent rigorous work it became apparent that Pauli–Fierz Hamiltonians are not
only physically relevant, but also they are interesting mathematical objects.

One of the results about Pauli–Fierz Hamiltonians that can be found in the lit-
erature says that the essential spectrum of H is shifted to the right from the bot-
tom of the spectrum of H by the “mass” inf h. This theorem to our knowledge
was first proven in [5]. It resembles the Hunziker–van-Winter–Zhislin theorem about
many-body Schrödinger operators [19]. Therefore, we call it the HVZ-type theorem
about Pauli–Fierz Hamiltonians.

It is obvious that if the “mass” is positive, then the HVZ-type theorem implies
the existence of a ground state. It turns out that even in the massless case, under
some additional assumptions, one can show that there exists a ground state of H

that “sits” at the tip of the continuous spectrum. This result was first proven in
[2, 3] for a small coupling constant. In [21] this result was extended to an arbitrary
coupling constant for a Hamiltonian satisfying an appropriate condition that allows
to use the Perron–Frobenius method. In the work of Gérard [12] the existence of a
ground state was proven for a large class of Pauli–Fierz Hamiltonians without using
the Perron–Frobenius method. See also later work [1, 14].

In our paper we extend the HVZ-type theorem of [5] and the theorem about the
existence of a ground state from [12] to a larger class of Pauli–Fierz Hamiltonians.
The main motivation of our paper is to give an analysis of mathematical tools used
in the context of second quantization and of tensor products of Hilbert spaces. Let
us make some comments about these tools.

In Eq. (1.1) we used the formalism of “operator valued distributions” a∗(ξ), a(ξ),
which is a common approach to creation/annihilation operators. In the following
sections of our paper we will not use this formalism. Instead, we will write a∗(v)
for

∫
v(ξ) ⊗ a∗(ξ)dξ and a(v) for

∫
v(ξ)∗ ⊗ a(ξ)dξ , where v is a quadratic form

from K to K ⊗ Z. This clearly leads to a more compact notation (used before in
particular in [5, 11]). Note, however, that the advantage of working with the form
v instead of the function ξ 7→ v(ξ) is not just a matter of notation. It also helps to
obtain stronger results. This is one of the reasons why the results of this paper are
stronger than those of [12].

To define the operator H we use the form boundedness technique based on the
KLMN theorem [18], instead of the operator boundedness technique based on the
Kato–Rellich theorem, employed commonly in the literature [5, 12]. This allows us
to give rather weak and simple conditions for our results, as compared with the
literature. (Note that [11] also uses the form boundedness technique in a similar
context, see Subsection 5.3.)

In the proof of the HVZ-type theorem we use the so-called extended space. This
technique was introduced in [5, 6], and then used e.g. in [10]. In our paper we have
to adapt it to the case of a Hamiltonian defined using the quadratic form method.

One of the techniques that proved powerful in the study of 2nd quantized Hamil-
tonians is the so-called pullthrough formula. It was used in the early works of Glimm,
Jaffe and Rosen on constructive quantum field theory, for instance in the work of



PAULI–FIERZ HAMILTONIANS DEFINED AS QUADRATIC FORMS 171

Rosen on higher-order estimates [20]. It was also applied in the work of Fröhlich
on the massless translation invariant Nelson model [9]. In [2, 3, 12] it was used
as an important step in the proof of the existence of a ground state for Pauli–Fierz
operators. The version of the pullthrough formula for Pauli–Fierz operators employed
in [2, 3, 12] has the following form:

1 ⊗ a(ξ) H = (H + h(ξ)) 1 ⊗ a(ξ) + v(ξ) ⊗ 1. (1.2)

Note that in the above formula the annihilation operator a(ξ) is not even closable. It
can be interpreted as an operator-valued distribution, which is a little awkward math-
ematically. Besides, (1.2) depends explicitly on the identification of the one-particle
space with the space L2(dξ), which should not play a role in the arguments.

In our paper we propose a reformulation of the pullthrough formula that is
more satisfactory mathematically. To this end, we introduce the so-called pullthrough
annihilation operator A. It acts from the Fock space Ŵs(Z) to the tensor product
Ŵs(Z) ⊗Z . Using the pullthrough annihilation operator, Eq. (1.2) can be rewritten
as

A H = (H ⊗ 1Z + 1H ⊗ h) A + v, (1.3)

We show how to use (1.3) to obtain the existence of a ground state under weaker
assumptions than those in the literature.

The identity (1.3) is clearly equivalent to (1.2) but is written in a “more canon-
ical way”. Note, however, that it is often not easy to deal with tensor products of
vector spaces in a transparent way. Strictly speaking we should have written 1K⊗A
instead of A, whereas v should be tensored with 1Ŵs(Z) “in the middle”.

Our paper is organized as follows. In Section 2 we introduce notation and
give a precise description of the model. We try to be quite pedantic, since there
seems to be no standard terminology concerning some of the constructions that
we need. In particular, we introduce creation and annihilation forms on a Fock
space. Equipped with this terminology it is easy to introduce a natural class of
Pauli–Fierz Hamiltonians that are defined as form perturbation of free Pauli–Fierz
Hamiltonians using the KLMN theorem. The assumptions on the coupling function
are considerably weaker and simpler than those considered in the literature [5, 11,
12]. In this section we also state our main assumptions and formulate the main
results of the paper.

In Section 3 we prove a HVZ-type theorem which says that the infimum of the
essential spectrum of H equals the infimum of the spectrum of h plus the infimum
of the spectrum of H . In particular, this result ensures that H admits a ground
state in the massive case. The proof is based on the ideas from [5], but applies to
a much larger class of Pauli–Fierz Hamiltonians.

In Section 4 we study the question of existence of ground states. Our arguments
are based on the ideas of [12] and [7], but again we treat a much larger class
of Pauli–Fierz Hamiltonians. In this section we introduce the pullthrough operators,
study their properties and apply them to Pauli–Fierz operators.
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Finally, in Section 5, we compare the results of our paper with the analoguous
results from the literature. We describe and correct a minor error contained in
[5, 12]. We show that the assumptions of our paper are weaker than those of
[5, 11, 12].

2. Notation and main results

In this section we describe basic terminology and notation that we will use,
then we define the Pauli–Fierz Hamiltonians as quadratic forms and finally we state
our main results.

2.1. Basic notation

Let H be a Hilbert space. The scalar product of two vectors 8,9 ∈ H is
denoted by (8|9) (not by (8,9) which denotes an ordered pair).

If 8 ∈ H, then we introduce the operators (8| and |8) as follows:

H ∋ 9 7→ (8|9 := (8|9) ∈ C, (2.1)

C ∋ λ 7→ |8)λ := λ8 ∈ H. (2.2)

If A is a self-adjoint operator, then spA, spessA and spppA denote its spec-
trum, essential spectrum and pure point spectrum. inf A denotes the infimum of its
spectrum and 12(A) denotes its spectral projection onto a Borel set 2 ⊂ R.

By saying that A is an operator from H1 to H2 we mean that it is a linear
map

Dom A ∋ 8 7→ A8 ∈ H2,

where Dom A is a linear subspace of H1 called the domain of A. We define the
adjoint of A, denoted by A∗, in the usual way. Clearly, A∗ is an operator from H2

to H1.
B(H1,H2) will denote bounded everywhere defined operators from H1 to H2.
Dom A will be sometimes treated as a Hilbert space equipped with the graph

norm. For instance, if A is positive, this graph norm can be taken to be ‖8‖A :=
‖(A + 1)8‖. The space dual to Dom A will be denoted (A + 1)H. Note that A

extends to a bounded operator from Dom (A + 1)1/2 to (A + 1)1/2H.

2.2. Unbounded forms

Let H1,H2 be Hilbert spaces. We say that the map

Domlh × Domrh ∋ (8,9) 7→ (8|h9) ∈ C (2.3)

is a form h from H1 to H2 iff

(1) Domrh is a subspace of H1;
(2) Domlh is a subspace of H2;
(3) the map (2.3) is linear with respect to the second argument;
(4) the map (2.3) is antilinear with respect to the first argument.
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Domrh is called the right domain of h and Domlh is called the left domain of h.
If H1 = H2, they often coincide, and we then write Domfh for Domlh = Domrh
and call it the domain of h.

The notation (2.3) we use is different from the commonly used h(8,9). It
suggests the identification of the quadratic form with a linear map from Domrh to
the algebraic dual of Domlh.

We define the adjoint of the form h, denoted by h∗f as follows: Domlh
∗f :=

Domrh, Domrh
∗f := Domlh and

Domrh × Domlh ∋ (9,8) 7→ (9|h∗f8) := (8|h9).

Note that if h is an operator with domain Dom h ⊂ H1, then it generates a
form, denoted also h, such that Domrh = Dom h, Domlh = H2, which is given by

H2 × Dom h ∋ (8,9) 7→ (8|h9).

Then we can define the adjoint of h in the sense of operators, denoted h∗, and its
adjoint in the sense of forms, denoted h∗f . If h is bounded and everywhere defined
then these two adjoints coincide. If h is unbounded then they are different.

If h is a self-adjoint operator on H, then there exists a different form often
associated with h. Its domain, often called the form domain of h, equals Dom |h|1/2

and it is given by

Dom |h|1/2 × Dom |h|1/2 ∋ (8,9) 7→ (|h|1/28| sgnh |h|1/29).

