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Abstract. We study repeated interactions of the quantized electroetagfield in a cavity
with single two-levels atoms. Using the Markovian natureéhaf resulting quantum evolution
we study its large time asymptotics. We show that, whendweratoms are distributed ac-
cording to the canonical ensemble at temperafure 0 and some generic non-degeneracy
condition is satisfied, the cavity field relaxes towards samaariant state. Under some more
stringent non-resonance condition, this invariant statdérmal equilibrium at some renor-
malized temperaturé™. Our result is non-perturbative in the strength of the afaid cou-
pling. The relaxation process is slow (non-exponentiad ttuthe presence of infinitely many
metastable states of the cavity field.

1 Introduction

Open systems. During the last years there has been a growing interest éorigforous de-
velopment of the quantum statistical mechanics of operesyst Such a system consists in a
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confined subsyster§ in contact with an environment made of one or several exttisdé-
systemsR,, ... usually called reservoirs. We refer the reader to [AJP] anghirticular to the
review article [AJPP1] for a modern introduction to the sadbj

Two different approaches have been used to study open sysktamiltonian and Markovian.
The first one is fundamental. It is based on a complete desmripf the microscopic dynamics
of the coupled syster§ + R; + ---. One uses traditional tools of quantum mechanics —
spectral analysis and scattering theory — to study thismyese So far, most results obtained
in this way are perturbative in the system-reservoir cawgpéind, for technical reasons, limited
to small systems described by a finite dimensional Hilbert spaegg(, N-level atoms).

In the Markovian approach, one gives up the microscopicri®gm of the reservoirs and tries
to describe directly the effective dynamics of the “smajis®msS under the influence of its
environment. This evolution is governed by a quantum masjaation which defines a semi-
group of completely positive, trace preserving maps on tée space of (see Definition 4.1
below). There are two ways to justify such a Markovian dyr@amaias a scaling limit of the
microscopic dynamics of the coupled syst8m7R, - - - (e.g.,the van Hove weak coupling limit
[D1, D2, DJ2, DF]), or as the result of driving the systéhwith stochastic forces (quantum
Langevin equation [HP]).

Equilibrium vs. nonequilibrium.  When the environment is in thermal equilibrium, the basic
problem is thermal relaxation: does the small subsystemturn to a state of thermal equilib-
rium? In the cases whehhas a a finite dimensional Hilbert space and the environnueTsists

of an ideal quantum gas, this question has been extensivagtigated in [JP1, BFS, DJ1, FM].

Open systems become more interesting when their environiserot in thermal equilib-
rium. Suppose for example th&t is brought into contact with several reservoirs, each of
them being in a thermal equilibrium state but with differertensive thermodynamic param-
eters. Then one expects the joint systém- R, + --- to relax towards a non-equilibrium
steady states (NESS). Such states have been constructedlin4AH, JP2, APi, OM, MMS,
CDNP, CNZ]. They carry currents, have non vanishing entrppyduction rate,... These
transport properties were investigated in [FMU, CIM, AJPRR The linear response the-
ory (Green-Kubo formula, Onsager reciprocity relatioresjtcal limit theorem) was developed
in [FMU],[JOP1]-[JOP4],[JPP1]. Moreover, current fluctioas and related problems (Evans-
Searles and Gallavotti-Cohen symmetries) were studietivh IR, DMdR].

Repeated interactions. Motivated by several new physical applications as well ashiay
attractive mathematical structure, a class of open systasisecently become very popular in
the literature: repeated interaction (RI) systems. Theeegnvironment consists in a sequence
&1, &, ... of independent subsystems. The “small” subsystemteracts with€; during the
time interval|0, 7 [, then with&, during the intervalr, 71 + [, etc... While S interacts with
&En, the other elements of the sequence evolve freely accotditigeir intrinsic (uncoupled)
dynamics. Thus, the evolution of the joint systéim- £, + - - - is completely determined by
the sequence,, 7, . . ., the individual dynamics of ead),, and the coupled dynamics of each
pairS + &,,.
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In the simplest Rl models ead, is a copy of som&, 7, = 7, and the dynamics of,,
andS + &, are independent of:, generated by some Hamiltoniafs, Hses. Such models
have been analyzed in [BIM1, WBKM] (see also [BJM2] for a @ndsetting). It was shown
in [BIJM1] that the RI dynamics gives rise to a Markovian efifez dynamics on the system
S and drives the latter to an asymptotic state, at an expaleate (providedS has a finite
dimensional Hilbert space). The limit — 0 with appropriate rescaling of the interaction
Hamiltonian Hse was studied in [APa, AJ2]. In this scaling limit, Rl systermecbme con-
tinuous interaction systems and the effective dynamic§ @onverges towards a continuous
semigroup of completely positive maps associated with aiguma Langevin equation. Related
results pertaining to various other scaling limits of RIteyss have also been investigated in
[AJ1] with similar results.

Due to their particular structure, Rl systems are both Hamihn (with a time-dependent
Hamiltonian) and Markovian (the effective dynamicsSis described by a discrete semigroup
of completely positive maps, see Subsection 2.2 for theggaeneaning of this statement). For
that reason, we believe that these models provide a useimefvork to develop our under-
standing of various aspects of the quantum statistical ar@ch of open systems.

In the physical paradigm of a RI systes,is the quantized electromagnetic field of a cavity
through which a beam of atoms, tlg, is shot in such a way that no more thane atonis
present in the cavity at any time. Such systems play a fundeahmle in the experimental
and theoretical investigations of basic matter-radiaporcesses. They are also of practical
importance in quantum optics and quantum state enginepvihgM, WVHW, WBKM, RH,
VAS]. So-called “One-Atom Masers”, where the beam is tumeslich a way that at each given
moment a single atom is inside a microwave cavity and theaot®n timer is the same for
each atom, have been experimentally realized in laboest WM, WVHW].

In this paper we start the mathematical analysis of a speuifidel of Rl system describing
the one-atom maser experiment mentioned above (a preasdpieon of the model is given
in Section 2). We consider here the first natural questiomatyathat of thermal relaxation:
is it possible to thermalize a mode of a QED cavity by mean3-lgivel atoms if the latter
are initially at thermal equilibrium? The non-equilibriwsituation (NESS, entropy production,
fluctuation symmetries) will be considered in [BP]. We wolike to emphasize that in our
situation the Hilbert space of the small syst&ns notfinite dimensional. Moreover, we do not
make use of any perturbation theoir., our results do not restrict to small coupling constants.