If 9 ∈ Domrv, then we set

‖v9‖ := sup{|(8|v9)| | 8 ∈ Domlv, ‖8‖ = 1}.

Note that the above notation agrees with the usual notation if v is given by an
operator and 9 ∈ Dom v.

We will also write

‖v‖ := sup{|(8|v9)| | 8 ∈ Domlv, ‖8‖ = 1, 9 ∈ Domrv, ‖9‖ = 1}.

Again, this notation agrees with the usual operator norm if v is an operator.
Suppose now we are given a form v from H1 to H2, an operator h1 on H1 and

an operator h2 on H2. Then h∗
2vh1 denotes the form (8,9) 7→ (h28 | vh19), with

Domrh
∗
2vh1 := {9 ∈ Dom h1 | h19 ∈ Domrv} and Domlh

∗
2vh1 := {8 ∈ Dom h2 |

h28 ∈ Domlv}.

2.3. Tensor products and Fock spaces

If K0 and Z0 are vector spaces, then K0

◦
⊗Z0 will denote their algebraic tensor

product.
◦
Ŵs(Z0) will denote the algebraic symmetric Fock space over Z0.
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If K and Z are Hilbert spaces, then K ⊗ Z will denote their Hilbert space

tensor product (the completion of K
◦
⊗Z). Ŵs(Z) will denote the symmetric Fock

space over Z (the completion of
◦
Ŵs(Z)). Ŵn

s (Z) will stand for its n-particle subspace

(the completion of the algebraic symmetric tensor power of Z0, denoted by
◦
Ŵ

n

s (Z0)).
If v is a form from H1 to H2 and w is another form from K1 to K2 then

the tensor product of the forms v and w is defined as the form v ⊗f w from

H1 ⊗K1 to H2 ⊗K2, such that Domr(v⊗f w) = Domr(v)
◦
⊗Domr(w), Doml(v⊗f w) =

Doml(v)
◦
⊗Doml(w) and

(
92 ⊗ 42|(v ⊗f w)91 ⊗ 41

)
:= (92|v91)(42|w41).

If v is an operator from H1 to H2 and w is an operator from K1 to K2 then
the tensor product of the operators v and w is defined as the operator v ⊗w from

H1 ⊗ K1 to H2 ⊗ K2, such that Dom (v ⊗ w) = Dom (v)
◦
⊗Dom (w) and

(v ⊗ w)9 ⊗ 4 := (v9) ⊗ (w4).

Thus if v and w are operators then we have two slightly different tensor products

of v and w. In the case of the form tensor product Doml(v ⊗f w) = H2

◦
⊗K2 and

in the case of the operator tensor product Doml(v ⊗ w) = H2 ⊗ K2 .
If v and w are closed operators then the above defined v ⊗ w is a closable

operator. We will denote by the same symbol its closure. If they are densely defined
then so is v ⊗ w. If v and w are bounded then v ⊗ w is bounded as well.

If h is a closed operator on Z then dŴ(h) denotes the closed operator on Ŵs(Z)
defined in the usual way. If q is a contraction from Z1 to Z2 then Ŵ(q) denotes
the contraction from Ŵs(Z1) to Ŵs(Z2) defined in the usual way (see e.g. [5, 18]).

Finally, N will denote the number operator, i.e. N = dŴ(1).

2.4. Creation and annihilation forms

Let K0 and Z0 be subspaces of Hilbert spaces K and Z, respectively. Let v be

a form from K to K⊗ Z with the right domain K0 and the left domain K0

◦
⊗Z0.

We define the annihilation form af(v) as a form on K ⊗ Ŵs(Z) with the (left

and right) domain K0

◦
⊗

◦
Ŵs(Z0). It is defined for 8 ∈ K0

◦
⊗

◦
Ŵ

m

s (Z0), 9 ∈ K0

◦
⊗

◦
Ŵ

n

s (Z0)
as

(8|af(v)9) :=





0, m 6= n − 1,

√
n(8|v∗f ⊗ 1(n−1)⊗9), m = n − 1.

The creation form a∗f(v) is defined as

a∗f(v) :=
(
af(v)

)∗f
.
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Note that if v is bounded with the right domain equal to K, then the form af(v)
is associated with a densely defined closable operator. Then we use the symbol a(v)
for the closure of this operator. We can then introduce the creation operator

a∗(v) := (a(v))∗ .

The following lemma is essentially proven in [8].

LEMMA 2.1. Let h be a positive operator on Z. Suppose that Z0 ⊂ Dom h1/2

and 8 ∈ K0

◦
⊗

◦
Ŵs(Z0). Then

(1) 8 ∈ Dom (1 ⊗ dŴ(h)1/2) and

‖af(v)8‖2 ≤ ‖h−1/2v‖2(8|1 ⊗ dŴ(h)8).

(2) If, moreover, v ∈ B(K,K⊗ Z), then

‖a∗(v)8‖2 ≤ (8|v∗v ⊗ 18) + ‖h−1/2v‖2(8|1 ⊗ dŴ(h)8).

REMARK 2.1. If B ∈ B(K) and z ∈ Z, then

a∗ (B ⊗ |z)) = B ⊗ a∗(z), a (B ⊗ |z)) = B∗ ⊗ a(z),

where a∗(z) and a(z) are the usual creation and annihilation operators and |z) is
defined in (2.2).

2.5. Pauli–Fierz Hamiltonians defined as forms

Let K and Z be Hilbert spaces. The main space used in our paper will be
H := K⊗ Ŵs(Z).

Let K be a positive operator on K and h be a positive operator on Z. m := inf h
will be sometimes called the mass. (Recall that inf h denotes the infimum of the
spectrum of the self-adjoint operator h.) The free Pauli–Fierz operator is defined as
the self-adjoint operator on H given by

Hfr := K ⊗ 1 + 1 ⊗ dŴ(h).

Let K0 be a dense subspace of K contained in Dom K1/2 and Z0 a dense
subspace of Z contained in Dom h1/2. Let v be such as in the previous subsection.
We will refer to v as a coupling form. The Pauli–Fierz interaction is defined as a

form on K⊗ Ŵs(Z), with the domain K0

◦
⊗

◦
Ŵs(Z0), equal to

V := af∗(v) + af(v).

In order to abbreviate the notation, in what follows we will omit the superscripts
f in the annihilation and creation forms. We will also often omit the factors of 1.

THEOREM 2.1. Suppose that

α := lim sup
t→∞

‖h−1/2v(t + K)−1/2‖ < ∞. (2.4)



176 L. BRUNEAU and J. DEREZIŃSKI

Then, for any t > 0, h−1/2v(t+K)−1/2 is bounded and t 7→ ‖h−1/2v(t+K)−1/2‖ is a
decreasing function. Therefore, lim sup in (2.4) can be replaced with lim. Moreover,
the form V is form bounded with respect to Hfr with the Hfr-form bound ≤ α.

Proof : Let t > 0

|(8|V 8)| = 2|(8|a(v)8)|
≤ 2‖(t + K)1/28‖‖(t + K)−1/2a(v)8‖
≤ ǫ(8|(t + K)8) + ǫ−1‖(t + K)−1/2a(v)8‖2

≤ ǫ(8|(t + K)8) + ǫ−1‖h−1/2v(t + K)−1/2‖2(8|dŴ(h)8). (2.5)

In the last step we used the identity (t +K)−1/2a(v) = a
(
v(t + K)−1/2

)
and Lemma

2.1 (1).
Let ǫ > α. We choose t such that ‖h−1/2v(t +K)−1/2‖ ≤ ǫ. Then the right-hand

side of (2.5) is less than or equal to

≤ tǫ‖8‖2 + ǫ(8|Hfr8). �

Throughout the paper we will make the following assumption

ASSUMPTION A. lim
t→∞

‖h−1/2v(t + K)−1/2‖ < 1.

The KLMN theorem [18] implies the following result.

THEOREM 2.2. Suppose that Assumption A holds. Then the operator

H := Hfr + V

is well defined as a form sum. The form domains of Hfr and H coincide, that is

Dom |H | 1
2 = Dom |Hfr|

1
2 .

The operator H defined in Theorem 2.2 will be called the Pauli–Fierz Hamiltonian.
We will need also the following assumption:

ASSUMPTION B. h−1/2v(1 + K)−1/2 is compact.

Note that Assumption B implies A. In fact, Assumption B implies

lim
t→∞

‖h−1/2v(t + K)−1/2‖ = 0.

Hence, Assumption B can be used in Theorem 2.2.
In some of our arguments we will need to use a whole family of Pauli–Fierz

operators. Each time we will keep K and h fixed, and we will vary the coupling
form v. In such situations the following assumption will be often helpful.

ASSUMPTION C.
‖h−1/2v(t + K)−1/2‖ < ǫ.

We will refer to the above assumption as Assumption C(ǫ, t).
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The proof of the KLMN theorem and of Theorem 2.2 yield to the following
proposition.

PROPOSITION 2.1. Fix t > 0 and ǫ < 1. Then there exist c > 0 and c1 with
the following property: if the coupling operator v satisfies Assumption C(ǫ, t), then
H + c > 1 and

‖(c + H)−1/2(c + Hfr)
1/2‖ ≤ c1, ‖(c + Hfr)

−1/2(c + H)1/2‖ ≤ c1. (2.6)

2.6. Main results

We now state our remaining assumptions and describe the main results of our
paper.

The first assumption describes the confinement of the small system.