The paper is organized as follows: The precise descriptidheomodel is given in Section 2
and the main results are stated and discussed in Section@&sRvill be found in Section 4.

Acknowledgements.C.-A.P. is grateful to J. Dereizski, V. Jak& and A. Joye for useful dis-
cussions and to the Institute for Mathematical SciencelseNational University of Singapore
for hospitality during the final stage of this work and finad@upport. L.B. thanks the Erwin
Schrédinger Institute of Vienna for hospitality and finat@upport.
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2 Description of the model

2.1 The Jaynes—Cummings atom—field dynamics

We consider the situation where atoms of the beam are piépara stationary mixture of
two states with energieB, < E; and we assume the cavity to be nearly resonant with the
transitions between these two states. Neglecting the esorant modes of the cavity, we
can describe its quantized electromagnetic field by a singtenonic oscillator of frequency
w~wy=F — Ey.

The Hilbert space for a single atom7i& = C? which, for notational convenience, we identify
with I"_(C), the Fermionic Fock space ov€r Without loss of generality we séf, = 0. The
Hamiltonian of a single atom is thus

Hg = u}()b*b,

whereb*, b denote the creation/annihilation operators’n. Stationary states of the atom
can be parametrized by the inverse temperature R and are given by the density matrices
P = e=PHe | Ty e~ Pl

The Hilbert space of the cavity field 1§s = ¢*(N) = I' . (C), the Bosonic Fock space ovEr
Its Hamiltonian is
Hs =wN = wa*a,

wherea*, a are the creation/annihilation operators’ g satisfying the commutation relation
la,a*] = I. Normal states of are density matrices, positive trace class operatorsH s with
Trp = 1. We will use the notatiop(A) = Tr(pA) for A € B(Hs). These are the only states
we shall consider os. Therefore, in the following, “state” always means “norrstdte” or
equivalently “density matrix”. Moreover, we will say thastate is diagonal if it is represented
by a diagonal matrix in the eigenbasisiag.

In the dipole approximation, an atom interacts with the theity field through its electric
dipole moment. The full dipole coupling is given by/2)(a+a*)® (b+b*), acting onHs @ He,
where)\ € R is a coupling constant. Neglecting the counter rotatingnie® b + a* ® b* in this
coupling (this is the so calletbtating wave approximatigneads to the well known Jaynes-
Cummings Hamiltonian

H=Hs®1e+ s ® He + \V, Vz%(a*®b+a®b*), (2.2)
for the coupled syster§ + £ (seee.g.,[Ba, CDG, Du]). The operatoH has a distinguished
property which allows for its explicit diagonalisation:cbmmutes with the total number oper-
ator

M =a*a+ b*b. (2.2)

An essential feature of the dynamics generateddbgre Rabi oscillations. In the presence
of n photons, the probability for the atom to make a transiti@nfrits ground state to its
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excited state is a periodic function of time. The circulagnency of this oscillation is given
by \/A2n + (wy — w)?, a fact easily derived from the propagator formula (4.2pbelThus, in
our units,) is the one photon Rabi-frequency of the atom in a perfectigdicavity.

The rotating wave approximation, and thus the dynamicsngée@ by the Jaynes-Cummings
Hamiltonian, is known to be in good agreement with experitalgatas as long as the detuning
parameterA = w — wy satisfies|A| < min(wy,w) and the coupling is sma|l\| < wy.
However, we are not aware of any mathematically precisersight about this approximation.

2.2 Repeated interaction dynamics

Given an interaction time > 0, the systend successively interacts with different copies of the
systemé, each interaction having a duratien The issue is to understand the asymptotic be-
havior of the systens when the number of such interactions tends-te (which is equivalent

to timet going to+oc). The Hilbert space describing the entire systeém C then writes

H=Hs®He, He=Q)He.,
n>1

whereH;, are identical copies of{s. During the time interva[(n — 1)7,n7), the system
S interacts only with the:-th element of the chain. The evolution is thus describedhey t
HamiltonianH,, which acts ad7 on’Hs ® Heg, and as the identity on the other factats, .

Remark. A priori we should also include the free evolution of the nnteracting elements of
C. However, since we shall take the various elementstofbe initially in thermal equilibrium,
this free evolution will not play any role.

Given any initial staty on S and assuming that all the atoms are in the stationary ﬁiatee
state of the total repeated interaction system afteteractions is thus given by

e—iTHn . e—iTH1 <p ® ® pg> eiTH1 . eiTHn.

k>1

To obtain the state,, of the systensS after these: interactions we take the partial trace over
the chairC, i.e.,

Pn = Tr'Hc

k>1

It is easy to make sense of this formal expression (we dealign countable tensor products).
Indeed, at timer7 only then first elements of the chain have played a role so that we céaaep
Ry P2 by pi™ = ®p_, pi and the partial trace over the chain by the partial trace theer

finite tensor producH” = ®_, He, .

The very particular structure of the repeated interactysiesns allows us to rewritg, in a

much more convenient way. The two main characteristicseddhepeated interaction systems
are:
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1. The various elements 6fdo not interact directly (only via the systef),

2. The systend interacts only once with each elementifand with only one at any time.

It is therefore easy to see that the evolution of the sys$eis1 Markovian: the state,, only
depends on the stajg,_; and then-th interaction. More precisely, one can write (see also
[AJ1l, BIM1])

P = Tr, ) [e_”H" eI (P ® pg (n)) e mHL L -e”H"]

C
= iy, [e—ian <Tng”*1> [e—z‘an,l e e—iTH (p 2 pg (n—l)) oiTHI _eian,l] 2 pg) eian]
— Tr'Hgn [e—iTHn (pn—l ® pg) eiTHn] 7

that is
Pn = Lﬁ(ﬂn—l),
with
£4(p) = Trrge [ (p @ p) 7] (2.4)

Definition 2.1 The mapCl; defined on the sef; (Hs) of trace class operators oHs by (2.4)
is called the reduced dynamics. The stateSoévolves according to the discrete semigroup
{£% | n € N} generated by this map:

In particular, a statep is invariant iff L(p) = p.