ASSUMPTION D. (1 + K)−1 is compact.

The one-particle space Z will be of the form L2(Rd) ⊗ C
n. To state our as-

sumption on the operator h, we use the natural isomorphism between L2(Rd) ⊗ C
n

and L2(Rd , C
n).

ASSUMPTION E. h is the multiplication operator by a continuous function:
R

d ∋ ξ 7→ h(ξ) ∈ B(Cn) such that h(ξ) is self-adjoint positive for all ξ , ∇h ∈
L∞(Rd,B(Cn))d and lim

|ξ |→∞
(inf h(ξ)) = +∞.

Let us denote by x the operator on Z equal to x = −i∇ξ . Then, using Assump-
tion E, one easily sees that for any r > 0, q > 0, the operator 1[−r,r](|x|)1[0,q](h)
is compact. Moreover, let f, g be bounded measurable functions on R such that
lim|t |→∞ f (t) = 0, limt→+∞ g(t) = 0, then f (|x|)g(h) is compact.

Our first result concerns the essential spectrum of H .

THEOREM 2.3. Suppose Assumptions B, D, E are true. Then

spessH = [inf H + inf h,+∞[.

This theorem says that the essential spectrum of H starts at the distance m

(the mass of the bosons) to the right of the ground state energy. This theorem re-
sembles the well-known HVZ theorem describing the essential spectrum of N -body
Schrödinger operators [19]. It is a generalization of a result of [5].

Theorem 2.3 implies the existence of a ground state if inf h > 0. In our analysis
of the case inf h = 0, we will use the following assumptions:

ASSUMPTION F. h−1v(1 + K)−1/2 is compact.

ASSUMPTION G. v can be split as

v = 1K ⊗ |z) + vren,

where z ∈ Dom(h−1/2) and h−1vren(1 + K)−1/2 is bounded.
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Clearly, in the case inf h > 0, Assumption B implies Assumption F.

Our next result concerns the existence of a ground state, it is a generalization
of a result of [12].

THEOREM 2.4. Suppose that Assumptions B, D, E and F, are satisfied. Then
inf H ∈ sppp(H). In other words, H has a ground state.

This theorem gives sufficient conditions for the existence of a ground state.
Finally, we also prove the following result which, in the particular case where v
can be split as in Assumption G, gives a necessary condition for the existence of
a ground state. This is a generalization of a result of [7].

THEOREM 2.5. Assume v satisfies Assumption A and G. If H has a ground
state, then z ∈ Dom(h−1).

One can see this result as a sort of reciprocal of Theorem 2.4. Indeed, we have
the following corollary.

COROLLARY 2.1. Suppose Assumptions D and E are satisfied. Let v = 1K⊗|z)+
vren be such that vren satisfies Assumptions B and F and z ∈ Dom(h−1/2). Then H
has a ground state if and only if z ∈ Dom(h−1).

Proof : If H has a ground state, the result follows from Theorem 2.5. Assume
now z ∈ Dom(h−1). It is then easy to see that v satisfies Assumptions B and F.
Therefore, using Theorem 2.4, H has a ground state. �

3. Proof of HVZ-type theorem

Our goal in this section is to prove Theorem 2.3.

3.1. Operators dŴ(·; ·)
In this section, we recall some notations from [5].

Let q be a contraction from Z1 to Z2, v a form from K to K ⊗ Z1. We
assume that K0 is a subspace of K, Zi0 are subspaces of Zi , Domr(v) = K0 and

Doml(v) = K0

◦
⊗Z10. We also assume that q maps Z10 into Z20. Let us note the

identity in the sense of forms with the right domain K0

◦
⊗

◦
Ŵs(Z10) and the left

domain K0

◦
⊗

◦
Ŵs(Z20),

Ŵ(q)a∗f(v) = a∗f(qv)Ŵ(q). (3.1)

A similar identity, obtained from (3.1) by the Hermitian conjugation, is also true,

Ŵ(q∗)af(qv) = af(v)Ŵ(q∗).

(We will drop the superscript f from af and a∗f in what follows).
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If b is an operator from Z1 to Z2, then we define dŴ(q; b) as an operator

from Ŵs(Z1) to Ŵs(Z2), with the domain
◦
Ŵs(Dom b), which on the n-particle sector

equals

dŴn(q; b) =
n−1∑

k=0

q⊗k ⊗ b ⊗ q⊗(n−k−1).

If b is closed, then the operator dŴ(q, b) is closable, and we will use the same
symbol to denote its closure.

If c is an operator on Z1 and d on Z2, then we have the operator identities

Ŵ(q)dŴ(c) = dŴ(q; qc) on
◦
Ŵs(Dom c),

dŴ(d)Ŵ(q) = dŴ(q; dq) on
◦
Ŵs(Dom dq).

PROPOSITION 3.1. Assume that ‖q‖ ≤ 1, c, d are closed and d−1bc−1 is bounded.
Then, for all 8 ∈ Dom (dŴ(dd∗)1/2) and 9 ∈ Dom (dŴ(c∗c)1/2),

|(8|dŴ(q; b)9)| ≤ ‖d−1bc−1‖‖dŴ(dd∗)1/28‖‖dŴ(c∗c)1/29‖.

Proof : Let 8 ∈
◦
Ŵs(Dom (d∗)) and 9 ∈

◦
Ŵs(Dom (c)). Then

|(8|q⊗(k−1) ⊗ b ⊗ q⊗(n−k)9)|
≤ ‖1⊗(k−1) ⊗ d∗ ⊗ 1⊗(n−k)8‖‖q⊗(k−1) ⊗ d−1bc−1 ⊗ q⊗(n−k)‖‖1⊗(k−1) ⊗ c ⊗ 1⊗(n−k)9‖

≤ (8|1⊗(k−1) ⊗ dd∗ ⊗ 1⊗(n−k)8)1/2‖d−1bc−1‖(9|1⊗(k−1) ⊗ c∗c ⊗ 1⊗(n−k)9)1/2.

Then we sum up over k = 1, . . . , n and apply the Schwarz inequality.

We easily show that
◦
Ŵs(Dom (d∗)) and

◦
Ŵs(Dom (c)) are dense in Dom (dŴ(dd∗)1/2)

and Dom (dŴ(c∗c)1/2) in the graph norm. Hence, using the closedness of dŴ(q; b) we see
that we can extend the inequality to 8 ∈ Dom (dŴ(dd∗)1/2) and 9 ∈ Dom (dŴ(c∗c)1/2).

�

3.2. Extended Hilbert space

First let us fix more notation. If K,G1,G2 are Hilbert spaces and B1 ∈ B(K,G1),
B2 ∈ B(K,G2), then (B1, B2) will denote the operator from K to G1 ⊕ G2 defined
by

K ∋ 8 7→ (B1, B2)8 := (B18,B28) ∈ G1 ⊕ G2.

Note that

‖(B1, B2)‖ ≤ (‖B1‖2 + ‖B2‖2)1/2.

Apart from the space

H = K⊗ Ŵs(Z),
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we will use the extended space

H
ext := K⊗ Ŵs(Z ⊕ Z).

Note that we have the well-known unitary identification (see e.g. [5])

U : Ŵs(Z ⊕ Z) → Ŵs(Z) ⊗ Ŵs(Z).

Thus we have a natural unitary identification

1 ⊗ U : Hext → H⊗ Ŵs(Z).

We introduce the extended free Pauli–Fierz Hamiltonian

H ext
fr := K ⊗ 1 + 1 ⊗ dŴ(h ⊕ h).

We then introduce the extended coupling form (v, 0), which is a form from K to
K ⊗ Z ⊕ K ⊗ Z = K ⊗ (Z ⊕ Z). More precisely, Doml(v, 0) := Domlv ⊕ K ⊗ Z,
Domr(v, 0) = Domrv, and ((9,8)|(v, 0)4) := (9|v4). Then, the extended interac-
tion is defined as

V ext = a∗(v, 0) + a(v, 0).

The extended Pauli–Fierz Hamiltonian equals

H ext := H ext
fr + V ext. (3.2)

Note that

1 ⊗ U H ext 1 ⊗ U∗ = H ⊗ 1 + 1 ⊗ dŴ(h).

Clearly, under Assumption A, H ext is defined by the KLMN theorem and (3.2) and
its form domain coincides with that of H ext

fr .

3.3. Comparing the Hamiltonian with the extended Hamiltonian

Let j0, j∞ be operators on Z such that j ∗
0 j0 + j ∗

∞j∞ = 1. Then the operator
(j0, j∞) ∈ B(Z,Z ⊕ Z) is isometric.

For simplicity, let us assume that j0 and j∞ preserve Z0. Let us note the
identities

Ŵ(j0, j∞)a∗(v) = a∗(j0v, j∞v)Ŵ(j0, j∞),

Ŵ(j0, j∞)a(j ∗
0 v) = a(v, 0)Ŵ(j0, j∞),

Ŵ(j0, j∞)dŴ(h) = dŴ ((j0, j∞); (j0h, j∞h)) ,

dŴ(h ⊕ h)Ŵ(j0, j∞) = dŴ ((j0, j∞); (hj0, hj∞)) .

The first two identities should be understood as forms identities with the right

domain K0

◦
⊗

◦
Ŵs(Z0), and the left domain K0

◦
⊗

◦
Ŵs(Z0 ⊕ Z0). The third and fourth
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are interpreted as operator identities on
◦
Ŵs(Dom h) and

◦
Ŵs(Dom (hj0)⊕Dom (hj∞))

respectively.