Note thatL; is clearly a contraction. To understand the asymptotic iehaf p,,, we shall
study its spectral properties. In particular, we will besheisted in its peripheral eigenvalues
e, for g € R.

Remark. When the atom-field coupling is turned off, the reduced dyicans nothing but the
free evolution ofS, i.e., £L5(p) = e~"Hs pei™Hs . Note that 7, (Hs) = Bacz T\ (Hs) Where
each subspace

TP (Hs) = {X € Ti(Hs) | e VXN = X forall 6 € R}, (2.5)

is infinite dimensional (it is the set of bounded operat&rsvhich, in the canonical basis of
Hs = (*(N), have a matrix representatiofy,,, = x,, d,+am With ano |z, < 00). Thus, for
A = 0, the spectrum of 5 is pure point

SP(L3) = sy (Ls) = {7 |d € Z}.

This spectrum is finite ifw € 27Q and densely fills the unit circle in the opposite case. In
both cases, all the eigenvalues (and in particljare infinitely degenerate. This explains why
perturbation theory in fails for this model.
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3 Results

To formulate our main results we need a notion of Rabi reso;ia®uch a resonance occurs
when the interaction time is an integer multiple of the period of a Rabi oscillation.réland
in the following we will use the dimensionless detuning paeter and coupling constant

B AT\ 2 _ A\ 2
=(3) = (2)

Definition 3.1 Letn be a positive integer. We shall say thais a Rabi resonance if

to parametrize our model.

En+n =k, (3.1)

for some positive integeér and denote byR(n, £) the set of Rabi resonances.

The following elementary lemma (see Subsection 4.10 foseusdision) shows that, depending
onn andé, the system has either no, one or infinitely many Rabi restemanWe shall say
accordingly that it is non-resonant, simply resonant dyftésonant. A fully resonant system
will be called degenerate if there existe {0} U R(n,¢) andm € R(n,&) such thatn < m
andn+1,m+1 € R(n,¢§).

Lemma 3.2 1. If » and ¢ are both irrational then the system can be either non-resba
simply resonant.

2. If one of them is rational and the other not, then the syssamon-resonant.

3. If they are both rational, write their irreducible represtations as) = a/b, ¢ = ¢/d, denote
by m the least common multiple 6fandd and set

X={re{0,...,6m—1}|2*m ~ npm(mod &Em)}.
The system is non-resonangifis empty. In the opposite case it is fully resonant and
R(n, &) = {(K* —n) /€| k = jmé +2,j € Ny € X} NN
4. A necessary condition for the system to be degeneratatibtith( and» be integers such

thatn > 0 is a quadratic residue modulg, i.e., there exists an integey such thaty = 3>
modulog.

The Hilbert spacé&{s has a decomposition

Hs = PHE, (3.2)
k=1
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wherer is the number of Rabi resonancés‘gk) = (*(I;) and{I; | k = 1,...,r}is the partition
of N induced by the resonances. More precisely we set

I; =N if R(n,¢)isempty
Il E{Ov"'7n1_1}7 ]25{n17n1+17"'} if R(nvg):{nl}v
L={0,....n1— 1}, L={ny,...,no =1}, ... if R, &) ={ny,na,...}.

We shall say thaﬁg“) is the k-th Rabi sector, denote b¥, the corresponding orthogonal
projection and s€f, = dim Hfgk).

Thermal relaxation is an ergodic property of the m&pand of its invariant states. For any
density matrixp, we denote the orthogonal projection on the closur®&aeifi p by s(p), the
support ofp. We also writey < p whenever (i) < s(p).

A statep is ergodic (respectively mixing) for the semigroup geneddty £ whenever

N
Jim > (£3(0) (4) = pla). (3.3)
(respectively)
Tim (L5(w)) (4) = p(A), (3.4)

holds for all stateg. < p and allA € B(Hs). p is exponentially mixing if the convergence in
(3.4) is exponential, e., if

|(£5(1)) (A) = p(A)| < Cape™™",

for some constant’, , which may depend oA andx and somex > 0 independent oA and
1. A mixing state is ergodic and an ergodic state is clearlgiimant.

A statep is faithful iff p > 0, thatiss(p) = I. Thus, ifp is a faithful ergodic (resp. mixing)
state the convergence (3.3) (resp. (3.4)) holds for evartg gtand one has global relaxation.
In this casep is easily seen to be the only ergodic stateCgf Conversely, one can show (see
Theorem 4.4) that iLz has a unique faithful invariant state, this state is ergodic

We need some notations to formulate our main result. FerR we set3* = fw,/w and to
each Rabi sectcﬁ‘lg’“) we associate the state

P8 = e MHsp, e PNp
S Tre A Hsp, — Tre PN p,

Theorem 3.3 1. If the system is non-resonant thép has no invariant state fof < 0 and

the unique ergodic state
e_B*HS

Ps = Ty o5 Hs
for 5 > 0. In the latter case any initial state relaxes in the mean ® tthermal equilibrium
state at inverse temperatufs.
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2. If the system is simply resonant thénhas the unique ergodic stapd’”" if 5 < 0 and two
ergodic state$§)5*, pf? 7if 3> 0. In the latter case, for any staje one has

1 N

lim > (L5(w)) (4) = n(P) s (A) + u(P2) p§ 7 (A), (3.5)

n=1
forall A € B(Hs).

3. If the system is fully resonant then for asyc R, L5 has infinitely many ergodic states
PPk =1,2,... Moreover, if the system is non-degenerate,

tim > (£300)) (4) = S (P 407 (4), (3.6)

N—oo
k=1

holds for any state and all A € B(Hs).

4. If the system is non-degenerate, any invariant statesigahal and can be represented as a
convex linear combination of ergodic states.

Remarks. 1. Notice the renormalizatiod — (3* of the equilibrium temperature when the
detuning parameterin non-zero.

2. Inthe non-degenerate cases, our result implies somefawalof decoherence in the energy
eigenbasis of the cavity field: the time averaged off-diagpart of the stat€7 () decays with
time.