LEMMA 3.1. Let f ∈ C∞
0 (R). Then there exists c, which does not depend on

j0, j∞, such that

‖f (H ext)Ŵ(j0, j∞) − Ŵ(j0, j∞)f (H)‖
≤ c

(
‖h−1/2(j ∗

0 − 1)v(1 + K)−1/2‖ + ‖h−1/2(j0 − 1)v(1 + K)−1/2‖

+ ‖h−1/2j∞v(1 + K)−1/2‖

+ ‖h−1/2[j0, h]h−1/2‖ + ‖h−1/2[j∞, h]h−1/2‖
)
.

Proof : The extended Hamiltonian satisfies

Ŵ(j0, j∞)H − H extŴ(j0, j∞) = R1 + R2 + R3,

(z − H ext)−1Ŵ(j0, j∞) − Ŵ(j0, j∞)(z − H)−1

= −(z − H ext)−1(R1 + R2 + R3)(z − H)−1,

where

R1 := Ŵ(j0, j∞)a((1 − j ∗
0 )v),

R2 := a∗ ((j0 − 1)v, j∞v) Ŵ(j0, j∞),

R3 := dŴ ((j0, j∞); ([j0, h], [j∞, h])) .

For 8 ∈ Dom |H ext
fr | 1

2 and 9 ∈ Dom |Hfr|
1
2 , we have the estimates

|(8|R19)| ≤ ‖(1 + K)1/28‖ ‖dŴ(h)1/29‖ ‖h−1/2(j ∗
0 − 1)v(1 + K)−1/2‖,

|(8|R29)| ≤ ‖dŴ(h ⊕ h)1/28‖ ‖(1 + K)1/29‖
×

(
‖h−1/2(j0 − 1)v(1 + K)−1/2‖2 + ‖h−1/2j∞v(1 + K)−1/2‖2

)1/2
,

|(8|R39)| ≤ ‖dŴ(h ⊕ h)1/28‖ ‖dŴ(h)1/29‖
×

(
‖h−1/2[j0, h]h−1/2‖2 + ‖h−1/2[j∞, h]h−1/2‖2

)1/2
.

To convert the estimate on the resolvent of H to an estimate on f (H) we can
use e.g. the well-known method of almost analytic extensions [16] (see also [4]).

Let us take an almost analytic extension f̃ ∈ C∞
0 (C) of f . Then we can write

f (H) = (2π)−1

∫
∂z̄f̃ (z)(z − H)−1dzdz̄,
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and similarly for H ext. Thus

f (H ext)Ŵ(j0, j∞) − Ŵ(j0, j∞)f (H)

= −(2π)−1

∫
∂z̄f̃ (z)(z − H ext)−1(R1 + R2 + R3)(z − H)−1dzdz̄.

Then we use |∂z̄f̃ (z)| ≤ CN |Imz|N ,

‖(z − H)−1(c + H)1/2‖ ≤ c1(|Imz|−1 + |Imz|−1/2),

and a similar estimate for H ext. �

3.4. Localizing in the configuration space

LEMMA 3.2. Suppose Assumption E holds and inf h > 0. Then there exists C > 0
such that, for all ξ ,

‖h1/2(ξ − η) − h1/2(ξ)‖ ≤ C‖∇h‖∞|η|,

where |η| denotes the Euclidean norm of η and

‖∇∞h‖ := sup{‖∇h(ξ)‖B(Rd⊗Cn,Cn) | ξ ∈ R
d}.

Proof : If A is a positive self-adjoint operator, then we have

A1/2 = 1

π

∫ +∞

0

A

t + A

dt√
t
.

Thus,

‖h1/2(ξ − η) − h1/2(ξ)‖ ≤ 1

π

∫ +∞

0

dt√
t

∥∥∥∥
h(ξ − η)

t + h(ξ − η)
− h(ξ)

t + h(ξ)

∥∥∥∥

≤ 1

π

∫ +∞

0

dt
√

t

∥∥∥∥
1

t + h(ξ − η)

∥∥∥∥ ‖h(ξ − η) − h(ξ)‖
∥∥∥∥

1

t + h(ξ)

∥∥∥∥

≤ 1

π

∫ +∞

0

dt

√
t

(t + m)2
‖∇h‖∞|η|.

�

Recall that x is an auxiliary operator that appears in Assumption E.

PROPOSITION 3.2. Suppose Assumption E holds and inf h > 0. Let g be a mea-
surable function on R

d with
∫

|ηĝ(η)|dη < ∞. Then

(1) ‖h1/2g(x)h−1/2 − g(x)‖ ≤ c
∫

|ηĝ(η)|dη.

(2) ‖h−1/2[g(x), h]h−1/2‖ ≤ 2c
∫

|ηĝ(η)|dη.
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Proof : If we write g(x) = (2π)−
d
2

∫
eiη·x ĝ(η)dη, then

h1/2g(x)h−1/2 − g(x) = (2π)−
d
2

∫
eiη·x(e−iη·xh1/2eiη·xh−1/2 − 1

)
ĝ(η)dη

= (2π)−
d
2

∫
eiη·x(h1/2(ξ − η)h−1/2(ξ) − 1

)
ĝ(η)dη

= (2π)−
d
2

∫
eiη·x(h1/2(ξ − η) − h1/2(ξ)

)
h−1/2(ξ)ĝ(η)dη.

Using Lemma 3.2, the norm of this can be bounded by

(2π)−
d
2

∫
dη‖∇h‖∞‖h−1/2‖∞|ηĝ(η)|.

Using Assumption E and ‖h−1/2‖∞ < ∞, this proves (1).
Now, (2) follows from (1) and the following identity

h−1/2[g(x), h]h−1/2 = h−1/2g(x)h1/2 − g(x) − h1/2g(x)h−1/2 + g(x). �

Assume now that j0 ∈ C∞
0 (R), j∞ ∈ C∞(R) are positive functions satisfying

j 2
0 +j 2

∞ = 1 and j0 = 1 on a neighborhood of 0. For r > 0 we define the operators
on Z

j r
0 := j0(|x|/r), j r

∞ := j∞(|x|/r).

LEMMA 3.3. Suppose Assumptions B and E are satisfied, and inf h > 0. Let
f ∈ C∞

0 (R). Then as r → ∞,

f (H ext)Ŵ(j r
0 , j r

∞) − Ŵ(j r
0 , j r

∞)f (H) = o(r0).

Proof : Note that ĵ r
0 (t) = rĵ0(rt), ĵ r

∞(t) = rĵ∞(rt). Therefore,

∫
|ĵ r

0 (t)t |dt = c0/r,

∫
|ĵ r

∞(t)t |dt = c∞/r.

Thus, using Proposition 3.2 (2)

h−1/2[j r
∞, h]h−1/2 = O(r−1), h−1/2[j r

0 , h]h−1/2 = O(r−1).

Next,

h−1/2(j r
0 − 1)v(1 + K)−1/2 = (h−1/2(j r

0 − 1)h1/2 − j r
0 + 1)h−1/2v(1 + K)−1/2

+ (j r
0 − 1)h−1/2v(1 + K)−1/2. (3.3)

Using Proposition 3.2 (1), one sees that the first term on the right is O(r−1), and
by Assumption B the second is o(r0). Therefore (3.3) is o(r0). A similar argument
shows that h−1/2((j r

0 )∗ − 1)v(1 + K)−1/2 and h−1/2j r
∞v(1 + K)−1/2 are o(r0). �
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LEMMA 3.4. Suppose Assumptions D and E hold. Suppose inf h > 0. Let g ∈
C∞

0 (R) such that |g| ≤ 1. Then Ŵ(g(|x|))(1 + Hfr)
−1/2 is compact.

Proof : We know that (1+K)−1/2 is compact. Hence for any ǫ > 0, we can find
a finite dimensional projection P commuting with K such that ‖(1+K)−1/2(1−P)‖
≤ ǫ. Now

Ŵ(g(|x|))(1 + Hfr)
−1/2

=
(
P ⊗ Ŵ(g(|x|))(1 + dŴ(h))−1/2

) (
1 ⊗ (1 + dŴ(h))1/2

)
(1 + Hfr)

−1/2

+ (1 ⊗ Ŵ(g(|x|))) (1 + Hfr)
−1/2

(
(1 + K)1/2 (1 + K)−1/2(1 − P) ⊗ 1

)
.

By Assumption E and because inf h > 0, Ŵ(g(|x|))(1 + dŴ(h))−1/2 is a compact
operator on Ŵs(Z). Moreover P is a compact operator on K. Hence the first term
on the right is compact. The second term is less than cǫ. �

3.5. Proof of Theorem 2.3

Proof of Theorem 2.3: We first prove that spessH ⊂ [inf H +inf h,+∞[. It is enough
to assume that inf h = inf h(ξ) > 0. Let f ∈ C∞

0 (R), suppf ⊂] − ∞, inf H + inf h[.
We prove that f (H) is compact. Note that because of the support of f , f (H ext) =
Ŵ(1 ⊕ 0)f (H ext). Moreover, Ŵ(j r

0 , j r
∞)∗Ŵ(1 ⊕ 0) = Ŵ(j r

0 , 0)∗. Now, since inf h > 0,
we can apply Lemma 3.3. Therefore,

f (H) = Ŵ(j r
0 , j r

∞)∗Ŵ(j r
0 , j r

∞)f (H)

o(r0)= Ŵ(j r
0 , j r

∞)∗f (H ext)Ŵ(j r
0 , j r

∞)

= Ŵ(j r
0 , 0)∗f (H ext)Ŵ(j r

0 , j r
∞)

o(r0)= Ŵ
(
(j r

0 )2
)
f (H),

where
o(r0)= means that the equality holds up to an o(r0) term. Finally, by Lemma

3.4, the right-hand side is compact.

We now prove that [inf H + inf h,+∞[⊂ spessH . Let E = inf H and λ > inf h.
It is enough to prove that E + λ ∈ spH .

Let 0 < ǫ < λ − inf h. Using Assumption E, one sees that λ ∈ spessh. There-
fore, we can find a sequence zn ∈ Z such that ‖zn‖ = 1, zn → 0 weakly and
1[λ−ǫ,λ+ǫ](h)zn = zn. We can also find 8 ∈ H such that 1[E,E+ǫ](H)8 = 8 and
‖8‖ = 1

Using Lemma 2.1 with v = 1 ⊗ |z) we see that there exists C > 0 such that,
for any z ∈ Z,

‖(H + c)−1/2a∗(z)‖ ≤ C‖h−1/2z‖.
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We consider vectors of the form a∗(zn)8. One has

((H + c)−1 − (E + λ + c)−1)a∗(zn)8 = (E + λ + c)−1(H + c)−1(H − E − λ)a∗(zn)8

= (E + λ + c)−1(H + c)−1a∗(hzn − λzn)8

+ (E + λ + c)−1(H + c)−1v∗1K ⊗ |zn)8

+ (E + λ + c)−1(H + c)−1a∗(zn)(H − E)8

= I + II + III.

From now on, we will denote by the letter C any constant which does not depend
on n and ǫ. Now

‖I‖ ≤ (E + λ + c)−1‖(H + c)−1a∗((h − λ)zn)8‖
≤ C‖h−1/2(h − λ)zn‖ ≤ Cǫ,

‖III‖ ≤ (E + λ + c)−1‖(H + c)−1a∗(zn)(H − E)8‖
≤ C‖h−1/2zn‖ǫ ≤ Cǫ,

‖II‖ ≤ (E + λ + c)−1‖(H + c)−1v∗1 ⊗ |zn)‖
≤ C‖(1 + K)−1/2v∗zn‖ = C‖(1 + K)−1/2v∗h−1/2h1/21[λ−ǫ,λ+ǫ](h)zn‖ → 0,

where we used Assumption B and the weak convergence of h1/21[λ−ǫ,λ+ǫ](h)zn to
0. Thus

lim sup
n→∞

∥∥(
(H + c)−1 − (E + λ + c)−1

)
a∗(zn)8

∥∥ ≤ Cǫ.

Now, using that 8 ∈ Dom (Hfr + c)1/2 one has

‖a∗(zn)8‖2 = ‖zn‖2‖8‖2 + ‖a(zn)8‖2 → 1.

Thus choosing n large enough and setting 8ǫ := a∗(zn)8/‖a∗(zn)8‖ we obtain a
family of vectors satisfying

∥∥(
(H + c)−1 − (E + λ + c)−1

)
8ǫ

∥∥ ≤ Cǫ, ‖8ǫ‖ = 1,

for C independent of ǫ. This implies that E + λ ∈ spH . �

4. Existence of ground states

In this section we will prove Theorems 2.4 and 2.5. For that purpose, we first
introduce the pullthrough Operators and study some of their properties.

4.1. Pullthrough operators

Let Z be a Hilbert space. Note that vectors of the form z⊗n span
◦
Ŵ

n

s (Z). Using
this it is easy to see that there exists a unique linear operator

A :
◦
Ŵs(Z) →

◦
Ŵs(Z)

◦
⊗Z
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satisfying for z ∈ Z the following condition

Az⊗n =
√

nz⊗(n−1) ⊗ z.

The operator A extends to a unique closed operator from Ŵs(Z) to Ŵs(Z)⊗Z also
denoted by A. The operator A will be called the annihilation pullthrough operator.
It is easy to see that, for z1, . . . , zn ∈ Z,

A z1⊗s · · · ⊗s zn = n−1/2
n∑

j=1

(
z1⊗s · · · ⊗szj−1⊗szj+1⊗s · · · ⊗szn

)
⊗ zj . (4.1)

A∗, called the creation pullthrough operator, satisfies

A∗ (z1⊗s · · · ⊗szn) ⊗ z = a∗(z) z1⊗s · · · ⊗szn =
√

n + 1z⊗sz1⊗s · · · ⊗szn.

Let us list basic properties of Pullthrough Operators.

LEMMA 4.1. Let z ∈ Z, and let b be an operator on Z. We have the following

identities on
◦
Ŵs(Z) or on

◦
Ŵs(Dom b):

(1) A a∗(z) − a∗(z) ⊗ 1 A = 1 ⊗ |z).
(2) A a(z) − a(z) ⊗ 1 A = 0.
(3) A dŴ(b) − dŴ(b) ⊗ 1 A = 1 ⊗ b A.
(4) A∗ 1 ⊗ b A = dŴ(b).

(5) A∗A = N .

It is easy to prove the above lemma directly. It will also follow from the
identities that we give further on in Lemma 4.2.

It is useful to note the relationship between the Pullthrough annihlation oper-
ator and the scattering identification operator introduced in [5, 6]. Recall that the
scattering identification operator I : Ŵs(Z) ⊗ Ŵs(Z) 7→ Ŵs(Z) is defined as follows:

I 8 ⊗ 9 =
√

(p + q)!

p!q!
8 ⊗s 9, 8 ∈ Ŵp

s (Z), 9 ∈ Ŵq
s (Z).

Another formula defining I is

I := Ŵ(i)U−1,

where U : Ŵs(Z ⊕ Z) 7→ Ŵs(Z) ⊗ Ŵs(Z) is the unitary identification introduced in
Section 3.2 and

i :Z ⊕ Z → Z,

(z1, z2) 7→ z1 + z2.

Note that ‖i‖ =
√

2, therefore I is unbounded.
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For all n ∈ N, we define A(n) : Ŵs(Z) → Ŵs(Z) ⊗ Ŵn
s (Z), by

A(n) := (1 ⊗ Pn) I ∗, (4.2)

where Pn is the orthogonal projection of Ŵs(Z) onto Ŵn
s (Z). We call A(n) the nth

annihilation pullthrough operator. Note that Dom A(n) = Dom Nn/2 and A = A(1).
The following identities about the scattering identification operator I follow from

standard properties of dŴ and U [5]. They easily imply Lemma 4.1.

LEMMA 4.2.

(1) Let b be an operator on Z, then on
◦
Ŵs(Dom (b))

◦
⊗

◦
Ŵs(Dom (b))

dŴ(b)I = I
(
dŴ(b) ⊗ 1 + 1 ⊗ dŴ(b)

)
.

(2) For z ∈ Z, on
◦
Ŵs(Z)

◦
⊗

◦
Ŵs(Z) we have

a(z)I = I
(
a(z) ⊗ 1 + 1 ⊗ a(z)

)
,

a∗(z)I = I
(
a∗(z) ⊗ 1

)
.

The following proposition describes the relation between the different pullthrough
operators.

PROPOSITION 4.1.

A(n) = 1√
n!

(
A ⊗ 1

Ŵn−1
s (Z)

)
· · · (A ⊗ 1Z) A.

Proof : On Ŵm
s (Z), we have

A(n)z1⊗s · · · ⊗szm

= (1 ⊗ Pn) I ∗z1⊗s · · · ⊗szm

= (1 ⊗ Pn)

m∑

k=0

√
(m − k)!k!

m!

∑ (
zi1⊗s · · · ⊗szim−k

)
⊗

(
zim−k+1

⊗s · · · ⊗szim

)

=
√

(m − n)!n!

m!

∑(
zi1⊗s · · · ⊗szim−n

)
⊗

(
zim−n+1

⊗s · · · ⊗szim

)
,

where the sum is over the set of indices {i1, . . . , im} such that i1 < · · · < im−k ,
im−k+1 < · · · < im and {i1, . . . , im−k} ∩ {im−k+1, . . . , im} = ∅ in the second line, and
over the same set with k = n in the last line.

On the other hand, using (4.1), one has
(
A ⊗ 1

Ŵn−1
s (Z)

)
· · · (A ⊗ 1Z)Az1⊗s · · · ⊗szm

=
√

(m − n)!

m!

∑

i1<···<im−n; im−n+1 6=···6=im

{i1,...,im−n}∩{im−n+1,...,im}=∅

(
zi1⊗s · · · ⊗szim−n

)
⊗ zim−n+1

⊗ · · · ⊗ zim
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= n!

√
(m − n)!

m!

∑

i1<···<im−n; im−n+1<···<im

{i1,...,im−n}∩{im−n+1,...,im}=∅

(
zi1⊗s · · · ⊗szim−n

)
⊗

(
zim−n+1

⊗s · · · ⊗szim

)
. �

4.2. Pullthrough formula and its consequences

Let v be a form from K to K⊗Z with the right domain K0 and the left domain

K0

◦
⊗Z0. We will identify it with a form from H = K⊗Ŵs(Z) to K⊗Ŵs(Z)⊗Z in

the obvious way (by tensoring it with 1Ŵs(Z) immediately to the right of K). We
will also write A for the operator 1K⊗A, which is an operator from H to H⊗Z.
Let H be defined as a quadratic form on K⊗ Ŵs(Z).