3. Assertion 4 shows in particular that in the non-degeperases an ergodic decomposition
theorem holds. Note that, in contrast with classical dymahsystems, this is not necessarily
the case for quantum systems.

4. If the system is degenerate, (3.6) and the conclusionsseértion 4 still hold provided a
further non-resonance condition is satisfied. Namely, weskow that there is a finite non-
empty setD C N* such that the peripheral eigenvaluesafwith non-diagonal eigenvectors
are given bye!("+émd g ¢ D (see Lemma 4.6 below for details). df7<+¢md £ 1 for all

d € D, none of these eigenvalue equaland all eigenvectors of ; to the eigenvalué are
diagonal.

The following result brings some additional information thre relaxation process in finite
dimensional Rabi sectors.

Theorem 3.4 Whenever the stayésk) s ergodic it is also exponentially mixing if the sector
Hgk) is finite dimensional.

Remark. Numerical experiments support the conjecture that all tgedic states are mixing.
However, our analysis does not provide a proof of this cdu'yedeg’“) is infinite dimensional.

In fact, we will see in Subsection 4.5 thag has an infinite number of metastable states in the
non-resonant and simply resonant cases. As a result, wetesipgv (.e., non-exponential)
relaxation (see Paragraph 4.5.4 for illustrations).
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4 Proofs

4.1 Preliminaries

The mapl; acts on the set of density matrices®p, but its definition (2.4) obviously extends
to the space7;(Hs) of trace class operators 0tiis. Let us first recall some definitions and
important results concerning linear maps on trace ideadsréfer to [Kr, Sch, St] for detailed

expositions).

Definition 4.1 Let¢ : J,(H) — J1(H) be a linear map.

1. ¢ is positive if it leaves the cong, , (H) of positive trace class operators invariant.
2. ¢ is n-positive if the extended mapse I acting on7; (H) ® B(C") is positive.
3. ¢ completely positive (CP) if it is-positive for alln € N.

4. ¢ is trace preserving iflv(¢(p)) = Tr(p) foranyp € J1(H).

Given a linear map on J,(H), we denote by-(¢) its spectral radiusup{|z|| z € sp(¢)}
which, by a result of Gelfand [G], is equal ton,, . ||¢™[|*/™.

Theorem 4.2 Let¢ be a positive map of; (H).
1. ¢ is bounded.
2. If ¢ is CP there exists an at most countable fanfily);. ; of bounded operators oK such
that

0<> VVi<I,

1eJ’

for any finiteJ’ C J and

d(p) =Y _ VipVy, (4.1)

i€

foranyp € J1(H).
3. If ¢ is CP and trace preserving thefi¢) = ||¢|| = 1.

A decomposition (4.1) of a CP map is called a Kraus repreientaSuch a representation is
not necessarily unique.

The following result due to Schrader ([Sch], Theorem 4.19us main tool for the spectral
analysis ofC 3.

Theorem 4.3 Let ¢ be a2-positive map o7, (H) such thatr(¢) = ||¢||. If X is a peripheral
eigenvalue ofp with eigenvectorX, i.e., ¢(X) = AX, X # 0, |A\| = r(¢), then|X] is an
eigenvector ob to the eigenvalue(¢): ¢(|X|) = r(¢)|X|.

Finally, the following theorem reduces the problem of tharnelaxation “in the mean” (in the
sense of (3.3)) to the existence and uniqueness of a faitiviatiant .
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Theorem 4.4 Let¢ be a CP trace preserving map ¢f (H). If ¢ has a faithful invariant state
Pstat @Nd 1 is a simple eigenvalue afthenp;.; is ergodic.

This result is most probably known, at least for stronglytoarous semigroups of CP trace
preserving maps. Since we are not aware of any referenceiditicrete case we provide a
proof in Subsection 4.9.

4.2 Strategy
Using Theorem 4.2, the following proposition follows ditlgdrom the definition (2.4) ofCs.

Proposition 4.5 L3 is a completely positive, trace preserving mapBnHs). In particular
one has(L3) = ||Ls)| = 1.

In order to prove Theorems 3.3 and 3.4 we will derive an ekficaus representation af

in Subsection 4.3. In Subsection 4.4 we will show tidatleaves the subspaceﬁ(d)(HS)
invariant. Using the Kraus representationfofwe will then derive a convenient formula for its
action on the subspacfél(o) (Hs) of diagonal matrices. With this formula we will construct al
diagonal invariant states in Subsection 4.5. Investigéte block structure of ; associated
to Rabi sectors (Subsection 4.6) will allow us to invoke Tieeo 4.3 in Subsection 4.7. In this
way we reduce the peripheral eigenvalue probestX ) = ¢ X, € R, to diagonal matrices.
In subsection 4.8 the result of this analysis will allow ugtmclude the proof.

4.3 Kraus representation ofLg

Denote by|—) and|+) the ground state and the excited state of the aforfihis orthonormal
basis ofH¢ allows us to identifyH = Hs ®He with Hs®Hs. Using the fact that/ commutes
with the total number operatadv/ (recall (2.2)), an elementary calculation shows that, ia th
representation, the unitary groap™ is given by

. e—i(TwN+7r771/2) C(N) _ie—i(TwN+7r771/2)S<N> a*
e I TH = , (4.2)
_ie—i(rw(N+1)+7r171/2)S(N + 1) a e—i(Tw(N+1)+7rn1/2) C(N + 1)*
where
1/2 sin(mvEN +n)

C(N) = cos(my/EN +1n) +in

S(N) = €12 sin(mvEN + 1)
B EN+n

EN+n
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with the conventiorsin(0)/0 = 1 to avoid any ambiguity in the case= 0. Letwg(o) =
(o|peslo) = (1 + e“P+0)~! denotes the Gibbs distribution of the atoms. The definingtitle
(2.4) yields

Ls(p) = Y (ol ™ |o)ws(0)p(ole™ o) Z Voo Vol (4.3)

where the operatons,., are given by
Vo =wp(m) e N ON), Vo = wp(+) e Y S(N) o,

(4.4)
Vi = wp(—) 2N SN 4+ 1) a, Viy = ws(+)/2e™N O(N + 1)

The above formulas give us an explicit Kraus representatidhe CP mapC.