Clearly, as quadratic forms with the right domain K0

◦
⊗

◦
Ŵs(Z0) and the left do-

main K0

◦
⊗

◦
Ŵs(Z0)

◦
⊗Z0 we have the identities

A a∗(v) − a∗(v) ⊗ 1 A = v,

A a(v) − a(v) ⊗ 1 A = 0,

A H − (H ⊗ 1 + 1 ⊗ h)A = v. (4.3)

Under Assumption A, the operators AH , (H ⊗ 1 + 1 ⊗ h)A and v, that is all
terms of Eq. (4.3), can be extended to bounded operators from Dom (Hfr + c)1/2 to
(Hfr + c)1/2(1 + N)1/2H⊗ (1 + h)1/2Z.

PROPOSITION 4.2. Let H satisfy Assumption A. Let H9 = E9. Then:

(1) We have

(H ⊗ 1 + 1 ⊗ h − E)A9 = −v9,

as an identity in (Hfr + c)1/2(1 + N)1/2H⊗ (1 + h)1/2Z.

(2) Let E = inf H and let ‖h−1v(K + 1)−1/2‖ < ∞. Then 9 ∈ Dom A and

A9 = −(H ⊗ 1 + 1 ⊗ h − E)−1v9. (4.4)

(3) Fix t and ǫ < 1. Then there exists c such that if Assumption C(ǫ, t) is

satisfied, then

‖N1/29‖ ≤ c‖h−1v(1 + K)−1/2‖ ‖9‖. (4.5)

Proof : Clearly, 9 ∈ Dom (Hfr + c)1/2. Therefore, we can apply (4.3) to 9. This
yields (1).

Using the boundedness of (H ⊗ 1 + 1 ⊗ h − E)−11 ⊗ h we see that (1) implies
(2).

Under Assumption C(ǫ, t) there exists c1 such that ‖(1 + K)1/29‖ ≤ c1‖9‖.
Therefore, A∗A = N and (2) imply (3). �

PROPOSITION 4.3. Fix ǫ and t < 1. Then there exists c with the following prop-
erties. Let v1, v2 be coupling forms satisfying Assumption C(ǫ, t). Let H1, H2 be
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the corresponding Pauli–Fierz operators and inf H1 = E1, inf H2 = E2. Suppose
that H1, H2 have ground states. Then

|E1 − E2| ≤ c‖(v1 − v2)(1 + K)−1/2‖ max(‖h−1v1(1 + K)−1/2‖, ‖h−1v2(1 + K)−1/2‖).
Proof : We suppose that 91, 92 ∈ H are normalized and satisfy H191 = E1,

H292 = E292. It is enough to assume that E2 ≥ E1. Then

E2 − E1 ≤ (91|(H2 − H1)91)

= 2Re (91|a(v2 − v1)91)

≤ 2‖(c0 + H1)
1/291‖

× ‖(c0 + H1)
−1/2(1 + K)1/2‖‖(1 + K)−1/2a(v2 − v1)N

−1/2‖‖N1/291‖
≤ c‖(v1 − v2)(1 + K)−1/2‖‖h−1v1(1 + K)−1/2‖,

where at the last step we used Proposition 4.2. �

4.3. Double pullthrough formula

We will also need some identities related to the 2nd annihilation pullthrough
operator A(2) = 1√

2
(A ⊗ 1)A.

The double pullthrough formula will involve operators that first act from K ⊗
Ŵs(Z) to K⊗Ŵs(Z) ⊗Z and then to K⊗ Ŵs(Z) ⊗Ŵ2

s (Z) ⊂ K⊗Ŵs(Z) ⊗Z⊗Z. Let
Z(1) and Z(2) denote the first and second copy of Z in the above tensor product.
We denote by v(1) the form v acting from K to K ⊗ Z(1) tensored by 1Ŵs(Z) and
1Z(2)

. Likewise, we denote by v(2) the form v acting from K to K⊗ Z(2) tensored

by 1Ŵs(Z) and 1Z(1)
. dŴ2(h) denotes the operator dŴ(h) restricted to the 2-particle

space, that is (h ⊗ 1Z(2)
+ 1Z(1)

⊗ h)
∣∣
Ŵ2

s (Z)
.

After these lengthy preparations we can write the double pullthrough formula
for Pauli–Fierz Hamiltonians

(A ⊗ 1) A H = (H ⊗ 1 + 1 ⊗ dŴ2(h)) (A ⊗ 1) A + v(1)A + v(2)A.

This formula can be understood as a quadratic form with the right domain

K0

◦
⊗

◦
Ŵs(Z0) and the left domain K0

◦
⊗

◦
Ŵs(Z0)

◦
⊗

◦
Ŵ

2

s (Z0). Under Assumption A we
can extend all terms of this formula by continuity to bounded operators from
Dom (Hfr + c)1/2 to (Hfr + c)1/2(1 + N)H⊗ (1 + dŴ2(h))1/2Ŵ2

s (Z).

PROPOSITION 4.4. Let H satisfy Assumption A’ and H9 = E9.

(1) We have

(H ⊗ 1 + 1 ⊗ dŴ2(h) − E) (A ⊗ 1) A9 = −(v(1)A + v(2)A)9,

understood as an identity in (Hfr + c)1/2(1 + N)H⊗ (1 + dŴ2(h))1/2Ŵ2
s (Z).
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(2) Let E = inf H and ‖h−1v(K +1)−1/2‖ < ∞. Then (H ⊗1+1⊗h−E)−1v9 ∈
Dom A ⊗ 1 and

(A ⊗ 1)(H ⊗ 1 + 1 ⊗ h − E)−1v9

= − (H ⊗ 1 + 1 ⊗ dŴ2(h) − E)−1v(1)(H ⊗ 1 + 1 ⊗ h − E)−1v9

− (H ⊗ 1 + 1 ⊗ dŴ2(h) − E)−1v(2)(H ⊗ 1 + 1 ⊗ h − E)−1v9

(3) Fix t and ǫ < 1. There exists c such that if Assumption C(ǫ, t) is satisfied,
then

‖N1/2 ⊗ 1 (H ⊗ 1 + 1 ⊗ h − E)−1v9‖
≤ c‖ max(h−1, h−1/2)v(1 + K)−1/2‖‖h−1v(1 + K)−1/2‖‖9‖,

‖(1 + K)1/2 ⊗ N1/2 ⊗ 1 (H ⊗ 1 + 1 ⊗ h − E)−1v9‖
≤ c‖ max(h−1, h−1/2)v(1 + K)−1/2‖2‖9‖.

Proof : (1) and (2) are proven similarly as the corresponding statements of Propo-
sition 4.2.

Let us prove the first estimate of (3). We will use the identity from (2). It
clearly suffices to consider the first term of the right-hand side.

(H ⊗ 1 + 1 ⊗ dŴ2(h) − E)−1v(1)(H ⊗ 1 + 1 ⊗ h − E)−1v9

= (H ⊗ 1 + 1 ⊗ dŴ2(h) − E)−1 1 ⊗ h ⊗ 1

× 1 ⊗ h−1⊗1 v(1) (1 + K)−1/2 ⊗ 1

× (1 + K)1/2 ⊗ 1 (H ⊗ 1 + 1 ⊗ h − E)−1 1 ⊗ min(h, h1/2)

× 1 ⊗ max(h−1, h−1/2) v (1 + K)−1/2(1 + K)1/29.

Using Lemma 4.3 below, we see that the first four terms on the right are bounded.
Besides, ‖(1+K)1/29‖ ≤ c‖9‖. This gives the first estimate of (3).

Similarly, to prove the second estimate we write

(1 + K)1/2 ⊗ 1 (H ⊗ 1 + 1 ⊗ dŴ2(h) − E)−1v(1)(H ⊗ 1 + 1 ⊗ h − E)−1v9

= (1 + K)1/2 ⊗ 1 (H ⊗ 1 + 1 ⊗ dŴ2(h) − E)−1 1 ⊗ min(h, h1/2) ⊗ 1

× 1 ⊗ h ⊗ 1 v(1) (1 + K)−1/2 ⊗ 1

× (1 + K)1/2 ⊗ 1 (H ⊗ 1 + 1 ⊗ h − E)−1 1 ⊗ min(h, h1/2)

× 1 ⊗ max(h−1, h−1/2) v (1 + K)−1/2(1 + K)1/29. �

The following easy lemma follows from the spectral theorem.
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LEMMA 4.3. Let ǫ, t < 1 be fixed. Let E := inf H . Then there exists c such
that if Assumption C(ǫ, t) is satisfied then

‖(1 + K)1/2 ⊗ 1 (H ⊗ 1 + 1 ⊗ h − E)−1 1 ⊗ min(h, h1/2)‖ ≤ c.

Proof : Using min(h, h1/2) ≤ h we get

‖(1 + K)1/2 ⊗ 1 (H ⊗ 1 + 1 ⊗ h − E)−1 1[E,E+1](H) ⊗ min(h, h1/2)‖
≤ ‖(1 + K)1/21[E,E+1](H)‖ × ‖(H ⊗ 1 + 1 ⊗ h − E)−1 1 ⊗ h‖.

Using min(h, h1/2) ≤ h1/2 we get

‖(1 + K)1/2 ⊗ 1 (H ⊗ 1 + 1 ⊗ h − E)−1 1[E+1,∞[(H) ⊗ min(h, h1/2)‖
≤ ‖(1 + K)1/2 ⊗ 1 (H ⊗ 1 + 1 − E)−1/2‖

× ‖(H ⊗ 1 + 1 − E)1/2(H ⊗ 1 + 1 ⊗ h − E)−1/2 1[E+1,∞[(H) ⊗ 1‖

× ‖(H ⊗ 1 + 1 ⊗ h − E)−1/2 1[E+1,∞[(H) ⊗ h1/2‖. �

4.4. Infrared cutoff Hamiltonian

Let us fix v and the corresponding Pauli–Fierz operator H . Set E := inf H .
Let f ∈ C∞(R+) be an increasing function such that 0 ≤ f ≤ 1, f = 0 on

[0, 1], and f = 1 on [2,∞[. For σ ≥ 0, set

vσ := f (h/σ)v,

Vσ := a∗(vσ ) + a(vσ ),

Hσ := Hfr + Vσ ,

Eσ := inf Hσ .

PROPOSITION 4.5.
(1) Let v satisfy Assumption A. There exist ǫ < 1 and t such that vσ satisfies

Assumption C(ǫ, t) and hence Hσ is well defined for any σ .
(2) If Assumption B is true, then Hσ converges to H in the norm resolvent

sense when σ goes to zero and limσ→0 inf Hσ = inf H .

(3) Suppose Assumptions B, D and E are true. Then, for any σ > 0, Hσ has a
ground state.

Proof : (1) is straightforward.
Let us prove (2). By (1) and Proposition 2.1, we can find c such that (Hσ +

c)−1/2(H + c)1/2 is bounded uniformly in σ . Now, we can write

(Hσ + c)−1 − (H + c)−1

= (Hσ + c)−1(H − Hσ )(H + c)−1

= (Hσ + c)−1(H + c)1/2(H + c)−1/2(H − Hσ )(H + c)−1/2(H + c)−1/2.
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Thus, it suffices to show that (H +c)−1/2(H −Hσ )(H +c)−1/2 goes to zero in norm
as σ goes to zero.

Let 8,9 ∈ H, then
∣∣(8|(H+c)−1/2(Hσ −H)(H+c)−1/29)

∣∣

=
∣∣((H+c)−1/28|af(v−vσ )(H+c)−1/29)+(af(v−vσ )(H+c)−1/28|(H+c)−1/29)

∣∣

≤ ‖(1+K)1/2(H+c)−1/28‖‖(1+K)−1/2a(v−vσ )(H+c)−1/29‖

+‖(1+K)1/2(H+c)−1/29‖‖(1+K)−1/2a(v−vσ )(H+c)−1/28‖

≤ ‖(1+Hfr)
1/2(H+c)−1/28‖ ‖h−1/2(v−vσ )(1+K)−1/2‖ ‖dŴ(h)1/2(H+c)−1/29‖

+‖(1+Hfr)
1/2(H+c)−1/29‖ ‖h−1/2(v−vσ )(1+K)−1/2‖ ‖dŴ(h)1/2(H+c)−1/28‖

≤ C‖8‖ ‖9‖ ‖(1−f (h/σ))h−1/2v(1+K)−1/2‖ → 0.

To prove (3) we use a well-known trick, applied e.g. in [10], of replacing soft
photons by massive photons. We introduce

hσ (ξ) := h(ξ)f (2h(ξ)/σ ) + σ

2
(1 − f (2h(ξ)/σ )) .

Then vσ and hσ satisfy Assumptions C(ǫ, t), D and E. Moreover, hσ ≥ σ/2. Set

H̃σ := K ⊗ 1 + 1 ⊗ dŴ(hσ ) + Vσ .

By Theorem 2.3, H̃σ has a ground state.
We define Zσ := 1[0,σ [(h)Z and Zσ := 1[σ,+∞[(h)Z. Using the so-called expo-

nential law of Fock spaces, one has that Ŵs(Z) is isomorphic to Ŵs(Z
σ ) ⊗ Ŵs(Zσ ).

Using this identification, one can write

Hσ = 1 ⊗ dŴ(h1[0,σ [(h)) + H σ ⊗ 1,

H̃σ = 1 ⊗ dŴ(hσ 1[0,σ [(h)) + H σ ⊗ 1,

where H σ = K ⊗ 1 + 1 ⊗ dŴ(h1[σ,+∞[(h)) + Vσ . Clearly, the ground state of H̃σ is

of the form 9̃σ = 9̃σ ⊗ �σ , where �σ is the vacuum of Ŵs(Zσ ). Hence, it is also
a ground state of Hσ . �

Let us now extend Proposition 4.3 to the case where we do not assume the
existence of a ground state.

PROPOSITION 4.6. Fix ǫ and t < 1. Suppose Assumptions B, D and E hold. Then
there exists c with the following properties. Let v1, v2 be coupling forms satisfying
Assumption C(ǫ, t). Let H1, H2 be the corresponding Pauli–Fierz operators and
inf H1 = E1, inf H2 = E2. Then

|E1 − E2| ≤ c‖(v1 − v2)(1 + K)−1/2‖ max(‖h−1v1(1 + K)−1/2‖, ‖h−1v2(1 + K)−1/2‖).
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Proof : By applying the cutoff procedure to H1 and H2 we can approximate
them by H1,σ and H2,σ , which possess ground states and ground state energies
E1,σ , E2,σ . Then we use Proposition 4.3,

lim
σ→0

|E1,σ − E2,σ | = |E1 − E2|,

which follows from Proposition 4.5, and

‖(v1,σ − v2,σ )(1 + K)−1/2‖ = ‖f (h/σ)(v1 − v2)(1 + K)−1/2‖
ր ‖(v1 − v2)(1 + K)−1/2‖

‖h−1vi,σ (1 + K)−1/2‖ = ‖f (h/σ)h−1vi(1 + K)−1/2‖
ր ‖h−1vi(1 + K)−1/2‖, i = 1, 2. �

Take now, for any σ > 0, a normalized ground state 9σ of Hσ , that means

Hσ9σ = Eσ 9σ , ‖9σ‖ = 1.

PROPOSITION 4.7. Suppose Assumptions B, D, E and F are true. Then

(1) E − Eσ = o(σ ).
(2) lim

σ→0

(
A9σ + (H ⊗ 1 + 1 ⊗ h − E)−1v9σ

)
= 0.

(3) Let b be a bounded positive operator on Z. Then there exists a constant c

such that

lim sup
σ→0

(9σ |dŴ(b)9σ ) ≤ c‖b1/2h−1v(1 + K)−1/2‖2.

(4) lim
r→∞

lim sup
σ→0

(9σ |dŴ(1[r,∞[(|x|))9σ ) = 0.

Proof : (1) By Proposition 4.6

|E − Eσ | ≤ c‖(1 − f (h/σ))v(1 + K)−1/2‖‖h−1v(1 + K)−1/2‖
≤ c‖(1 − f (h/σ))h‖‖1[0,2σ ](h)h−1v(1 + K)−1/2‖‖h−1v(1 + K)−1/2‖. (4.6)

The first factor of (4.6) is O(σ). By Assumption F, the second factor is o(σ 0).
(2) Using (4.4), one has

A9σ + (H ⊗ 1 + 1 ⊗ h − E)−1v9σ

= −(Hσ ⊗ 1 + 1 ⊗ h − Eσ )−1vσ 9σ + (H ⊗ 1 + 1 ⊗ h − E)−1v9σ

= R1 + R2 + R3 + R4,

where

R1 := (H ⊗ 1 + 1 ⊗ h − E)−1(v − vσ )9σ ,

R2 := (H ⊗ 1 + 1 ⊗ h − E)−1a∗(v − vσ )(Hσ ⊗ 1 + 1 ⊗ h − Eσ )−1vσ9σ ,
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R3 := (H ⊗ 1 + 1 ⊗ h − E)−1a(v − vσ )(Hσ ⊗ 1 + 1 ⊗ h − Eσ )−1vσ9σ ,

R4 := (Eσ − E)(H ⊗ 1 + 1 ⊗ h − E)−1(Hσ ⊗ 1 + 1 ⊗ h − Eσ )−1vσ9σ .

Now, by Assumption F,

‖R1‖ ≤ c‖h−1(v − vσ )(1 + K)−1/2‖ → 0.

Using Proposition 4.3,

‖R4‖ ≤ |E − Eσ |‖h−2vσ (1 + K)−1/2‖‖(1 + K)1/29σ‖.

Thus, R4 → 0 because |E − Eσ | = o(σ ), ‖h−2vσ (1 + K)−1/2‖ = O(σ−1), by
Assumption F.

Next,

R2 = (H ⊗ 1 + 1 ⊗ h − E)−1 1 ⊗ h 1 ⊗ 1[σ,∞[(h)h−1

× a∗(v − vσ ) (1 + K)−1/2⊗(1 + N)−1/2 ⊗ 1

× (1 + K)1/2⊗(1 + N)1/2 ⊗ 1 (Hσ ⊗ 1 + 1 ⊗ h − Eσ )−1vσ 9σ . (4.7)

and

R3 = (H ⊗ 1 + 1 ⊗ h − E)−1 (1 + K)1/2 ⊗ min(h1/2, h)

× 1 ⊗ 1[σ,∞[(h) max(h−1/2, h−1)

× (1 + K)−1/2a(v − vσ )(1 + N)−1/2 ⊗ 1

× (1 + N)1/2 ⊗ 1 (Hσ ⊗ 1 + 1 ⊗ h − Eσ )−1vσ 9σ . (4.8)

The first terms of (4.7) and (4.8) are uniformly bounded, and using Proposition
4.4, so are their last terms. The second terms are bounded by O(σ−1). The third
terms are bounded by ‖(v − vσ )(1 + K)−1/2‖ = o(σ ). Hence both (4.7) and (4.8)
are o(σ 0).