4.4 Action of L3 on diagonal states

Using the facts thatH, M| = [Hg, pg] = 0, one easily shows from the definition (2.4) that
Cﬁ(e_ieNXeieN) — e_ieNﬁﬁ(X)eieN,
holds for anyX € Ji(Hs) andfd € R. This is of course also evident from the above Kraus

representation of 3. However, it is not clear there what properties of the sysissresponsible

for this invariance. It follows thaf ; leaves the subspacé’éd)(HS) (see Equ. (2.5)) invariant,
and hence admits a decomposition

Ly=PcLy. (4.5)

deZ

We shall be particularly interested in the action®f on diagonal matriceg,e., in ﬁ(ﬁo). To
understand why, note that if € J,(Hs) is an invariant state themn > 0, Tr(p) = 1 and
Ls(p) = p. It follows from (4.5) that its diagonal papt® e J7° (Hs) satisfiesp® > 0,
Tr(p®) =1 andﬁ(ﬁo)(pm)) = p ie.,p? is also an invariant state. The problem of existence
of an invariant state therefore completely reduces to tistence of the eigenvalueof E(ﬁo)

Denoting byz,, the diagonal elements of € 7" (H;s), we can identify7,” (H.s) with /(N).
The Kraus representation derived in the previous subsettimediately yields

(E(Bo)x)n L [ <c082(7n/§n + 1) 4+ e 0 cos?(my/E(n 4 1) + 7))) Ty

14 e Fwo
+sin2(7r\/m)
En+n
sin?(my/E(n+ 1) +
§(n+1)+1

(nz, + e 708, 1)

n) (e—ﬁwonxn +&(n+ 1)xn+1)] .
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To rewrite this expression in a more convenient form let aooiuce the number operator
(Nz), = nz,,

as well as the finite difference operators

x forn =0, X _
(Vz), = { xz e, forn>1 (V*2), =z, — 2,41 (forn > 0),

on ¢*(N). A simple algebra then leads to

E(ﬁo) S V*D(N)e_ﬁ“’ONVeﬁ“’ON, (46)
where
I EN
D(N) = T sin“(my/EN + 1) N 4.7)

4.5 Diagonal invariant states

We are now in position to determine all the diagonal invarstates and more generally all
eigenvectors ot(ﬁo) to the eigenvalué. Settingu = e 0N vef“oN 5 and using formula (4.6),
we can rewrite the eigenvalue equation as

V*D(N)u = 0.

SinceV* is clearly injective, this mean®(/N)u = 0 and hence:,, = 0 unlessD(n) = 0, that
isn is a Rabi resonance. At this stage, we have to distinguisis@sca

45.1 The non-resonant case

If the system is non-resonant, it follows from (4.7) thatn) = 0 if and only if » = 0 and
hence our eigenvalue equation reduces to

_ e—ﬁwo

Un = Pn Pn—1 = 07

for n > 1. We conclude that there is a unique diagonal invariant state

e MoN s
Tre BwoN _Ps =Ps

if 5> 0andnoneif <0.
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4.5.2 The simply resonant case

If the system is simply resonant there existse N* such thatD(n) = 0 if and only ifn = 0
orn = n;. The eigenvalue equation then splits into two decoupledeojs

Pn+1 = e_ﬁwopnu ne Il = {07 a1 — 1}7
pnpr =€ Pp  nel={n,n +1,..}
The first one yields the invariant state

e—ﬁwoNlDl B p(l)ﬁ*
Tr e‘ﬁ“’oNPl S ’

for any € R. The second equation gives another invariant state

e NP )6

TreBwoNp, Ps=

provideds > 0.

4.5.3 The fully resonant case

If the system is fully resonar®(n) has an infinite sequeneg = 0 < n; < ny < --- of zeros.
The eigenvalue equation now splits into an infinite numbdmite dimensional problems

_Bwopny ne Ik = {nk—lv sy N — 1}7

Pn+1 = €
wherek = 1,2, .... For anys € R, we thus have an infinite number of invariant states

e—ﬁwoNPk B p(k) o
Tr e‘ﬁWONPk S ’

one for each Rabi sector.

4.5.4 Metastable states

If the system is non-resonant we say thatc N* is a Rabi quasi-resonance if it satisfies
D(m) < D(m £ 1). Let (mg)ren- be the strictly increasing sequence of quasi-resonantes. |
is straightforward to show thd®(m;) = O(k=2) ask — oo. Setting

_]0 if n € {my,my,...},
Do(n) = { D(n) otherwise

andﬁ(ﬁ% = I — V*Dy(N)e P»0NyefoN one immediately concludes that

LY = +T, (4.8)
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Figure 1: The metastable cascade (notice the log-log skale !

where7 is a trace class operator. The above analysis of the fulbnas case shows thais
an infinitely degenerate eigenvaluezbé‘f)o. The corresponding positive eigenvectors

ﬁ(k) o _ e—ﬁwoNﬁk
s Tr e—fBwoN P,

whereP, denotes the orthogonal projection otit¢{0, . .., m; — 1}), are metastable states of
the systems. Because of these almost invariant statedptied gelaxation process is extremely
slow in the non-resonant and simply resonant cases. Inrgpéetms, (4.8) shows thdtis
always in the essential spectrum £§. It follows that relaxation can not be exponential in
infinite dimensional Rabi sectors.

As an illustration, we have computed the evolution of the finstastable statég)ﬁ* and the

relative entropies
Di(n) = —Ent (EZ (ﬁg)ﬁ*) ﬁfgk) 5*> ;

in a typical, non-resonant one-atom maser situation (asridbes! in [WVHW]) with atoms in
equilibrium at room temperature. We recall that the entrofpg stateu relative to the state
is defined by

Ent(p|v) = Tr u(log u — log v).
Itis a measure of the “distance” betwegeandr and is also called Kullback—Leibler divergence

in information theory. Its main property isnt(x | v) < 0 where the equality holds iff. = v.
Figure 1, show®,(n) as a function of. for k = 2, 3, ... on alog-log scale. It clearly describes

the cascade of(53’ ") through the sequence of metastable stafgd” — 55" — -
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Figure 2: Cooling the cavity: 5000 interactions.