(3) Using first Lemma 4.1 and then (2), we obtain

(9σ |dŴ(b)9σ ) = (A9σ |1 ⊗ b A9σ )

o(σ 0)=
(
(H ⊗ 1 + 1 ⊗ h − E)−1v9σ |1 ⊗ b (H ⊗ 1 + 1 ⊗ h − E)−1v9σ

)

≤ (v9σ |1 ⊗ h−1bh−1 v9σ )

= ‖b1/2h−1v9σ ‖2

≤ c‖b1/2h−1v(1 + K)−1/2‖2.

Using Assumption F, we obtain

lim
r→∞

‖1[r,+∞[(|x|)h−1v(1 + K)−1/2‖ = 0.

Thus (4) follows from (3) by setting b = 1[r,+∞[(|x|). �
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The following easy lemma follows by the spectral theorem.

LEMMA 4.4. Let B be a positive operator and (9|B9) ≤ c. Then ‖1[r,∞[(B)9‖2

≤ c/r .

Proof of Theorem 2.4: Since the unit ball in any Hilbert space is weakly se-
quentially compact, we can find a sequence σn → 0 such that 9n := 9σn

converges
weakly to some 9 ∈ H. It is easy to check that H9 = E9. It remains to prove
that 9 6= 0.

Assume that 9 = 0. We have (9σ |Hfr9σ ) ≤ c, and, using (4.5), (9σ |1 ⊗
N 9σ ) ≤ c. Hence, using Lemma 4.4, we see that for any ǫ > 0, we can find r
such that

‖1[r,∞[(1 ⊗ N + Hfr)9n‖ ≤ ǫ. (4.9)

Using Proposition 4.7 we see that we can find n0 and r such that for n > n0

(9n|dŴ(1[r,+∞[(|x|))9n) < ǫ.

Hence, using Lemma 4.4,

‖1[1/2,∞[

(
dŴ(1[r,∞[(|x|))

)
9n‖ < 2ǫ. (4.10)

Thus, by (4.9) and (4.10),

lim sup
n→∞

‖C9n − 9n‖ ≤ 3ǫ, (4.11)

where

C := 1[0,1/2[

(
dŴ(1[r,∞[(|x|))

)
1[0,r[(1 ⊗ N + Hfr).

Now, using Assumption D and E, we see that the operator C is compact. Hence,
using w− lim

n→∞
9n = 0 we get

lim
n→∞

‖C9n‖ = 0.

If we choose ǫ < 1/3 in (4.11), this contradicts ‖9n‖ = 1. �

Proof of Theorem 2.5: Let 9 be a ground state. Using (4.3), we have

A9 = −(H ⊗ 1 + 1 ⊗ h − E)−1v9

as an identity in (N + 1)1/2H⊗ h−1/2Z. Using Assumption G, we thus have

A9 + 9 ⊗ h−1z = −(H ⊗ 1 + 1 ⊗ h − E)−1vren9 ∈ H⊗ Z ⊂ (N + 1)1/2
H⊗ Z.

But A9 ∈ (N + 1)1/2H⊗Z, thus the same is true for 9 ⊗ h−1z, which proves that
z ∈ Dom(h−1). �
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5. Comparison with the literature

In this section we would like to compare our results with the analogous ones
of the literature.

5.1. HVZ-type theorem: comparison with [5]

In that paper, the authors consider the following assumptions

(H0) (K + 1)−1 is compact,

(H1) Z = L2(Rd) and h ∈ C(Rd , R) satisfies





∇h ∈ L∞,

∇h(ξ) 6= 0 for ξ 6= 0,

limξ→∞ h(ξ) = +∞,

inf h(ξ) = h(0) =: m > 0,

(I1) v ∈ B(K,K⊗ Z),

and prove the following HVZ-type theorem.

THEOREM 5.1. Suppose (H0), (H1), (I1) are satisfied, then

spessH = [inf H + m,+∞[.

The assumption on the dispersion relation h is similar to ours except that we
use Z = L2(Rd) ⊗ C

n. This is the reason why we need Lemma 3.2.
The coupling function v is assumed to be a bounded operator from K to K⊗Z.

In our paper, v is a quadratic form, and it is not necessarily bounded. Moreover, in
[5] it is considered only the case where inf h > 0. In particular, if v is a bounded
operator and inf h > 0, then our Assumption B follows from Assumptions D and
E. Hence, we get a similar result but with weaker assumptions.

We also would like to note that Lemmata 3.3 and 3.4 of [5] (the analog of our
Lemma 3.3) are not correct, and that one needs to put some additional assumption.
Indeed, with the notation of our Lemma 3.3, it is used implicitly the fact that
(1 − j r

0 )v goes to zero in norm in B(K,K⊗Z) which is not necessarily true under
their assumptions. In order to make it correct, either one has to assume

lim
R→+∞

‖1[R,+∞[(|x|)v‖ = 0,

or one assumes already there that (1 + K)−1 is compact, a condition which is
needed anyway to prove the HVZ-type theorem, and then use the compactness of
v(1 + K)−1/2 [13].

5.2. Existence of a ground state: comparison with [12]

In that paper, the author considers the question of existence of a ground state
in the massless case. We first give the assumptions used in [12]:

(H0) (K + 1)−1 is compact,
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(H1) Z = L2(Rd) and h ∈ C(Rd, R) satisfies





∇h ∈ L∞,

limξ→∞ h(ξ) = +∞,

inf h(ξ) = 0,

(I0) R
d ∋ k 7→ v(k) ∈ B(Dom(K1/2),K) ∩ B(K, Dom(K1/2)∗) for a.e. k,

(I1)





For a.e. k, v(k)(K + 1)−1/2 and (K + 1)−1/2v(k) ∈ B(K),

C(R) :=
∫

1
h(k)

(‖v(k)(K + R)−1/2‖2 + ‖(K + R)−1/2v(k)‖2) < +∞,

limR→+∞ C(R) = 0,

(I2)

∫
1

h(k)2
‖v(k)(K + 1)−1/2‖2 < +∞.

Under these assumptions, the author proves that the corresponding Pauli–Fierz Ha-
miltonian H is well defined as a quadratic form and has a ground state.

First, the assumptions on the dispersion relation h are the same as those of [5]
(except that inf h = 0). The difference with our paper is thus the same as the one
we mentioned in the previous section.

Concerning the coupling function v, we would first like to stress that all the
assumptions in [12] are “fibered” with respect to k ∈ R

d . They are therefore stronger
than similar assumptions made without such a fibering. For instance, Assumption
(I1) implies

C ′(R) := ‖h−1/2v(K + R)−1/2‖ < +∞ and lim C ′(R) = 0.

Note in particular that it implies our Assumption A.

Finally, it seems that one needs to put an additional assumption in [12]. This is
a consequence of the mistake in [5] we mentioned in the previous section. Since in
[12] v is not necessarily bounded, one can not use the compactness of v(1+K)−1/2.
One can make the argument correct assuming e.g.

(I1∗) h−1/2v(K + 1)−1/2 is compact,

instead of (I1).

5.3. Self-adjointness: comparison with [11]

Consider the following assumptions

(H1) Z = L2(Rd) and h(ξ) = |ξ |,
(I1a) v ∈ B(Dom(K1/2),K⊗ Z) and lim

R→+∞
‖h−1/2v(K + R)−1/2‖ = 0.

In [11], the authors prove the following fact.



198 L. BRUNEAU and J. DEREZIŃSKI

PROPOSITION 5.1. Assume that K is bounded from below and (H1), (I1a) are
satisfied. Then the corresponding Pauli–Fierz Hamiltonian is well defined as a
quadratic form and is self-adjoint.

This result is essentially the same as ours. The main difference is that their
coupling function v is defined as an operator and we consider also unbounded
quadratic forms.

5.4. Pullthrough formula: comparison with [11]

We explained in the introduction that, in the literature, the usual pullthrough
formula was usually written in terms of the operator valued distribution a(ξ) (see
(1.2)), which is not closed, and therefore not so easy to treat carefully. In [11],
one can find a version of the pullthrough formula which is different from ours and
avoids the use of mathematically awkward a(ξ). Below, we state the version of the
pullthrough formula of [11].

PROPOSITION 5.2. Suppose that K is bounded from below and (H1) and (I1a)
are fulfilled. Let z ∈ Dom(h) ∩ Dom(h−1/2) and λ ∈ C \ spH . Then the closure
[a∗(z), (H − λ)−1]cl of the form [a∗(z), (H − λ)−1] is a bounded operator and we
have

[a∗(z), (H − λ)−1]cl = (H − λ)−1
(
a∗(hz) + (v∗ 1K ⊗ |z)) ⊗ 1

)
(H − λ)−1.

(The assumptions (H1), (I1a) are the ones given in the previous section.)
The version of the Pullthrough Formula of [11] seems to be a little more

complicated and less canonical than ours because it uses an additional vector z in
the one particle space.
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