5 8 11 15 20 25 31 38 45 53

Figure 3: Cooling the cavity: 50000 interactions.
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22F 3

Figure 4: Cooling the cavity: average photon number.

Another way to see metastable states in action consistimgahe cavity with cold atoms.
Figure 2 shows the result of such a calculation. The soli isnthe initial state of the cavity
which we chose to be thermal equilibrium with an average @moumber of 22. The dashed
line is the stationary stat,eg*, thermal equilibrium with an average of 7 photons. The bnoke
line is the state of the cavity after 5000 interactions. Téwigal dashed lines mark the positions
of the Rabi quasi-resonances.. The picture shows clearly that local equilibrium is acleigv
in each intervalm,,, m,.1[: the slope of the broken line agrees with that of the invastate on
these intervals. However only the first three intervals haaehed a common equilibrium. The
average photon number at this stage is still slightly latigen 17. It requires 50000 interactions
for this number to drop under 10. Figure 3 shows the corredipgrstate of the cavity. A gross
picture of the relaxation process is provided by Figure 4retibe average photon number is
plotted against the number of interactions.

4.6 Rabiresonances and the block structure of 5

To understand the RI dynamics of Rabi-resonant systems we teeinvestigate the block
structure of the maif s in the presence af such resonances,, ... The decomposition (3.2)
of Hs into Rabi sectors induces a decomposition

Ti(Hs) = @@ T Hs), T (Hs) = PTi(Hs)Py = H(HE 1Y), (4.9)

k,p=1
where each term itself decomposes into

np+1—nk—1

T s = D T M), (4.10)

d:np—nk+1+1
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. TP (Hs) = {X € T (Hs) | e PV XN = X forall € R}
It easily follows from the fact tha$(n) = 0 for n € R(n,¢) that
Voro P = PV o Py = PiVys, ViePr = BV Py = PV,
hold for anyo, ¢’ and any Rabi projectio®,. Therefore, one has
BiLs(p) Py = Lo(Prphy),
i.e.,the mapL; further decomposes into

Npt1—np—1

k, k, k,p,d
Lo=P s, cf= P oLy, (4.11)
k,p=1 d=np—npi1+1
Whereﬁ(ﬁk’p’d) is the restriction of; to the subspacgl(k””d) (Hs). It will be useful to visualize

the elements of this subspacelas [, matrices (with respect to the canonical basig{gf of
the form

0 02, 0 0
0 0 0 x5 0
X=1 9 00 0 x4

Recall that),, is the dimension of the-th Rabi sector.

4.7 The peripheral point spectrum of Lz

We have obtained all the diagonal eigenvectors to the eajaet of L; in the Subsection
4.5. In this subsection we further investigate the perighgpectrum of 3, more precisely the
eigenvalue problem

Ls(X)=e"X, (4.12)
with 6 € R. The following lemma shows that in almost all cases the oelygheral eigenvalue
is 1 and that all the corresponding eigenvectors are diagomalotier words, they are no
solutions to (4.12) except for multiples of those obtainethie Subsection 4.5.

Lemma 4.6 1. The only peripheral eigenvalue ﬁfao) is1.

2. If the system is not degenerate, then the only periphegaingalue ofL; is 1 and the
corresponding eigenvectors are diagonal.

3. If the system is degenerate we dendite), &) = {n € {0} UR(n,&)|n+1 € R(n,&)}
andD(n,&) = {d = n—m|n,m € N(n,§),n # m} . In this case the set of peripheral
eigenvalues of 5 is given by

{1} u {4 d e D(n,€)}.

More precisely, for any, p € N* such thatt # p one has:
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(i) 1isthe only peripheral eigenvalue 61‘5’“”“) and the corresponding eigenvectors are diag-
onal.

(i) L(ﬁk”’) has no peripheral eigenvalue exceptijf andn, both belong taV(n, £) in which
case it has the unique and simple eigenvafife+¢”¢ whered = n, — n.

Proof. According to the decomposition (4.11) it suffices to considlez jl(k’p D (Hs) satisfy-
ing (4.12). We note thak™* € jl(p’k’_d) (Hs) then satisfie€5(X*) = e~ X*. It follows from
Theorem 4.3 that = (X*X)/2 ¢ 777" (Hs) aswell asZ = (X X*)/2 € 75" (Hs) are
positive diagonal eigenvectors 6f; to the eigenvalué.

If 3 < 0andl, = oo (respectivelyl, = oo) it follows from Subsection 4.5 that = 0
(respectivelyY = 0) and henceX = 0. In the remaining cases on h&s = /\pg)ﬁ* and
Z = up®? for some, 11 > 0. We consider four cases.

Case I, # 1, (X is not a square matrix). Without loss of generality (inteneging.X and

X*) we may assume that > [, and in particular that, is finite. ThenZ is a diagonal;, x I,
matrix whose rank does not excekd It follows that at least one of its diagonal entry is zero.

Sincep® ?" > 0 we conclude that. = 0 and henceX = 0.
Case Il.l;, = 1, andd # n, — n; (X is square but not diagonal). In this case we can assume

(again by interchanging and X*) thatd > n, — n,. Then the kernel oX is non-trivial and
we can apply the same argument than in case I.

Case lll:l;, = 1, > 1 andd = n, — n;, (X is diagonal). In this case we can assuine 0. The
diagonal elements oX can be written as

T, = e e Tng o gy — 1},
for somep € C andy; € R. Assumingu # 0 and using the Kraus representation (4.3), (4.4),
the eigenvalue equation (4.12) writes

em—wd

m [(a"a"+d + e_ﬁwoan—i-lan-kd-i-l) el
+ bnbwrdeisanf1 + e_ﬁwobn+1bn+d+1ei%+1} = ei(0+%)> (4.13)
forn € {ny,...,nx1 — 1} where
a, =C(n), b,=+/nS(n).

One easily checks that,|? + |b,|> = 1. The resonance condition a}, andn, = ny + d is
b, = b,, = 0 and hencga,, | = |a,,| = 1. Settingz = e anda = Twd — § we can recast
Equation (4.13) as

2(A, —1)=1— B, (4.14)
where

i, —— ia—i(pn—pn— T
A, =e%a, a9+ € (pn—gp 1)bnbn+d,

iati(ont1—¢n

i -
B, = e“ania1Gni1 + € )bn+d+1bn+1-
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The Cauchy-Schwarz inequality yiel&®s A,, < |A,| < 1,Re B, < |B,| < 1 and hence
Rez(A, —1) <0, Re(1 - B,) > 0.

It follows that (4.14) is equivalent tal,, = B, = 1. In order for equality to hold in the
Cauchy-Schwarz inequalifye A,, < 1, we must have

Qpig = ea,, bpia = el ien=pn-1)p (4.15)

Similarly, to get equality in the inequalifige B,, < 1 requires
A1 = € “apy1, by = e @ Tiennimeny (4.16)
If d = 0 the first equation in (4.15) and the fact thgt # 0 imply ¢ = 1. Hencee? =
¢™wd — 1 and X is a multiple of the invariant states’”. We can therefore assume thiat- 0

and hencey, > 0. Sinceb,, ., # 0 andb, 4, # 0, comparing the second equations in (4.15)
atn = n;, + 1 and (4.16) at = n,, allows us to conclude thai® is real.

We shall now consider separately the two cages 0 andn # 0. In the first case, the first
equation in (4.16) implies

cos® my/€&(ny + 1) = cos® w4 /&(ny, + 1)

Ve, + 1) +eyfEm +1) =1, (4.17)

for somes € {£1} and some integer > 0. Using the resonance condition

and therefore

for some integeg > 0, we can rewrite (4.17) as

. ng+1 r n, +1
np q ny

Squaring both sides of this equality leads to

nk+1:7“_2 np+1_2_r n, +1

2
np q np q ny

Y

which leads to a contradiction since the square root on g hiand side of the last equality is
always irrational.

If n # 0, rewriting the imaginary part of the first equation in (4.85)

2 sinmy\/E(n+d)+n ey sinmv/én +n

Em+d) +n 7 Vén—+mn
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and comparing it with the second equation in (4.15)

sm7n/ (n+d)+ B 81n7r\/§n+

/ :l: 1(9071 Pn— 1 / ,
\/W Vin+n
we gety/E(n + d) = e"{(¥n—en-1)/€n which contradicts our hypothesis> 0.

Case IV, =1, = 1 andd = n, — n;, (X is scalar). We follow the same argument as in case
lll. Now the second equations in (4.15), (4.16) are triyialihtisfies and only the two equations

i —ia
Ap, = €%ay,, Unyr1 = € g, 11 (4.18)

P

survive. In the casd = 0 one can conclude, as in case I, thift = 1. We can therefore
assume that > 0 andn, > 0, which means thatny, n;, + 1), (n,,n, + 1) are two distinct
pairs of consecutive resonance®,, that the system is degenerate. In this case, Equations
(4.18) are easily seen to be satisfied with= (—1)%dei™1, O

Remark. Note thatN (¢, n) is a finite set. Indeed, if € N (&, n) there exist positive integefs
andg such thatn +n = p* andé(n + 1) + n = ¢*. Hencef£ = ¢* — p* = (¢ — p)(q + p) and
thereforep < p + ¢ < £ so thatn < §2T"7 As a consequenc®(¢, n) is also a finite set as we
mentioned in Section 3.

4.8 Ergodicity and relaxation
4.8.1 Proof of Theorem 3.3

It is now easy to prove that the diagonal invariant stateaiobtl in Subsection 4.5 are ergodic.
Each such state is of the form= p M7 for somek and hence its support |s a Rabi projection
P,.. Any statey such thaty < p is an element ot7(k'“ (Hs) = jl(HS ). In particular
Ls(p) = E(ﬁk’k) (1) and it is therefore sufficient to prove ergodicity pfwith respect to the

semigroup generated by/;""”. Lemma 4.6 implies thaiy’ " is the unique faithful invariant
state for this semigroup. Ergodicity follows from Theorem.4

1. In the non-resonant case the unique ergodic @}@* = pg* is faithful and hence one has
1 N

lim > (L5(m) (A) = ps

N—oo
n=0

for all stateg: and allA € B(Hs).

2. In the simply resonant cases we shall first consider initates; € @j<q Jl(k) (Hs) for
finite d € N. According to (4.9), (4.10), such a state can be decompaodeaifinite sum

-1
o= lu(ll (22 (@ M(”]) ® (@ Iu(2,1,j)>

j=—d
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and hence

-1
Eﬁ( ) c(ﬁl Dn (,U ) £(22 (@ﬁlzg (1,2,5) )>@<@ E(ﬁz,l,j)n(u(z,l,j))>.

j=—d

Since the operato8} >/’ and.£ "' act on finite dimensional spaces they have a finite number
of eigenvalues which, by Lemma 4.6, all lie strictly insidhe tunit disk. It follows that the
corresponding terms in the above sum decay (exponentashy)— oo. The first two terms

in this sum can be handled as in the non-resonant case siede/dhRabi sectorgifgl) and
Hg?) are equipped with unique faithful invariant stayéég 7 and pg) 5. Therefore, for any

A € B(Hs), we have

1 N

i~ Z (L5(1)) (A) = pI(T) 7" (A) + p20(T1) p§ 7 (4),  (4.19)

and Equ. (3.5) follows from the fact that**) (1) = ;(P,). On the left hand side of (4.19)
the Cesaro mean is uniformly continuousiir(with respect toV) while the right hand side
is continuous. Equ. (4.19) therefore extends by contintatany stateu in the closure of

Uden(Bjk|<a T#(Hs)). The next lemma shows that this is all f(Hs).

Lemma 4.7 For any stateu there exists a sequen¢gy,)ren in J11 (Hs) such that

UE € @ jl(d)(HS)

ld|<k
andhmk_wo M = W in jl(Hs)

Proof. We first note that — 1(0) = e~V ue®N is a continuous2-periodic function froniR
to J1+(Hs) with Fourier coefficients

21 ] d@
(d) = —i0d -
u' = /0 w(f)e o

By (2.5), one hag@ € J”(Hs) and hence

e (E) g

d=—j |d|<k—1

By Fejér’s integral formula (see.g.,[Ti])

ot = / " F(6) (u(0) + u(—0)) do.

where
1 sin?(k6/2)

2k sin®(6/2)
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is Fejér’s kernel. Sincé}, > 0, it follows thaty;, > 0. Finally, from
== [ F6) (0(6) + n(=6) = 20) 0,
we obtain the estimate
o= sl < [ Fil6) 1®) + 1o =0) = 20, @,

whose right hand side vanishes/as— oo by Fejér's convergence theorem (see the proof of
Theorem 13.32 in [Ti]). O

3. In the fully resonant, non-degenerate case we start withlgitrary stateu and introduce a
cutoff by means of the orthogonal projections

P, =) P
j=1

Settingu<, = P<,1tP<,, using the decomposition into a finite sum of finite dimenaldrtocks

n Np+1—ng—1

pen = P b uhr|,

kp=1 \d=np—ngy1+1

and proceeding as in the simply resonant case we obtain

N n
Jim =™ () (4) = 39 (1) 87 (4). (4.20)
n=0 j=1

Sincelim,, .o p1<n = pin Ji(Hs) andy_ 22, ub9)(I) = pu(I) = 1, (4.20) extends tg, which
proves (3.6).

4. The last assertion of Theorem 3.3 is a direct consequencerofia 4.6.

4.8.2 Proof of Theorem 3.4

WhenH{ is finite dimensional, one can say more. By Lemma 4.6 the secof £

consists in a simple eigenvaluavith eigenvectop!””" and finitely many eigenvalues located
inadisk{z € C||z| < R} of radiusR < 1. This implies that

1L35() — p& 71 < Cremorn,

for some positive constantsy,, a; and all state: < p&%". Thusp’”" is (exponentially)

mixing.
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4.9 Proof of Theorem 4.4

Theorem 4.4 resembles the von Neumann mean ergodic thebl@anever, the latter holds in
full generality only for contractions orflexiveBanach spaces, which is not the casgrafH).
To bypass this problem, we shall work in a Hilbert space regmeation.

Let M = B(H) denote the von Neumann algebra of observables{and (IC, =, V) be the
GNS representation @t associated to the invariant statg.; (seee.g.,[BR]). On the dense
subspacé’, = 7(9M)¥ C K we define the map

M 7(A)W — 7(¢*(A)T, (4.21)

where¢* acts on)t and is the dual map af. The operator/ implements the map* in the
GNS representation. The following lemma is rather gendtactually holds as soon as the
initial map satisfies the Kadison-Schwarz inequality (3#.@&2g. if it is a2-positive map) and
the reference state is invariant [AHK].

Lemma 4.8 M extends to a contraction of.

Proof. The map¢* is a completely positive map. Hence it satisfies the KadiSonwarz
inequality (see e.g. [Ka])

9" (A"A) = ¢"(A) 9" (A), (4.22)
forall A € B(H). In particular we have, for any € B(H),

IMm(A)T|* = (T|r(¢"(A)"¢"(A))P)
= Pstat (¢7(4)"9"(A))

Pstat (07 (A"A))

= Pstat(A*A)

= [m(A)P|,

IA

where we have used that;., is an invariant state to get the 4th line. The operatbthus
defines a contraction ofd, and hence extends to a contractionton O

Let p be any state. Then there exidisc K such thaip(A) = (®|r(A)P) (see e.g. [BR, P)).
It is therefore sufficient to prove that for any normalizedtoe ® € K, and any observable

A e I,
N

1 *n _
Jim ;@\w (¢ (A)) @) = (¥|r(A)D). (4.23)
Moreover, sincey., is faithful, the vector is also cyclic for the commutant algebr&t)’.
We may therefore prove (4.23) only for vectors of the fobm- B’V whereB’ € 7(9t)’. For

such vectors, we have

(Dl (¢7"(A)) @) = (B"BW[r (¢ (A)) V)
= (B*B'Y|M"x(A)). (4.24)
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Since M is a contraction on the Hilbert spage the von Neumann mean ergodic theorem

asserts that
s — lim — Z M"™ =

N—oo
whereP is the projection ontder(M — I) alongRan(M — I) = Ker(M* — I)*.
Lemma 4.9 Ker(M* — ) = C .

Proof. Clearly, V € Ker(M* — I). Conversely, letb € K such that\M/*® = &. Consider
the linear functionab : 9t 5 A — (®|7(A)¥) € C. Itis easy to see that is normal on.
Hence, there existy € J;(H) such thatv(A) = Tr(X A). Moreover, for anyd € M

Tr(XA) =(@[r(A)W¥)

(M"®[r(A)¥)
(@[ Mm(A)W
=(®[m(07(A))
=Tr(X ¢"(A))
=Tr(p(X)A).

)
w)

Thus, X is a trace class operator invariant for Therefore there exists € C such that
X = Apsiar @nd we have for anyl € 901,

(@[m(A)W) = A(¥[x(A)T).
SinceV is cyclic for7(90) this proves tha® € CW. O

Using the above lemma, and sinkeV = V¥, the von Neumann mean ergodic theorem asserts
that

mﬁﬁzM‘
Together with (4.24), we get, using the fact that B’V is a normalized vector,
N
lim — $(®|r (6(4)) B) = (B B'U|W) (B]r(A)D)
N

= (Ulm(A)¥),

n=1
which concludes the proof.

4.10 The resonance condition

Assertions 1,2 and 3 of Lemma 3.2 are elementary and theof géeft to the reader. To prove
assertion 4 we consider the conditions for consecutivengses.
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In the perfectly tuned case= 0, the only possible consecutive resonance$)amd1. Indeed,
if n > 0thenn andn + 1 are resonances iffn = p*> and&(n + 1) = ¢? for positive integers

andgq. It follows that
n o p
n+1l ¢

which contradicts the irrationality of the square root oa lift hand side.

Forn > 0, the conditions for consecutive resonangesn <n+1 <m < m+ 1 are

n=0orén+n=p>  &n+1)+n=q,
Em+n=p*  &m+1)+n=q>

for positive integers, p’, ¢, ¢'. It easily follows that = ¢ — p’? andn = p'? — Em from which
we conclude thag andn must be integers anga quadratic residue modufo O

Remark. Degenerate systems exist, as the following example showtk: A= 720, n = 241,
n = 1 andm = 2 one gets

E4+n=31% 26+n=41% 3¢6+n=49%
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